首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Voltage-gated calcium (CaV) channels are ubiquitously expressed in various cell types throughout the body. In principle, the molecular identity, biophysical profile, and pharmacological property of CaV channels are independent of the cell type where they reside, whereas these channels execute unique functions in different cell types, such as muscle contraction, neurotransmitter release, and hormone secretion. At least six CaValpha1 subunits, including CaV1.2, CaV1.3, CaV2.1, CaV2.2, CaV2.3, and CaV3.1, have been identified in pancreatic beta-cells. These pore-forming subunits complex with certain auxiliary subunits to conduct L-, P/Q-, N-, R-, and T-type CaV currents, respectively. beta-Cell CaV channels take center stage in insulin secretion and play an important role in beta-cell physiology and pathophysiology. CaV3 channels become expressed in diabetes-prone mouse beta-cells. Point mutation in the human CaV1.2 gene results in excessive insulin secretion. Trinucleotide expansion in the human CaV1.3 and CaV2.1 gene is revealed in a subgroup of patients with type 2 diabetes. beta-Cell CaV channels are regulated by a wide range of mechanisms, either shared by other cell types or specific to beta-cells, to always guarantee a satisfactory concentration of Ca2+. Inappropriate regulation of beta-cell CaV channels causes beta-cell dysfunction and even death manifested in both type 1 and type 2 diabetes. This review summarizes current knowledge of CaV channels in beta-cell physiology and pathophysiology.  相似文献   

2.
To determine whether extracts of Gymnema sylvestre may have therapeutic potential for the treatment of non-insulin-dependent diabetes mellitus (NIDDM), we examined the effects of an alcoholic extract of G. sylvestre (GS4) on insulin secretion from rat islets of Langerhans and several pancreatic beta-cell lines. GS4 stimulated insulin release from HIT-T15, MIN6 and RINm5F beta-cells and from islets in the absence of any other stimulus, and GS4-stimulated insulin secretion was inhibited in the presence of 1 mM EGTA. Blockade of voltage-operated Ca(2+) channels with 10 microM isradipine did not significantly affect GS4-induced secretion, and insulin release in response to GS4 was independent of incubation temperature. Examination of islet and beta-cell integrity after exposure to GS4, by trypan blue exclusion, indicated that concentrations of GS4 that stimulated insulin secretion also caused increased uptake of dye. Two gymnemic acid-enriched fractions of GS4, obtained by size exclusion and silica gel chromatography, also caused increases in insulin secretion concomitant with increased trypan blue uptake. These results confirm the stimulatory effects of G. sylvestre on insulin release, but indicate that GS4 acts by increasing cell permeability, rather than by stimulating exocytosis by regulated pathways. Thus the suitability of GS4 as a potential novel treatment for NIDDM can not be assessed by direct measurements of beta-cell function in vitro.  相似文献   

3.
Daunt M  Dale O  Smith PA 《Endocrinology》2006,147(3):1527-1535
Somatostatin potently inhibits insulin secretion from pancreatic beta-cells. It does so via activation of ATP-sensitive K+-channels (KATP) and G protein-regulated inwardly rectifying K+-channels, which act to decrease voltage-gated Ca2+-influx, a process central to exocytosis. Because KATP channels, and indeed insulin secretion, is controlled by glucose oxidation, we investigated whether somatostatin inhibits insulin secretion by direct effects on glucose metabolism. Oxidative metabolism in beta-cells was monitored by measuring changes in the O2 consumption (DeltaO2) of isolated mouse islets and MIN6 cells, a murine-derived beta-cell line. In both models, glucose-stimulated DeltaO2, an effect closely associated with inhibition of KATP channel activity and induction of electrical activity (r > 0.98). At 100 nm, somatostatin abolished glucose-stimulated DeltaO2 in mouse islets (n = 5, P < 0.05) and inhibited it by 80 +/- 28% (n = 17, P < 0.01) in MIN6 cells. Removal of extracellular Ca2+, 5 mm Co2+, or 20 microm nifedipine, conditions that inhibit voltage-gated Ca2+ influx, did not mimic but either blocked or reduced the effect of the peptide on DeltaO2. The nutrient secretagogues, methylpyruvate (10 mm) and alpha-ketoisocaproate (20 mm), also stimulated DeltaO2, but this was unaffected by somatostatin. Somatostatin also reversed glucose-induced hyperpolarization of the mitochondrial membrane potential monitored using rhodamine-123. Application of somatostatin receptor selective agonists demonstrated that the peptide worked through activation of the type 5 somatostatin receptor. In conclusion, somatostatin inhibits glucose metabolism in murine beta-cells by an unidentified Ca2+-dependent mechanism. This represents a new signaling pathway by which somatostatin can inhibit cellular functions regulated by glucose metabolism.  相似文献   

4.
Dysfunction of pancreatic beta-cells is a fundamental feature in the pathogenesis of type 2 diabetes. As insulin receptor signaling occurs via protein tyrosine kinase (PTK), we investigated the role of PTK activity in the etiology of beta-cell dysfunction by inhibiting PTK activity in primary cultured mouse pancreatic beta-cells and INS-1 cells with genistein treatment over 24 h. Electrophysiologic recordings showed genistein treatment significantly attenuated ATP-sensitive K(+) (K(ATP)) and voltage-dependent Ca(2+) currents, and depolarized the resting membrane potential in primary beta-cells. When stimulated by high glucose, genistein-treated beta-cells exhibited a time delay of both depolarization and Ca(2+) influx, and were unable to fire action potentials, as well as displaying a reduced level of Ca(2+) influx and a loss of Ca(2+) oscillations. Semiquantitative PCR analysis revealed decreased expression of K(ATP) and L-type Ca(2+) channel mRNA in genistein-treated islets. PTK inhibition also significantly reduced the rapid component of secretory vesicle exocytosis, as indicated by membrane capacitance measurements, and this is likely to be due to the reduced Ca(2+) current amplitude in these cells. These results illustrate that compromised PTK activity contributes to pancreatic beta-cell dysfunction and may be involved in the etiology of type 2 diabetes.  相似文献   

5.
The three SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, syntaxin, SNAP25 (synaptosome-associated protein of 25 kDa), and synaptobrevin, constitute the minimal machinery for exocytosis in secretory cells such as neurons and neuroendocrine cells by forming a series of complexes prior to and during vesicle fusion. It was subsequently found that these SNARE proteins not only participate in vesicle fusion, but also tether with voltage-dependent Ca(2+) channels to form an excitosome that precisely regulates calcium entry at the site of exocytosis. In pancreatic islet beta-cells, ATP-sensitive K(+) (K(ATP)) channel closure by high ATP concentration leads to membrane depolarization, voltage-dependent Ca(2+) channel opening, and insulin secretion, whereas subsequent opening of voltage-gated K(+) (Kv) channels repolarizes the cell to terminate exocytosis. We have obtained evidence that syntaxin-1A physically interacts with Kv2.1 (the predominant Kv in beta-cells) and the sulfonylurea receptor subunit of beta-cell K(ATP) channel to modify their gating behaviors. A model has proposed that the conformational changes of syntaxin-1A during exocytosis induce distinct functional modulations of K(ATP) and Kv2.1 channels in a manner that optimally regulates cell excitability and insulin secretion. Other proteins involved in exocytosis, such as Munc-13, tomosyn, rab3a-interacting molecule, and guanyl nucleotide exchange factor II, have also been implicated in direct or indirect regulation of beta-cell ion channel activities and excitability. This review discusses this interesting aspect that exocytotic proteins not only promote secretion per se, but also fine-tune beta-cell excitability via modulation of ion channel gating.  相似文献   

6.
The extracellular calcium-sensing receptor (CaR) is usually associated with systemic Ca(2+) homeostasis, but the CaR is also expressed in many other tissues, including pancreatic islets of Langerhans. In the present study, we have used human islets and an insulin-secreting cell line (MIN6) to investigate the effects of CaR activation using the calcimimetic R-568, a CaR agonist that activates the CaR at physiological concentrations of extracellular Ca(2+). CaR activation initiated a marked but transient insulin secretory response from both human islets and MIN6 cells at a sub-stimulatory concentration of glucose, and further enhanced glucose-induced insulin secretion. CaR-induced insulin secretion was reduced by inhibitors of phospholipase C or calcium-calmodulin-dependent kinases, but not by a protein kinase C inhibitor. CaR activation was also associated with an activation of p42/44 mitogen-activated protein kinases (MAPK), and CaR-induced insulin secretion was reduced by an inhibitor of p42/44 MAPK activation. We suggest that the beta-cell CaR is activated by divalent cations co-released with insulin, and that this may be an important mechanism of intra-islet communication between beta-cells.  相似文献   

7.
We previously found that chronic exposure to glibenclamide inhibits acute glibenclamide-induced insulin secretion by reducing the number of functional ATP-sensitive K(+) (K(ATP)) channels on the plasma membrane of pancreatic beta-cells. In the present study, we compared sulfonylurea-induced and glinide-induced insulin secretion in pancreatic beta-cells chronically exposed to these widely used oral hypoglycemic agents. Chronic exposure of pancreatic beta-cells to sulfonylureas (glibenclamide or tolbutamide) and glinide (nateglinide) similarly impaired their acute effectiveness by reducing the insulin content and the number of functional K(ATP) channels on the plasma membrane. Functional expression of the voltage-dependent Ca(2+) channels (VDCCs), ion channels that play a critical role in the K(ATP) channel dependent insulin secretory pathway, was similar to that in drug-untreated cells. Chronic exposure to each of the three agents similarly accelerated apoptotic beta-cell death. Thus, reduction of the insulin content, reduction of the number of functional K(ATP) channels on the plasma membrane, and acceleration of apoptotic beta-cell death all are involved in impaired insulinotropic agent-induced acute insulin secretion in the chronic phase of sulfonylurea and glinide treatment. These findings help to clarify the mechanism of secondary failure after long-term therapy by these hypoglycemic agents, and should have important clinical implications regarding pharmacotherapy for type 2 diabetes.  相似文献   

8.
Transgenic mice with elevated levels of beta-cell calmodulin develop severe diabetes even though pancreatic beta-cells contain reserve levels of insulin. Electron microscopic examination of transgenic pancreas confirmed the presence of abundant insulin secretory granules and failed to reveal obvious morphological abnormalities. These observations suggested that excess calmodulin may specifically impair the secretory process. To directly assess the effect of excess calmodulin on beta-cell function we have isolated pancreatic islets from transgenic animals. Transgenic islets from 6- to 8-day-old mice used 40% less glucose than normal islets and contained 58% of the normal insulin content, 90% of the normal glucagon content, and 5-fold higher levels of calmodulin than islets from control mice of the same age. Parallel perifusions of normal and transgenic islets confirmed that excess calmodulin inhibited glucose-stimulated insulin secretion; first phase secretion was reduced by 60%, and second phase secretion was essentially absent. Static assays were performed to assess the response to other secretagogues. All fuel secretagogues tested were ineffective in stimulating insulin secretion from transgenic islets. Secretion in response to depolarizing levels of potassium was also severely impaired. The phosphodiesterase inhibitor 3-isobutyl-1-methyl-xanthine increased transgenic secretion, but not to the level obtained in normal islets. Of the compounds examined, only phorbol 12-myristate 13-acetate and carbachol, two substances thought to act in beta-cells by stimulation of protein kinase-C, produced equivalent secretion in normal and transgenic islets. Phorbol 12-myristate 13-acetate also appeared to restore second phase secretion in transgenic islets. These results indicate that the initial period of calmodulin-induced diabetes is due to a secretory defect. This defect appears to be distal to membrane depolarization and is selective for the second phase of insulin secretion.  相似文献   

9.
Closure of pancreatic beta-cell ATP-sensitive potassium (K(ATP)) channels links glucose metabolism to electrical activity and insulin secretion. It is now known that saturated, but not polyunsaturated, long-chain acyl-coenyzme A esters (acyl-CoAs) can potently activate K(ATP) channels when superfused directly across excised membrane patches, suggesting a plausible mechanism to account for reduced beta-cell excitability and insulin secretion observed in obesity and type 2 diabetes. However, reduced beta-cell excitability due to elevation of endogenous saturated acyl-CoAs has not been confirmed in intact pancreatic beta-cells. To test this notion directly, endogenous acyl-CoA levels were elevated within primary mouse beta-cells using virally delivered overexpression of long-chain acyl-CoA synthetase-1 (AdACSL-1), and the effects on beta-cell K(ATP) channel activity and cell excitability was assessed using the perforated whole-cell and cell-attached patch-clamp technique. Data indicated a significant increase in K(ATP) channel activity in AdACSL-1-infected beta-cells cultured in medium supplemented with palmitate/oleate but not with the polyunsaturated fat linoleate. No changes in the ATP/ADP ratio were observed in any of the groups. Furthermore, AdACSL-1-infected beta-cells (with palmitate/oleate) showed a significant decrease in electrical responsiveness to glucose and tolbutamide and a hyperpolarized resting membrane potential at 5 mm glucose. These results suggest a direct link between intracellular fatty ester accumulation and K(ATP) channel activation, which may contribute to beta-cell dysfunction in type 2 diabetes.  相似文献   

10.
Satin LS 《Endocrine》2000,13(3):251-262
Ca2+ influx through voltage-dependent Ca2+ channels plays a crucial role in stimulus-secretion coupling in pancreatic islet beta-cells. Molecular and physiologic studies have identified multiple Ca2+ channel subtypes in rodent islets and insulin-secreting cell lines. The differential targeting of Ca2+ channel subtypes to the vicinity of the insulin secretory apparatus is likely to account for their selective coupling to glucose-dependent insulin secretion. In this article, I review these studies. In addition, I discuss temporal and spatial aspects of Ca2+ signaling in beta-cells, the former involving the oscillatory activation of Ca2+ channels during glucose-induced electrical bursting, and the latter involving [Ca2+]i elevation in restricted microscopic "domains," as well as direct interactions between Ca2+ channels and secretory SNARE proteins. Finally, I review the evidence supporting a possible role for Ca2+ release from the endoplasmic reticulum in glucose-dependent insulin secretion, and evidence to support the existence of novel Ca2+ entry pathways. I also show that the beta-cell has an elaborate and complex set of [Ca2+]i signaling mechanisms that are capable of generating diverse and extremely precise [Ca2+]i patterns. These signals, in turn, are exquisitely coupled in space and time to the beta-cell secretory machinery to produce the precise minute-to-minute control of insulin secretion necessary for body energy homeostasis.  相似文献   

11.
12.
We recently reported a transgenic [mouse insulin promoter (MIP)-green fluorescent protein (GFP)] mouse in which GFP expression is targeted to the pancreatic islet beta-cells to enable convenient identification of beta-cells as green cells. The GFP-expressing beta-cells of the MIP-GFP mouse were functionally indistinguishable from beta-cells of normal mice. Here we characterized the ionic channel properties and exocytosis of MIP-GFP mouse islet beta- and alpha-cells. Beta-cells displayed delayed rectifying K+ and high-voltage-activated Ca2+ channels and exhibited Na+ currents only at hyperpolarized holding potential. Alpha-cells were nongreen and had both A-type and delayed rectifier K+ channels, both low-voltage-activated and high-voltage-activated Ca2+ channels, and displayed Na+ currents readily at -70 mV holding potential. Alpha-cells had ATP-sensitive K+ channel (KATP) channel density as high as that in beta-cells, and, surprisingly, alpha-cell KATP channels were more sensitive to ATP inhibition (IC50=0.16+/-0.03 mM) than beta-cell KATP channels (IC50=0.86+/-0.10 mM). Whereas alpha-cells were rather uniform in size [2-4.5 picofarad (pF)], beta-cells varied vastly in size (2-12 pF). Of note, small beta-cells (<4.5 pF) showed little exocytosis, whereas medium beta-cells (5-8 pF) exhibited vigorous exocytosis, but large beta-cells (>8 pF) had weaker exocytosis. We found no correlation between beta-cell size and their Ca2+ channel density, suggesting that Ca2+ influx may not be the cause of the heterogeneity in exocytotic responses. The MIP-GFP mouse therefore offers potential to further explore the functional heterogeneity in beta-cells of different sizes. The MIP-GFP mouse islet is therefore a reliable model to efficiently examine alpha-cell and beta-cell physiology and should greatly facilitate examination of their pathophysiology when the MIP-GFP mice are crossed with diabetic models.  相似文献   

13.
Huang Q  Bu S  Yu Y  Guo Z  Ghatnekar G  Bu M  Yang L  Lu B  Feng Z  Liu S  Wang F 《Endocrinology》2007,148(1):81-91
Increased apoptosis of pancreatic beta-cells plays an important role in the occurrence and development of type 2 diabetes. We examined the effect of diazoxide on pancreatic beta-cell apoptosis and its potential mechanism in Otsuka Long Evans Tokushima Fatty (OLETF) rats, an established animal model of human type 2 diabetes, at the prediabetic and diabetic stages. We found a significant increase with age in the frequency of apoptosis, the sequential enlargement of islets, and the proliferation of the connective tissue surrounding islets, accompanied with defective insulin secretory capacity and increased blood glucose in untreated OLETF rats. In contrast, diazoxide treatment (25 mg.kg(-1).d(-1), administered ip) inhibited beta-cell apoptosis, ameliorated changes of islet morphology and insulin secretory function, and increased insulin stores significantly in islet beta-cells whether diazoxide was used at the prediabetic or diabetic stage. Linear regression showed the close correlation between the frequency of apoptosis and hyperglycemia (r = 0.913; P < 0.0001). Further study demonstrated that diazoxide up-regulated Bcl-2 expression and p38beta MAPK, which expressed at very low levels due to the high glucose, but not c-jun N-terminal kinase and ERK. Hence, diazoxide may play a critical role in protection from apoptosis. In this study, we demonstrate that diazoxide prevents the onset and development of diabetes in OLETF rats by inhibiting beta-cell apoptosis via increasing p38beta MAPK, elevating Bcl-2/Bax ratio, and ameliorating insulin secretory capacity and action.  相似文献   

14.
beta-cell failure in diabetes and preservation by clinical treatment   总被引:14,自引:0,他引:14  
  相似文献   

15.
The ability of the pancreatic beta-cell to repair itself after a cytotoxic injury and reassume its functional activities may be a key issue in affording protection from insulin-dependent diabetes mellitus. The molecular mechanisms behind the functional responses of the beta-cell after cytotoxic damage are still largely unknown. The present study in an attempt to elucidate this issue. Mouse pancreatic islets were isolated with collagenase and, after overnight culture, exposed for 30 min at 37 C to 2.2 mM streptozotocin (SZ) or vehicle alone (controls). The islets were subsequently cultured for 6 days in medium RPMI-1640 plus 10% calf serum. After the culture they were subjected to light microscopical examinations or different functional tests during short term incubations. The SZ-treated islets showed markedly diminished insulin release after stimulation with the beta-cell nutrients glucose and leucine plus glutamine. Compounds known to increase intracellular cAMP [theophylline and (Bu)2-cAMP] were able to partially counteract the SZ-induced reduction of insulin release. Stimulation with arginine could also slightly restore the impaired insulin release. Glucose-stimulated oxygen uptake, proinsulin biosynthesis, and insulin and insulin mRNA contents were also decreased, with values at about 50% of the controls. However, the cellular contents of DNA and RNA and total protein biosynthesis rates were essentially normal. Besides mild degranulation in some islets, the morphological appearance of the SZ-treated islets did not reveal any obvious differences compared to the control islets. The present observations suggest that after a toxic injury there remains a population of partially damaged beta-cells, which are able to maintain most of their basal metabolic functions, but fail to maintain adequate insulin biosynthesis and release.  相似文献   

16.
17.
Type 1 and type 2 diabetes both result from inadequate production of insulin by the beta-cells of the pancreatic islet. Accordingly, strategies that lead to increased pancreatic beta-cell mass, as well as retained or enhanced function of islets, would be desirable for the treatment of diabetes. Although pancreatic beta-cells have long been viewed as terminally differentiated and irreversibly arrested, evidence now indicates that beta-cells can and do replicate, that this replication can be enhanced by a variety of maneuvers, and that beta-cell replication plays a quantitatively significant role in maintaining pancreatic beta-cell mass and function. Because beta-cells have been viewed as being unable to proliferate, the science of beta-cell replication is undeveloped. In the past several years, however, this has begun to change at a rapid pace, and many laboratories are now focused on elucidating the molecular details of the control of cell cycle in the beta-cell. In this review, we review the molecular details of cell cycle control as they relate to the pancreatic beta-cell. Our hope is that this review can serve as a common basis and also a roadmap for those interested in developing novel strategies for enhancing beta-cell replication and improving insulin production in animal models as well as in human pancreatic beta-cells.  相似文献   

18.
19.
Insulin production and secretion in simulated rat hyperthyrosis induced by L-thyroxin, injected intraperitoneally during 8 to 30 days, were studied on isolated Langerhans' islets, using collagenase fermentation. Insulin secretion in vitro was determined by radioimmunoassay, its biosynthesis being evaluated according to 3H-leucine incorporation into de novo formed islet proteins with insulin immunoreactivity. The dissociated effect of thyroxin on the secretory response of beta-cells and their hormone production was revealed. In hyperthyroidized animals a decrease in the islet insulin secretion was seen in the presence of a low glucose content in the incubating medium (5 mM), (pro-)insulin biosynthesis remaining unchanged. (Pro-)insulin concentration increased comparatively to the control following 8-day thyroxin injection under condition of the islet incubation with 15 mM of glucose. Insulin secretion returns to normal after augmentation of hexose content in the incubating medium up to 15 mM (hormone production being not inhibited), indicating the functional character of a decrease in beta-cell secretory response and a significant role in its genesis of the changed beta-cell sensitivity to glucose action, inducing insulin secretion.  相似文献   

20.
The effect of various functional demands on the lysosomes of pancreatic islet beta cells was studied in vivo. To expose pancreatic islets to different metabolic situations, normal syngeneic mouse islets were transplanted to either lean mice, alloxan-diabetic mice, or obese hyperglycemic mice. Two weeks after transplantation, primary and secondary beta-cell lysosomes of the islet grafts were analyzed by morphometry. The beta-cell lysosomes and secretory granules of the endogenous islets of lean and obese hyperglycemic mice were also measured. The beta cells of the islets transplanted to lean normoglycemic mice showed only a moderately developed synthetic apparatus and a great number of secretory granules. They had mainly secondary lysosomes, frequently containing secretory granule material, indicating a high crinophagic activity. The islet beta cells exposed to the high serum glucose concentration of alloxan-diabetic and obese hyperglycemic mice had an extensive synthetic apparatus, but a very small content of secretory granules. In these beta cells, there was a predominance of small primary lysosomes, indicating a low crinophagic activity. It is concluded that crinophagy may provide a mechanism for the pancreatic beta cell to moderate its content of insulin. When its secretory granule stores are diminished due to increased demands on insulin secretion, the beta cell seems able to drastically decrease the crinophagic activity. The detailed morphometric analysis of the endogenous islets of the lean and obese hyperglycemic mice showed that the beta cells of the obese hyperglycemic mice had a smaller number and size of the secretory granules.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号