首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Oak JH  Cai H 《Diabetes》2007,56(1):118-126
Angiotensin II (Ang II) levels are increased in patients with diabetes, but mechanisms underlying its contribution to diabetic vascular diseases are incompletely understood. We recently reported that in aortic endothelial cells, Ang II induces endothelial nitric oxide synthase (eNOS) uncoupling to produce superoxide (O(2)*(-)) rather than nitric oxide (NO*), upon loss of the tetrahydrobiopterin (H(4)B) salvage enzyme dihydrofolate reductase (DHFR). Here, we found that streptozotocin-induced diabetic mice had a marked increase in aortic O(2)*(-) production, which was inhibited by N-nitro-l-arginine methyl ester hydrochloride, indicating uncoupling of eNOS. Ang II receptor type 1 blocker candesartan or ACE inhibitor captopril markedly attenuated eNOS-derived O(2)*(-) and hydrogen peroxide production while augmenting NO* bioavailability in diabetic aortas, implicating recoupling of eNOS. O(2)*(-) and NO* production were characteristically and quantitatively measured by electron spin resonance. DHFR expression was decreased in diabetic aortas but significantly restored by candesartan or captopril. Either also improved vascular H(4)B content and endothelium-dependent vasorelaxation in diabetes. Rac1-dependent NAD(P)H oxidase (NOX) activity was more than doubled in the endothelium-denuded diabetic aortas but was attenuated by candesartan or captopril, indicating that NOX remains active in nonendothelial vascular tissues, although uncoupled eNOS is responsible for endothelial production of O(2)*(-). These data demonstrate a novel role of Ang II in diabetic uncoupling of eNOS and that Ang II-targeted therapy improves endothelial function via the novel mechanism of recoupling eNOS. Dual effectiveness on uncoupled eNOS and NOX may explain the high efficacy of Ang II antagonists in restoring endothelial function.  相似文献   

2.
The current study investigated the potential of green tea (GT) to improve uncoupling of endothelial nitric oxide synthase (eNOS) in diabetic conditions. In rats with streptozotocin-induced diabetes, nitric oxide (NO) bioavailability was reduced by uncoupling eNOS, characterized by a reduction in tetrahydrobiopterin (BH(4)) levels and a decrease in the eNOS dimer-to-monomer ratio. GT treatment ameliorated these abnormalities. Moreover, immortalized human mesangial cells (ihMCs) exposed to high glucose (HG) levels exhibited a rise in reactive oxygen species (ROS) and a decline in NO levels, which were reversed with GT. BH(4) and the activity of guanosine triphosphate cyclohydrolase I decreased in ihMCs exposed to HG and was normalized by GT. Exogenous administration of BH(4) in ihMCs reversed the HG-induced rise in ROS and the decline in NO production. However, coadministration of GT with BH(4) did not result in a further reduction in ROS production, suggesting that reduced ROS with GT was indeed secondary to uncoupled eNOS. In summary, GT reversed the diabetes-induced reduction of BH(4) levels, ameliorating uncoupling eNOS, and thus increasing NO bioavailability and reducing oxidative stress, two abnormalities that are involved in the pathogenesis of diabetic nephropathy.  相似文献   

3.
Aging is associated with ED. Although age-related ED is attributed largely to increased oxidative stress and endothelial dysfunction in the penis, the molecular mechanisms underlying this effect are not fully defined. We evaluated whether endothelial nitric oxide synthase (eNOS) uncoupling in the aged rat penis is a contributing mechanism. Correlatively, we evaluated the effect of replacement with eNOS cofactor tetrahydrobiopterin (BH(4)) on erectile function in the aged rats. Male Fischer 344 'young' (4-month-old) and 'aged' (19-month-old) rats were treated with a BH(4) precursor sepiapterin (10?mg/kg intraperitoneally) or vehicle for 4 days. After 1-day washout, erectile function was assessed in response to electrical stimulation of the cavernous nerve. Endothelial dysfunction (eNOS uncoupling) and oxidative stress (thiobarbituric acid reactive substances, TBARS) were measured by conducting western blot in penes samples. Erectile response was significantly reduced in aged rats, whereas eNOS uncoupling and TBARS production were significantly increased in the aged rat penis compared with young rats. Sepiapterin significantly improved erectile response in aged rats and prevented increase in TBARS production, but did not affect eNOS uncoupling in the penis of aged rats. These findings suggest that aging induces eNOS uncoupling in the penis, resulting in increased oxidative stress and ED.  相似文献   

4.
Type 1 diabetes is associated with reduced vascular repair, as indicated by impaired wound healing and reduced collateral formation in ischemia. Recently, endothelial progenitor cells (EPCs) have been identified as important regulators of these processes. We therefore explored the concept that EPCs are dysfunctional in diabetes. The number of EPCs obtained from type 1 diabetic patients in culture was 44% lower compared with age- and sex-matched control subjects (P < 0.001). This reduction was inversely related to levels of HbA(1c) (R = -0.68, P = 0.01). In addition, we demonstrated that patient EPCs were also impaired in function using an in vitro angiogenesis assay. Conditioned media from patient EPCs were significantly reduced in their capacity to support endothelial tube formation in comparison to control EPCs. Therefore, despite culturing the EPCs under normoglycemic conditions, functional differences between patient and control EPCs were maintained. Our findings demonstrate that adverse metabolic stress factors in type 1 diabetes are associated with reduced EPC numbers and angiogenicity. We hypothesize that EPC dysfunction contributes to the pathogenesis of vascular complications in type 1 diabetes.  相似文献   

5.
The pathogenesis of diabetic nephropathy remains poorly defined, and animal models that represent the human disease have been lacking. It was demonstrated recently that the severe endothelial dysfunction that accompanies a diabetic state may cause an uncoupling of the vascular endothelial growth factor (VEGF)-endothelial nitric oxide (eNO) axis, resulting in increased levels of VEGF and excessive endothelial cell proliferation. It was hypothesized further that VEGF-NO uncoupling could be a major contributory mechanism that leads to diabetic vasculopathy. For testing of this hypothesis, diabetes was induced in eNO synthase knockout mice (eNOS KO) and C57BL6 controls. Diabetic eNOS KO mice developed hypertension, albuminuria, and renal insufficiency with arteriolar hyalinosis, mesangial matrix expansion, mesangiolysis with microaneurysms, and Kimmelstiel-Wilson nodules. Glomerular and peritubular capillaries were increased with endothelial proliferation and VEGF expression. Diabetic eNOS KO mice showed increased mortality at 5 mo. All of the functional and histologic changes were improved with insulin therapy. Inhibition of eNO predisposes mice to classic diabetic nephropathy. The mechanism likely is due to VEGF-NO uncoupling with excessive endothelial cell proliferation coupled with altered autoregulation consequent to the development of preglomerular arteriolar disease. Endothelial dysfunction in human diabetes is common, secondary to effects of glucose, advanced glycation end products, C-reactive protein, uric acid, and oxidants. It was postulated that endothelial dysfunction should predict nephropathy and that correction of the dysfunction may prevent these important complications.  相似文献   

6.
Recent studies suggest that postnatal neovascularization relies not exclusively on sprouting of preexisting vessels ("angiogenesis"), but also involves the contribution of bone marrow-derived circulating endothelial progenitor cells (EPCs). EPCs can be isolated from peripheral blood or bone marrow mononuclear cells, CD34(+) or CD133(+) hematopoietic progenitors. Infusion of EPCs was shown to promote postnatal neovascularization of ischemic tissue after myocardial infarction in animal models and initial clinical trials. Moreover, circulating endothelial precursor cells can home to denuded arteries after balloon injury and contribute to endothelial regeneration, thereby limiting the development of restenosis. Thus, circulating endothelial cells may exert an important function as endogenous repair mechanism to maintain the integrity of the endothelial monolayer and to promote ischemia-induced neovascularization. However, risk factors for coronary artery disease, such as diabetes, hypercholesterolemia, and hypertension are associated with impaired number and function of EPC in patients with coronary artery disease. Therapeutically, the reduction of EPC number and the decreased functional activity in patients with coronary artery disease was counteracted by 3-hydroxy-3-methylglutaryl coenzymeA (HMG-CoA) reductase inhibitors (statins), vascular endothelial growth factor (VEGF), estrogen, or exercise. At the molecular level, these factors are well established to activate the phosphatidyl-inositol-3-kinase (PI3K)-Akt-dependent activation of the endothelial nitric oxide synthase (eNOS), suggesting that the PI3K-Akt-eNOS signaling pathway may be involved in the transduction of atheroprotective factors. Taken together, the balance of atheroprotective and proatherosclerotic factors may influence EPC levels and their functional capacity to improve neovascularization and endothelial regeneration.  相似文献   

7.
In diabetes, endothelial nitric oxide synthase (eNOS) produces superoxide anion rather than nitric oxide, referred to as “eNOS uncoupling,” which may contribute to endothelial dysfunction, albuminuria, and diabetic nephropathy. Reduced levels of endothelium-derived tetrahydrobiopterin (BH4), an essential cofactor for eNOS, promote eNOS uncoupling. Accelerated degradation of guanosine triphosphate cyclohydrolase I (GTPCH I), the rate-limiting enzyme in BH4 biosynthesis, also occurs in diabetes, suggesting that GTPCH I may have a role in diabetic microvascular disease. Here, we crossed endothelium-dominant GTPCH I transgenic mice with Ins2+/Akita diabetic mice and found that endothelial overexpression of GTPCH I led to higher levels of intrarenal BH4 and lower levels of urinary albumin and reactive oxygen species compared with diabetic control mice. Furthermore, GTPCH I overexpression attenuated the hyperpermeability of macromolecules observed in diabetic control mice. In addition, we treated Ins2+/Akita mice with metformin, which activates AMP-activated protein kinase (AMPK) and thereby slows the degradation of GTPCH I; despite blood glucose levels that were similar to untreated mice, those treated with metformin had significantly less albuminuria. Similarly, in vitro, treating human glomerular endothelial cells with AMPK activators attenuated glucose-induced reductions in phospho-AMPK, GTPCH I, and coupled eNOS. Taken together, these data suggest that maintenance of endothelial GTPCH I expression and the resulting improvement in BH4 biosynthesis ameliorate diabetic nephropathy.In recent years, the increase in the incidence of diabetes and its associated complications has become a public health problem of considerable magnitude.1,2 Diabetic vascular complications including diabetic nephropathy represent the leading cause of morbidity and mortality in affected patients.3,4 The development of strategies to prevent or delay the progression of diabetic vascular complications requires a better understanding of the cellular and molecular mechanisms by which hyperglycemia exerts its adverse effects on the vascular system.Endothelial dysfunction is a common pathophysiologic mechanism of diabetic vascular complications.5,6 Nitric oxide (NO) produced in the endothelial cells by endothelial nitric oxide synthase (eNOS) is an important mediator for the maintenance of vascular homeostasis.79 The level of bioavailable NO is reduced in various vascular diseases because it is consumed by the higher levels of reactive oxygen species (ROS).10 A recent study indicates that, in diabetic states, the function of eNOS is altered such that the enzyme produces superoxide anion rather than NO.11 This alteration is referred to as eNOS uncoupling and has been reported to play an important role in diabetic endothelial dysfunction.12,13 Thus, the prevention or reversal of eNOS uncoupling may aid in the maintenance of endothelial function.One of the mechanisms involved in eNOS uncoupling is reduced levels of tetrahydrobiopterin (BH4), an essential cofactor for eNOS.14,15 We previously reported that the imbalance between NO and ROS contributes to albuminuria in diabetic nephropathy, whereas administration of BH4 ameliorates glomerular NO/ROS balance.16 We also reported that angiotensin receptor blockers ameliorated eNOS uncoupling by improving the levels of guanosine triphosphate cyclohydrolase I (GTPCH I), the rate-limiting enzyme in BH4 biosynthesis.17 Hence, administration of BH4 or activation of BH4 synthesis may be useful in the amelioration of eNOS dysfunction. However, no studies have been performed to examine the effectiveness of BH4 in diabetic nephropathy. BH4 is synthesized from guanosine triphosphate in endothelial cells in a three-step pathway. GTPCH I, encoded by GCH1, is the first and rate-limiting enzyme in the de novo synthesis of BH4.18 In diabetes, GTPCH I degradation is accelerated in a proteasome-dependent manner.19 Therefore, BH4 deficiency due to oxidation and acceleration of GTPCH I degradation is closely associated with nitric oxide synthase (NOS) dysfunction in diabetic vascular complications. However, the role of intrarenal GTPCH I and its molecular pathway in diabetic nephropathy have yet to be elucidated.We hypothesized that preservation of GTPCH I expression and improvement of NO availability can prevent diabetic nephropathy. To verify this hypothesis, we crossed mice overexpressing human GTPCH I targeted to the vascular endothelium under the control of Tie-2 promoter (GCHtg)20 with spontaneously diabetic Ins2Akita (Ins2+/Akita) mice21 and investigated the relationship between BH4-eNOS coupling and glomerular permeability to albuminuria. In addition, recent reports indicate that AMP-activated protein kinase (AMPK) suppresses proteasome-dependent protein degradation in vitro.22 Moreover, some reports show that proteasome-dependent GTPCH I degradation is key for diabetes-induced endothelial dysfunction.19,23 Therefore, we also investigated whether metformin, an oral hypoglycemic agent and AMPK activator, exerts a protective effect in diabetic nephropathy.  相似文献   

8.
Experimental diabetes is associated with complex changes in renal nitric oxide (NO) bioavailability. We explored the effect of diabetes on renal cortical protein expression of endothelial NO synthase (eNOS) with respect to several determinants of its enzymatic function, such as eNOS expression, membrane localization, phosphorylation, and dimerization, in moderately hyperglycemic streptozotocin-induced diabetic rats compared with nondiabetic control rats and diabetic rats with intensive insulin treatment to achieve near-normal metabolic control. We studied renal cortical expression and localization of caveolin-1 (CAV-1), an endogenous modulator of eNOS function. Despite similar whole-cell eNOS expression in all groups, eNOS monomer and dimer in membrane fractions were reduced in moderately hyperglycemic diabetic rats compared with control rats; the opposite trend was apparent in the cytosol. Stimulatory phosphorylation of eNOS (Ser1177) was also reduced in moderately hyperglycemic diabetic rats. eNOS colocalized and interacted with CAV-1 in endothelial cells throughout the renal vascular tree both in control and moderately hyperglycemic diabetic rats. However, the abundance of membrane-localized CAV-1 was decreased in diabetic kidneys. Intensive insulin treatment reversed the effects of diabetes on each of these parameters. In summary, we observed diabetes-mediated alterations in eNOS and CAV-1 expression that are consistent with the view of decreased bioavailability of renal eNOS-derived NO.  相似文献   

9.
The vascular endothelium is a critical determinant of dia- betes-associated vascular complications, and improving endothelial function is an important target for therapy. Diabetes mellitus contributes to endothelial cell injury and dysfunction. Endothelial progenitor cells (EPCs) play a critical role in maintaining endothelial function and might affect the progression of vascular disease. EPCs are essential to blood vessel formation, can differentiate into mature endothelial cells, and promote the repair of damaged endothelium. In diabetes, the circulating EPC count is low and their functionality is impaired. The me- chanisms that underlie this reduced count and impaired functionality are poorly understood. Knowledge of the status of EPCs is critical for assessing the health of the vascular system, and interventions that increase the number of EPCs and restore their angiogenic activity in diabetes may prove to be particularly beneficial. The pre-sent review outlines current thinking on EPCs’ therapeutic potential in endothelial dysfunction in diabetes, as well as evidence-based perspectives regarding their use for vascular regenerative medicine.  相似文献   

10.
Stalker TJ  Gong Y  Scalia R 《Diabetes》2005,54(4):1132-1140
Cardiovascular complications are the leading cause of morbidity and mortality in diabetic patients. Endothelial dysfunction with impaired endothelial nitric oxide (NO) synthase (eNOS) activity is a widely accepted cause of diabetic vasculopathy. The mechanisms of endothelial dysfunction in diabetes remain elusive, thus limiting effective therapeutic interventions. We report novel evidence demonstrating that the calcium-dependent protease calpain causes endothelial dysfunction and vascular inflammation in the microcirculation of the ZDF (Zucker diabetic fatty) rat, a genetic rat model of type 2 diabetes. We found evidence of increased calpain activity and leukocyte trafficking in the microcirculation of ZDF rats. Inhibition of calpain activity significantly attenuated leukocyte-endothelium interactions in the vasculature of ZDF rats. Expression of cell adhesion molecules in the vascular endothelium of ZDF rats was consistently increased, and it was suppressed by calpain inhibition. In vivo measurement of endothelial NO availability demonstrated a 60% decrease in NO levels in the microcirculation of diabetic rats, which was also prevented by calpain inhibition. Immunoprecipitation studies revealed calpain-dependent loss of association between eNOS and the regulatory protein heat shock protein 90. Collectively, these data provide evidence for a novel mechanism of endothelial dysfunction and vascular inflammation in diabetes. Calpains may represent a new molecular target for the prevention and treatment of diabetic vascular complications.  相似文献   

11.
Background: Acute lung injury (ALI) and end-stage acute respiratory distress syndrome (ARDS) are among the most common causes of death in intensive care units. Activation and damage of pulmonary endothelium is the hallmark of ALI/ARDS. Recent studies have demonstrated the importance of circulating endothelial progenitor cells (EPCs) in maintaining normal endothelial function as well as endothelial repairing after vascular injury. Here, the authors present the first study demonstrating the therapeutic potential of EPCs in a rabbit model of ALI/ARDS.

Methods: Circulating EPCs were obtained from rabbits using Ficoll centrifugation. One week after culturing, ALI was induced in rabbits by oleic acid (75 mg/kg, intravenous), and autologous EPCs were transplanted intravenously. Vasomotor function of isolated pulmonary artery and degrees of lung injury were assessed 2 days later.

Results: Endothelial dysfunction in the pulmonary artery was significantly attenuated in rabbits treated with EPCs, whereas the endothelium-independent relaxation responses were not different. Expression of inducible nitric oxide synthase was suppressed in the pulmonary artery of EPC-treated animals. Infiltration of leukocytes in the lung parenchyma was significantly reduced after EPC transplantation. EPCs also decreased water content, hyaline membrane formation, and hemorrhage in lungs.  相似文献   


12.
Effects of NADPH oxidase inhibitor in diabetic nephropathy   总被引:22,自引:0,他引:22  
BACKGROUND: We used apocynin to test the hypothesis that superoxide anion (O(-) (2)) from nicotinamide adenine dinucleotide phosphate (NADPH) oxidase underlies the development of diabetic nephropathy in the rat. METHODS: Rats received apocynin (16 mg/kg/day) from 2 to 8 weeks after inducing diabetes mellitus (DM) with streptozotocin. RESULTS: DM increased excretion of hydrogen peroxide (H(2)O(2)), lipid peroxidation products (LPO), nitric oxide products (NOx), and protein. The kidneys of rats with DM had increased expression of p47phox and gp91phox and endothelial nitric oxide synthase (eNOS), and increased mesangial matrix with expression of fibronectin and collagen I. Apocynin prevented the increase in excretion of H(2)O(2), LPO, and protein in diabetic rats, increased renal NOx generation, and prevented the increased renal expression of gp91phox and the membrane fraction of p47phox, and reverted the mesangial matrix expansion. CONCLUSION: Activation of NADPH oxidase with translocation of p47phox to the membrane underlies the oxidative stress and limited NO generation, despite enhanced eNOS expression in a model of diabetic nephropathy. Apocynin prevents these changes and the associated proteinuria.  相似文献   

13.
Vascular endothelial growth factor (VEGF) is a cytokine that potently stimulates angiogenesis, microvascular hyperpermeability, and endothelium-dependent vasodilation, effects that are largely mediated by endothelial nitric oxide synthase (eNOS). The expression of VEGF is pronounced in glomerular visceral epithelial cells, but its function in renal physiology and pathophysiology is unknown. VEGF expression is upregulated by high ambient glucose concentrations in several cell types in vitro and in glomeruli of diabetic rats. To assess the role of VEGF in the pathophysiology of early renal dysfunction in diabetes, monoclonal anti-VEGF antibodies (Ab) were administered to control and streptozotocin-induced diabetic rats for 6 wk after induction of diabetes. Based on in vitro binding studies, an adequate serum VEGF inhibitory activity was achieved during the entire course of anti-VEGF Ab administration. Anti-VEGF Ab treatment but not administration of isotype-matched control Ab decreased hyperfiltration, albuminuria, and glomerular hypertrophy in diabetic rats. VEGF blockade also prevented the upregulation of eNOS expression in glomerular capillary endothelial cells of diabetic rats. Antagonism of VEGF had no effect on GFR and glomerular volume in control rats. These results identify VEGF as a pathogenetic link between hyperglycemia and early renal dysfunction in diabetes. Targeting VEGF may prove useful as a therapeutic strategy for the treatment of early diabetic nephropathy.  相似文献   

14.
Reduced mobilization of endothelial progenitor cells (EPCs) from the bone marrow (BM) and impaired EPC recruitment into the wound represent a fundamental deficiency in the chronic ulcers. However, mechanistic understanding of the role of BM‐derived EPCs in cutaneous wound neovascularization and healing remains incomplete, which impedes development of EPC‐based wound healing therapies. The objective of this study was to determine the role of EPCs in wound neovascularization and healing both under normal conditions and using single deficiency (EPC) or double‐deficiency (EPC + diabetes) models of wound healing. MMP9 knockout (MMP9 KO) mouse model was utilized, where impaired EPC mobilization can be rescued by stem cell factor (SCF). The hypotheses were: (1) MMP9 KO mice exhibit impaired wound neovascularization and healing, which are further exacerbated with diabetes; (2) these impairments can be rescued by SCF administration. Full‐thickness excisional wounds with silicone splints to minimize contraction were created on MMP9 KO mice with/without streptozotocin‐induced diabetes in the presence or absence of tail‐vein injected SCF. Wound morphology, vascularization, inflammation, and EPC mobilization and recruitment were quantified at day 7 postwounding. Results demonstrate no difference in wound closure and granulation tissue area between any groups. MMP9 deficiency significantly impairs wound neovascularization, increases inflammation, decreases collagen deposition, and decreases peripheral blood EPC (pb‐EPC) counts when compared with wild‐type (WT). Diabetes further increases inflammation, but does not cause further impairment in vascularization, as compared with MMP9 KO group. SCF improves neovascularization and increases EPCs to WT levels (both nondiabetic and diabetic MMP9 KO groups), while exacerbating inflammation in all groups. SCF rescues EPC‐deficiency and impaired wound neovascularization in both diabetic and nondiabetic MMP9 KO mice. Overall, the results demonstrate that BM‐derived EPCs play a significant role during wound neovascularization and that the SCF‐based therapy with controlled inflammation could be a viable approach to enhance healing in chronic diabetic wounds.  相似文献   

15.
Transplantation of endothelial progenitor cells (EPCs) restores endothelial function. The present study was designed to determine the effect of autologous EPCs transplantation on the regeneration of endothelium in mice. Mice splenectomy was performed 14 days before carotid artery injury, and mononuclear cells were isolated and cultured in endothelial growth media for 7 days. EPCs were confirmed by immunostaining (CD31, endothelial nitric oxide synthase (eNOS) and double positive for 1,1'dioctadecyl-3,3,3',3-tetramethylindocarbocyanine (DiI)-low-density lipoprotein and ulex europaeus agglutinin (UEA)). Cell counts and fluorescence-activated cell sorting for stem cell marker were performed. 1 x 10(6) 4-,6-Diamidino-2-phenylindole- labeled EPCs or saline were injected through tail vein after wire injury. Two weeks after transplantation, cell tracking and immunohistochemical staining showed homing and incorporation of labeled EPCs in injury artery. Administration of EPCs enhanced reendothelialization (P < 0.05) after 1 week and inhibition of neointima formation at 3 weeks compared with that of saline (P < 0.05, n = 6). These data demonstrate that delivery of autologous EPCs is associated with accelerated reendothelialization and reduced neointimal formation. Thus, delivery of autologous EPCs represents an important vasculoprotective approach to attenuate the response to acute vascular injury.  相似文献   

16.
Stromal-derived factor-1 (SDF-1) is a critical chemokine for endothelial progenitor cell (EPC) recruitment to areas of ischemia, allowing these cells to participate in compensatory angiogenesis. The SDF-1 receptor, CXCR4, is expressed in developing blood vessels as well as on CD34+ EPCs. We describe that picomolar and nanomolar concentrations of SDF-1 differentially influence neovascularization, inducing CD34+ cell migration and EPC tube formation. CD34+ cells isolated from diabetic patients demonstrate a marked defect in migration to SDF-1. This defect is associated, in some but not all patients, with a cell surface activity of CD26/dipeptidyl peptidase IV, an enzyme that inactivates SDF-1. Diabetic CD34+ cells also do not migrate in response to vascular endothelial growth factor and are structurally rigid. However, incubating CD34+ cells with a nitric oxide (NO) donor corrects this migration defect and corrects the cell deformability. In addition, exogenous NO alters vasodilator-stimulated phosphoprotein and mammalian-enabled distribution in EPCs. These data support a common downstream cytoskeletal alteration in diabetic CD34+ cells that is independent of growth factor receptor activation and is correctable with exogenous NO. This inability of diabetic EPCs to respond to SDF-1 may contribute to aberrant tissue vascularization and endothelial repair in diabetic patients.  相似文献   

17.
We evaluated the effects of vitamins with antioxidant properties (a combination of vitamins C and E) and L-arginine treatment on renal failure in mice by measuring survival rate. The molecular changes were elucidated by determining endothelial tetrahydrobiopterin (BH4) levels and nitric oxide synthase (eNOS) mRNA expression in mice with renal ablation. Previous studies have shown that endothelial dysfunction in 5/6 nephrectomized mice is associated with decreased nitric oxide (NO) bioavailability and increased vascular superoxide production. WTC57 mice were divided into three groups: Group 1 was the sham-operated group (C); Group 2 was the 5/6 nephrectomized group (Nfx); and Group 3 was a group of 5/6 nephrectomized mice, treated with L-arginine and vitamins with antioxidant properties (NfxTx; 200 mg/kg L-arginine, 83 mg/kg vitamin C, and 46.6 mg/kg vitamin E). After 20 weeks of treatment, urinary protein excretion, blood pressure, BH4 and dihydrobiopterin (BH2) levels, eNOS mRNA, oxidative stress, and survival rate were determined. An increase in urinary protein excretion, blood pressure, and oxidative stress was prevented in the NfxTx group, but not in the Nfx group. BH4 and eNOS mRNA expression was increased by 32% and 78%, respectively, in the NfxTx group. Furthermore, the treatment increased the survival rate by 33%. Our results indicate that under normal conditions, NO appears to protect renal function. However, this NO-dependent protection is lost during kidney failure, probably due to increased reactive oxygen species synthesis. The treatment restores the viability of NO and prevents the BH4 oxidation. Therefore, this treatment may represent a therapeutic approach for the management of kidney disease.  相似文献   

18.
Background Serotonin (5-HT) is involved in vascular inflammation and atherosclerogenesis. Serum 5-HT concentrations are elevated in diabetes, and 5-HT is involved in diabetic vasculopathies. Sarpogrelate hydrochloride, a 5-HT2A receptor antagonist, has renoprotective effects, but its effect in diabetic nephropathy is not elucidated. The aim of this study was to examine the effects of sarpogrelate on endothelial dysfunction in rats with streptozotocin (STZ)-induced diabetes. Methods Rats with STZ-induced diabetes were either untreated or treated with sarpogrelate (30 mg/kg P.O.) for 8 weeks. At the end of the experiment, we measured urinary albumin excretion, serum adiponectin concentration and platelet-derived microparticles. Intraglomerular coagulation was detected by immunostaining for platelets. Production of renal reactive oxygen species (ROS) and nitric oxide (NO) was investigated by confocal laser microscopy and used as an index of glomerular endothelial dysfunction. Results Diabetic nephropathy was associated with enhanced production of ROS and diminished bioavailable NO in the glomeruli. Treatment with sarpogrelate improved ROS/NO imbalance in glomeruli, suppressed platelet aggregation in glomeruli, reduced platelet-derived microparticles, increased serum adiponectin level and reduced the level of albuminuria, compared with non-treated diabetic rats. Conclusions Our results indicate that sarpogrelate improves endothelial function in rats with STZ-induced diabetes through a reduction of glomerular platelet activation and an increase in serum adiponectin concentrations and suggest that sarpogrelate is potentially useful for the treatment of diabetic nephropathy.  相似文献   

19.
BACKGROUND: Reactive oxygen species play a major role in the development of endothelial dysfunction. It is as yet unspecified whether increased oxidative stress contributes to endothelial dysfunction of the renal vasculature in patients with type 2 diabetes. METHODS: Renal haemodynamics were studied in 20 patients with type 2 diabetes and arterial hypertension (age 62 +/- 5 years) and 20 non-diabetic hypertensive patients at baseline and following infusions of the nitric oxide synthase inhibitor, N(G)-monomethyl-L-arginine (L-NMMA; 4.25 mg/kg); the substrate of nitric oxide synthase, L-arginine (100 mg/kg); and the antioxidant, vitamin C (3 g, co-infused with L-arginine 100 mg/kg). RESULTS: The response of renal plasma flow (RPF) to L-NMMA (-54 +/- 62 and -45 +/- 42 ml/min/1.73 m(2); P = NS) and L-arginine (+46 +/- 36 and +49 +/- 25 ml/min/1.73 m(2); P = NS) was not different between diabetic and non-diabetic patients. In contrast, vitamin C induced a more pronounced increase in RPF in diabetic than in non-diabetic patients when co-infused with L-arginine (+71+/-47 and +43+/-33 ml/min/1.73 m(2); P<0.05). CONCLUSIONS: The difference in the response of renal perfusion to an antioxidant suggests increased formation of reactive oxygen species and thereby reduced nitric oxide bioavailability in the renal vasculature of patients with type 2 diabetes.  相似文献   

20.
To investigate underlying mechanisms responsible for the impaired nitric oxide (NO)-dependent vascular relaxation in the insulin-resistant state, we examined production of both NO and superoxide anion radical (O2-) and those modulating factors in aortas obtained from normal (CTR), insulin-treated (INS), or high fructose-fed (FR) rats. FR rats showed insulin resistance with endogenous hyperinsulinemia, whereas INS rats showed normal insulin sensitivity. Only FR aortic strips with endothelium elicited impaired relaxation in response to either acetylcholine or calcium ionophore A23187. Endothelial NO synthase (eNOS) activity and its mRNA levels were increased only in vessels from INS rats (P < 0.001), whereas eNOS activity in FR rats was decreased by 58% (P < 0.05) when compared with CTR rats. NO production from aortic strips stimulated with A23187 was significantly lower in FR than CTR rats. In contrast, A23187-stimulated O2- production was higher (P < 0.01) in FR than CTR rats. These differences were abolished when aortic strips were preincubated in the media including (6R)-5,6,7,8-tetrahydrobiopterin (BH4), an active cofactor for eNOS. Furthermore, as compared with CTR rats, aortic BH4 contents in FR rats were decreased (P < 0.001), whereas the levels of 7,8-dihydrobiopterin, the oxidized form of BH4, were increased, with opposite results in INS rats. These results indicate that insulin resistance rather than hyperinsulinemia itself may be a pathogenic factor for decreased vascular relaxation through impaired eNOS activity and increased oxidative breakdown of NO due to enhanced formation of O2- (NO/O2- imbalance), which are caused by relative deficiency of BH4 in vascular endothelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号