首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the maturation profile of subunits of ionotropic glutamate receptors in vestibular nuclear neurons that were activated by sinusoidal linear acceleration along the vertical plane. The otolithic origin of Fos expression in these neurons was confirmed as a marker of functional activation when labyrinthectomized and/or stationary control rats contrasted by showing sporadically scattered Fos‐labeled neurons in the vestibular nuclei. By double immunohistochemistry for Fos and one of the receptor subunits, otolith‐related neurons that expressed either α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazole‐propionate or N‐methyl‐d ‐aspartate subunits were first identified in the medial vestibular nucleus, spinal vestibular nucleus and Group x by postnatal day (P)7, and in the lateral vestibular nucleus and Group y by P9. No double‐labeled neurons were found in the superior vestibular nucleus. Within each vestibular subnucleus, these double‐labeled neurons constituted ~90% of the total Fos‐labeled neurons. The percentage of Fos‐labeled neurons expressing the GluR1 or NR2A subunit showed developmental invariance in all subnuclei. For Fos‐labeled neurons expressing the NR1 subunit, similar invariance was observed except that, in Group y, these neurons decreased from P14 onwards. For Fos‐labeled neurons expressing the GluR2, GluR2/3, GluR4 or NR2B subunit, a significant decrease was found by the adult stage. In particular, those expressing the GluR4 subunit showed a two‐ to threefold decrease in the medial vestibular nucleus, spinal vestibular nucleus and Group y. Also, those expressing the NR2B subunit showed a twofold decrease in Group y. Taken together, the postsynaptic expression of ionotropic glutamate receptor subunits in different vestibular subnuclei suggests that glutamatergic transmission within subregions plays differential developmental roles in the coding of gravity‐related vertical spatial information.  相似文献   

2.
The expression of NMDA receptor subunits (NR1 and NR2A/B) was demonstrated immunocytochemically in otolith-related neurons within the vestibular nuclear complex and its subnuclei of conscious Sprague-Dawley adult rats. All experimental animals were subjected to constant velocity off-vertical axis rotation (OVAR). The rotating gravity vector during OVAR sequentially activates hair cells on all sectors of the utricular maculae; neurons so activated within the vestibular nuclei were denoted by the expression of Fos protein. Control animals, i.e., labyrinthectomized rats subjected to OVAR and normal rats that remained stationary, showed only a few sporadically scattered labeled neurons. In the brainstem of normal rats subjected to OVAR, a high density of Fos-immunoreactive (Fos-ir) neurons was found in the vestibular nuclear complex (namely, spinal vestibular nucleus, SpVe; medial vestibular nucleus, Mve; superior vestibular nucleus, SuVe) and subnuclei (namely, group x and group y), whereas a lower density was found in the lateral vestibular nucleus (LVe). A double-immunofluorescence study indicated that both NR1 and NR2A/B subunits were highly expressed in Fos-ir neurons within the vestibular nuclei. Fos/NR1 or Fos/NR2A/B double-labeled neurons constitute over three-quarters of the total number of Fos-ir neurons in SpVe, MVe, LVe, SuVe, and groups x and y. Our findings suggest that NMDA-type ionotropic glutamate receptors play a key role in the OVAR-induced neuronal activation of the vestibular nuclei, thus providing a morphological basis for further study of glutamatergic central otolith neurons and their involvement in sensorimotor regulation and autonomic functions of rats.  相似文献   

3.
We examined the maturation expression profile of tyrosine kinase B (TrkB) receptor in rat vestibular nuclear neurons that were activated by sinusoidal linear acceleration along the horizontal or vertical axis. The otolithic origin of Fos expression in these neurons was confirmed with labyrinthectomized controls and normal controls, which showed only sporadically scattered Fos‐labeled neurons in the vestibular nucleus. In P4–6 test rats, no Fos‐labeled neurons were found in the vestibular nucleus, but the medial and spinal vestibular neurons showed weak immunoreactivity for TrkB. The intensity of TrkB immunoreactivity in vestibular nuclear neurons progressively increased in the second postnatal week but remained low in adults. From P7 onward, TrkB‐expressing neurons responded to horizontal or vertical otolithic stimulation with Fos expression. The number of Fos‐labeled vestibular nuclear neurons expressing TrkB increased with age, from 13–43% in P7 rats to 85–90% in adult rats. Our results therefore suggest that TrkB/neurotrophin signaling plays a dominant role in modulating vestibular nuclear neurons for the coding of gravity‐related horizontal head movements and for the regulation of vestibular‐related behavior during postnatal development. J. Comp. Neurol. 521:612–625, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
The principal cells of the chick tangential nucleus are vestibular nucleus neurons whose responses on vestibular nerve stimulation are abolished by glutamate receptor antagonists. Using confocal microscopy, we quantified immunolabeling for AMPA receptor subunits GluR1, GluR2, GluR2/3, and GluR4 in principal cells that were identified by the neuronal marker, microtubule-associated protein 2 (MAP2). This work was focused primarily on 9 days after hatching (H9) when the principal cells have acquired some important mature electrophysiologic properties. At H9, the principal cell bodies stained strongly with GluR2/3 and GluR4, whereas GluR1 and GluR2 produced weak signals. Moreover, GluR2/3 and GluR4 receptor subunit clusters in principal cell bodies and dendrites were localized at sites contacted by biocytin-labeled vestibular nerve terminals and synaptotagmin-labeled terminals. Developmental expression of AMPA receptor immunolabeling was studied in the principal cell bodies at embryonic day 16 (E16) and hatching (H1). At E16, labeling for GluR4 was already strong, and continued to increase at H1 and H9. In contrast, GluR2/3 labeling was weak at E16, but increased significantly at H1, and more so by H9. GluR1 and GluR2 were present at low levels at E16 and H1. From E16 to H9, overall AMPA receptor subunit expression increased steadily, with H9 showing the strongest labeling. Ultrastructural observations at E16 and H3 confirmed the presence of immunogold labeling for AMPA receptor subunits at the vestibular nerve and non-vestibular nerve synapses on the principal cell bodies. In summary, these results indicate that GluR3 and GluR4 are the major AMPA receptor subunits involved in excitatory synaptic transmission in principal cells during the perinatal period.  相似文献   

5.
We examined the functional maturation of canal‐related brainstem neurons in Sprague‐Dawley rats at postnatal day (P)1 to adult. Conscious animals were subjected to cycles of angular acceleration and deceleration so as to selectively activate hair cells of the horizontal semicircular canals. Brainstem neurons were monitored for c‐fos expression by immuno‐hybridization histochemistry as an indicator of neuronal activation. Fos‐immunoreactive canal‐related neurons were identifiable from P4 onwards in the vestibular nucleus and downstream vestibular relay stations, prepositus hypoglossal nucleus, and inferior olive. In the vestibular nucleus and prepositus hypoglossal nucleus, the number of canal‐related neurons increased progressively with age, reaching the adult level by P21. Those in the inferior olive increased in number from P4 to P14 but decreased significantly afterwards until adulthood. The topography was not clear in the vestibular nucleus and prepositus hypoglossal nucleus. Canal‐related neurons in P4–7 rats were spread throughout the rostrocaudal length of each subnucleus but clusters of canal‐related neurons tended to form within specific subnuclei by P21. These were concentrated in the caudal halves of medial and spinal vestibular nuclei and the rostral parts of superior vestibular nucleus and prepositus hypoglossal nucleus. In the inferior olive, the topography was evident early in the course of development. Canal‐related neurons were exclusively located in four subnuclei: dorsal medial cell column, dorsal cap, subnucleus A, and subnucleus C, but not in other subnuclei. Taken together, our data revealed the developmental profile of neuronal subpopulations within the horizontal canal system, thus providing an internal neural representation for postnatal coding of horizontal head rotations in spatial perception. J. Comp. Neurol. 518:1742–1763, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Previous studies demonstrated that in vitro preparations of the isolated vestibular system of diverse animal species still exhibit stable resting electrical activity and mechanically evoked synaptic transmission between hair cells and primary afferent endings. However, there are no reports related to their neurodevelopment. Therefore, this research aimed to examine whether NMDA receptors mediate these electrical signals in an isolated preparation of the chicken vestibular system at three developmental stages, E15, E18, and E21. We found that the spontaneous and mechanically evoked discharges from primary afferents of the posterior semicircular canal were modulated by agonists NMDA and glycine, but not by the agonist d -serine applied near the synapses. Moreover, the individually applied by bath perfusion of three NMDA receptor antagonists (MK-801, ifenprodil, and 2-naphthoic acid) or high Mg2+ decreased the resting discharge rate, the NMDA response, and the discharge rate of mechanically evoked activity from these primary afferents. Furthermore, we found that the vestibular ganglion shows a stage-dependent increase in the expression of NMDA receptor subunits GluN1, GluN2 (A-C), and GluN3 (A-B), being greater at E21, except for GluN2D, which was inversely related to the developmental stage. However, in the crista ampullaris, the expression pattern remained constant throughout development. This could suggest the possible existence of presynaptic NMDA receptors. Our results highlight that although the NMDA receptors are functionally active at the early embryonic stages of the vestibular system, NMDA and glycine reach their mature functionality to increase NMDA responses close to hatching (E21).  相似文献   

7.
Wang WW  Cao R  Rao ZR  Chen LW 《Brain research》2004,998(2):174-183
Dopamine and cyclic adenosine 3',5'-monophosphate-regulated phosphoprotein, 32 kDa (DARPP-32) is a key element of dopamine/D1/DARPP-32/protein phosphatase-1 (PP-1) signaling cascades of mammalian brain. We are interested in the expression patterns of N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors in DARPP-32-containing neurons, which may constitute morphological basis for interaction between dopamine and ionotropic glutamate receptors in dopaminoceptive cells. Double immunofluorescence was performed to visualize neurons showing coexpression of DARPP-32 with NMDA or AMPA receptor subunits (i.e., NR1, NR2a/b, glutamate receptor subunit 1 [GluR1], GluR2/3, and GluR4) in the forebrains of rats. Distribution of DARPP-32-positive neurons completely or partially overlapped with that of NMDA receptor- or AMPA receptor-immunoreactive ones in the frontal and parietal cortex, hippocampus and neostriatum, and neurons double-labeled with DARPP-32/NR1, DARPP-32/NR2a/b, DARPP-32/GluR1, DARPP-32/GluR2/3, or DARPP-32/GluR4 immunoreactivity were numerously observed. Semiquantification analysis indicated that most of DARPP-32-containing neurons (86-98%) expressed NR1, NR2a/b and GluR2/3, while less of them (14-90%) expressed GluR1 and GluR4. Although high rates (90-98%) of DARPP-32-positive cells expressed NMDA receptors in all regions above, variant percentages of them expressing AMPA receptor subunits were observed among the cortex (54-90%), hippocampus (59-97%) and neostriatum (14-97%). The study presents differential expression patterns of NMDA and AMPA receptors in DARPP-32-postive neurons in these forebrain regions. Taken together with previous reports, the present data suggest that interaction between dopamine and glutamate receptors may occur in the dopaminoceptive neurons with distinct receptor compositions and may be involved in modulating neuronal properties and excitotoxicity in mammalian forebrain.  相似文献   

8.
To determine the critical time of responsiveness of developing otolith organ-related brainstem neurons and their distribution, Fos protein expression in response to off-vertical axis rotations (OVAR) was mapped in conscious Sprague Dawley rats from P5 to adulthood. OVAR was used to activate sequentially all utricular hair cells per 360 degrees revolution. We detected the coding of horizontal head positions in otolith organ-related neurons within the vestibular nucleus as early as P7. In the vestibular nuclear complex and its subgroups, the density of Fos-immunoreactive (Fos-ir) neurons increased steadily with age and reached the adult level by P21. In both labyrinthectomized rats subjected to OVAR and normal rats kept stationary, labeled neurons were found sporadically in the aforementioned brain regions in each age group, confirming that Fos labeling observed in neurons of normal experimental rats subjected to OVAR was due to otolith organ stimulation. Whereas OVAR-induced Fos-ir neurons were also first observed in vestibular-related brain areas, such as the prepositus hypoglossal nucleus, gigantocellular reticular nucleus, and locus coeruleus, of normal experimental rats at P7, those in the inferior olive were observed only from P14 onward. This indicates the unique maturation time of inferior olivary neurons in gravity-related spatial coding. In general, age-dependent increase in OVAR-induced Fos-ir neurons was observed in brain areas that received otolith inputs. The locus coeruleus was exceptional in that prominent OVAR-induced Fos-ir neuronal number did not change with maturation, and this was well above the low but significant number of Fos-ir neurons in control preparations. Taken together, our results suggest that neuronal subpopulations within the developing network of the horizontal otolith system provide an anatomical basis for the postnatal development of otolith organ-related sensorimotor functions. J. Comp. Neurol. 470:282-296, 2004.  相似文献   

9.
The lateral nucleus of the amygdala (LA) is a critical component of the circuitry through which environmental stimuli are endowed with emotional meaning through association with painful or threatening events. Individual cells in LA receive convergent input from auditory processing areas in the thalamus and cortex, and the excitatory amino-acid L-glutamate (Glu) participates in synaptic transmission in both pathways. Previously, we characterized the ultrastructure of pre- and postsynaptic processes in the thalamo-amygdala pathway, and showed the relation of presynaptic inputs to N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydoxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor subunits. In the present study, we examined the nature of cortico-amygdala synaptic interactions with Glu receptors in LA and determined whether they are similar or different from those in the thalamo-amygdala pathway. Cortical afferents to the LA were identified by anterograde transport of biotinylated-dextran amine (BDA) and postsynaptic sites were labeled immunocytochemically using antisera directed against the R1 subunit the NMDA receptor, and the R1 and R2/3 subunits of the AMPA receptor. Electron microscopy revealed that the vast majority of cortical afferents (99%) synapse onto distal dendritic processes and most of these processes (62%) contained at least one glutamate receptor subtype. Cortical afferents synapsed on approximately the same proportion of immunoreactive targets for each glutamate receptor subtype examined. These data provide morphological evidence that cortical afferents form direct synaptic contacts with LA neurons that express both NMDA and AMPA receptors and are consistent with recent physiological studies demonstrating the participation of NMDA and AMPA receptors in cortico-amygdala-transmission. These results are nearly identical to those obtained in the studies of the thalamo-amygdala pathway.  相似文献   

10.
Glutamate mediates its effects in mammals through both ionotropic and metabotropic receptors. Antagonists of ionotropic N-methyl-d-aspartate (NMDA) glutamate receptors elicit neuroprotective and neurotropic effects that have been attributed to Ca2+ block through the membrane ion channel. Nonetheless, molecular and biochemical effects of NMDA receptor antagonism on other glutamate receptor subunits remain poorly understood. We investigated the effects of acute administration of the noncompetitive NMDA receptor antagonist MK-801 on the mRNA expression of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and metabotropic glutamate receptor (mGluR) subunits to determine the contribution of different glutamate receptors in response to blockade of NMDA receptor channels. In situ hybridization to rat brain sections revealed that AMPA receptor subunits GluR3 and GluR4, and mGluR3 were modestly but significantly decreased ∼10–20%, 8 h following 5 mg/kg MK-801 administration. A time course and dose response study revealed that the effect on mGluR3 was reversed by 24 h and occurred significantly at a dose range from 1 to 5 mg/kg. These results indicate that selected AMPA and mGluR subunit mRNAs respond at the RNA level to the blockade of NMDA receptors.  相似文献   

11.
Anatomical and physiological studies indicate that the amino acid L-glutamate is the excitatory transmitter in sensory afferent pathways to the amygdala and in intraamygdala circuits involving the lateral and basal nuclei. The regional, cellular, and subcellular immunocytochemical localizations of N-methyl-D-aspartate (NMDA) and L-α-amino-3–hydroxy-5–methyl- 4–isoxazole propionate (AMPA), two major classes of glutamate receptors, were examined in these areas of the amygdala. A monoclonal antibody and a polyclonal antiserum directed against the R1 subunit of the NMDA receptor were used. Each immunoreagent produced distinct distributions of perikaryal and neuropilar staining. Dendritic immunoreactivity was localized primarily to asymmetric (excitatory) synaptic junctions, mostly on spines, consistent with the conventional view of the organization and function of NMDA receptors. Whereas the anti-NMDAR1 antiserum produced sparse presynaptic axon terminal labeling and extensive glial labeling, the anti-NMDAR1 antibody labeled considerably fewer glia and many more presynaptic axon terminals. Labeled presynaptic terminals formed asymmetric and symmetric synapses, suggesting presynaptic regulation of both excitatory and inhibitory transmission. Immunoreactivity for different subunits of the AMPA receptor (GluR1, GluR2/3, and GluR4) was uniquely distributed across neuronal populations, and some receptor subunits were specific to certain cell types. Immunoreactivity for GluR1 and Glu2/3 was predominately localized to dendritic shafts and was more extensive than that of GluR4 due to heavy labeling of proximal portions of dendrites. The distribution of GluR4 immunoreactivity was similar to NMDAR1: GluR4 was seen in presynaptic terminals, glia, and dendrites and was primarily localized to spines. The presynaptic localization of GluR4 in the absence of GluR2 suggests glutamate. mediated modulation of presynaptic Ca++ concentrations. These data add to our understanding of the morphological basis of pre- and postsynaptic transmission mechanisms and synaptic plasticity in the amygdala. © Wiley-Liss, Inc.  相似文献   

12.
The central noradrenergic system, originating mainly from the locus coeruleus in the brainstem, plays an important role in many physiological functions, including arousal and attention, learning and memory, anxiety, and nociception. However, little is known about the roles of norepinephrine (NE) in somatic motor control. Therefore, using extracellular recordings on rat brainstem slices and quantitative real‐time RT‐PCR, we investigate the effect and mechanisms of NE on neuronal activity in the inferior vestibular nucleus (IVN), the largest nucleus in the vestibular nuclear complex, which holds an important position in integration of information signals controlling body posture. Here, we report that NE elicits an excitatory response on IVN neurons in a concentration‐dependent manner. Activation of α1‐ and β2‐adrenergic receptors (ARs) induces an increase in firing rate of IVN neurons, whereas activation of α2‐ARs evokes a decrease in firing rate of IVN neurons. Therefore, the excitation induced by NE on IVN neurons is a summation of the excitatory components mediated by coactivation of α1‐ and β2‐ARs and the inhibitory component induced by α2‐ARs. Accordingly, α1‐, α2‐, and β2‐AR mRNAs are expressed in the IVN. Although β1‐AR mRNAs are also detected, they are not involved in the direct electrophysiological effect of NE on IVN neurons. All these results demonstrate that NE directly regulates the activity of IVN neurons via α1‐, α2‐, and β2‐ARs and suggest that the central noradrenergic system may actively participate in IVN‐mediated vestibular reflexes and postural control. © 2016 Wiley Periodicals, Inc.  相似文献   

13.
The vulnerability of motoneurones to glutamate has been implicated in neurological disorders such as amyotrophic lateral sclerosis but it is not known whether specific receptor subtypes mediate this effect. In order to investigate this further, the expression of N-methyl-D-aspartate (NMDA) receptor subunits was studied during the first three post-natal weeks when motoneurones are differentially vulnerable to injury following neonatal nerve crush compared to the adult. Unilateral nerve crush was carried out at day 2 after birth (P2) which causes a decrease of 66% in motoneurone number by 14 days (P14). To study receptor expression in identified motoneurones, serial section analysis was carried out on retrogradely labelled common peroneal (CP) motoneurones by combined immunocytochemistry and in situ hybridization (ISH). mRNA levels were also quantified in homogenates from lumbar spinal cords in which the side ipsilateral to the crush was separated from the contralateral side. The NR1 subunit of the NMDA receptor was widely distributed in the spinal cord being expressed most strongly in motoneurone somata particularly during the neonatal period (P3-P7). The NR2 subunits were also expressed at higher levels in the somata and dendrites of neonatal motoneurones compared to older animals. NR2B mRNA was expressed at low to moderate levels throughout the studied period whereas NR2A mRNA levels were low until P21. Following unilateral nerve crush, an initial decrease in NR1 mRNA occurred at one day after nerve crush (P3) in labelled CP motoneurones ipsilateral to the crush which was followed by a significant increase in NR1 subunit expression at 5 days post-injury. This increase was bilateral although reaching greater significance ipsilateral to the crush compared with sham-operated animals. A significant increase in NR1 and NR2B mRNA post injury was also detected in spinal cord homogenates. In addition, the changes in levels of NR1 and NR2B mRNA were reflected by comparable bilateral changes at P7 in receptor protein determined by quantitative immunocytochemical analysis of NR1 and NR2 subunit expression in identified CP motoneurones indicating a co-ordinated regulation of receptor subunits in response to injury.  相似文献   

14.
Itch and pain are intimately related and may share similar peripheral and central mechanisms and pathways. However, it has been believed that synaptic glutamate release from a group of peripheral nociceptors is required to sense pain and suppress itch. Although we previously demonstrated that phosphorylation of GluN2B subunits of the NMDA receptor at Tyr1472 is important for central sensitization in a neuropathic pain model of mice with a knock‐in mutation of the Tyr1472 site to phenylalanine of GluN2B (Y1472F‐KI), the role of NMDA receptors in itch transmission remains unknown. Here, we demonstrated that the scratching behaviors elicited by various pruritogens applied to the cheek and c‐fos expression in the region innervated by the trigeminal nerve were markedly attenuated in the Y1472F‐KI mice. The c‐fos immunoreactivity was co‐localized with the receptor of gastrin‐releasing peptide (GRP). Scratching behaviors evoked by chloroquine were inhibited by the NMDA receptor antagonists D‐AP5 and CP101,606 and by the Src kinase inhibitor PP2. Direct activation of the trigeminal region by intracisternal administration of NMDA and GRP induced robust scratching behaviors, both of which were reduced by the GRP receptor antagonist RC‐3095. Taken together, the data obtained in this present study are the first to demonstrate that phosphorylation of GluN2B subunit at Tyr1472 is important for trigeminal transmission of itch and suggest that the NMDA receptor activation occurs upstream of the GRP‐GRP receptor pathway.  相似文献   

15.
16.
Expression of α9 acetylcholine receptor (AChR) mRNA was studied by in situ hybridization in the rat adult and developing cochlea and vestibular inner ear. α9 AChR mRNA was first observed in cochlear hair cells (HCs) at embryonic day 18 (E18), increased markedly after birth, stayed high until postnatal day 10 (P10), and decreased to substantially lower adult levels by P14. High levels of α9 AChR mRNA expression were also noted in the developing nonneuronal structures of the inner sulcus, chondrocytes, and/or osteoblasts in the cochlear capsule and interscalar laminae. Both developing and adult bone marrow cells also expressed intense α9 AChR mRNA. In the vestibular system, α9 AChR mRNA was first observed in HCs at E16 in all sensory epithelia, increased to its highest levels by P0–P4, then decreased slightly to reach adult levels by P10. The results are consistent with the α9 AChR subserving efferent neurotransmission to both cochlear and vestibular HCs. The observation of α9 AChR mRNA in cochlear HCs 2 weeks prior to functional onset in the cochlea further suggests that expression of this gene is not related to HC activity. The observation of substantial nonneuronal expression of α9 AChR mRNA suggests that this receptor also has functions separate from its role in neurotransmission. J. Comp. Neurol. 393:320–331, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
The metabolism of glutamate, the most likely neurotransmitter of vestibular ganglion cells, includes synthesis from glutamine by the enzyme glutaminase. We used microdissection combined with a fluorometric assay to measure glutaminase activity in the vestibular nerve root and nuclei of rats with unilateral vestibular ganglionectomy. Glutaminase activity in the lesioned-side vestibular nerve root decreased by 62% at 4 days after ganglionectomy and remained at similar values through 30 days. No change occurred in the contralateral vestibular nerve root. Glutaminase activity changes in the vestibular nuclei were lesser in magnitude and more complex, including contralateral increases as well as ipsilateral decreases. At 4 days after ganglionectomy, glutaminase activity was 10-20% lower in individual lesioned-side nuclei compared with their contralateral counterparts. By 14 and 30 days after ganglionectomy, there were no statistically significant differences between the nuclei on the two sides. This transient asymmetry of glutaminase activities in the vestibular nuclei contrasts with the sustained asymmetry in the vestibular nerve root and suggests that intrinsic, commissural, or descending pathways are involved in the recovery of chemical symmetry. This recovery resembles our previous finding for glutamate concentrations in the vestibular nuclei and may partially underlie central vestibular compensation after peripheral lesions.  相似文献   

18.
Chen LW  Tse YC  Li C  Guan ZL  Lai CH  Yung KK  Shum DK  Chan YS 《Brain research》2006,1067(1):103-114
We have employed immunohistochemistry to determine the expression patterns of receptor subunits of N-methyl-d-aspartate (NMDA-NR1 and NR2A/B) and alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid/kainic acid (AMPA/KA-GluR1, GluR2, GluR2/3, GluR4, and GluR5/6/7) in the inferior olive of postnatal rats up to adulthood. Immunoreactivity for distinct receptor subunits was predominantly localized in the soma and dendrites of neurons. Semi-quantification showed that the overall immunoreactivity in the inferior olive of adults was intense for GluR1, moderate for NR1 and NR2A/B, and low for GluR2, GluR2/3, GluR4, and GluR5/6/7. At P7, GluR1 was restricted to the dorsomedial cell column, subnucleus beta, principal nucleus and ventrolateral protrusion while the other subunits were found in all subnuclei of the inferior olive. The immunoreactivities for all glutamate receptor subunits ranged from low to moderate. As the rats matured, the immunoreactivity of GluR4 decreased after the second postnatal week, while those of the other subunits showed a general trend of increase, reaching adult level during the third postnatal week. Double immunofluorescence revealed that all NR1-containing neurons exhibited NR2A/B immunoreactivity, indicating that native NMDA receptors comprise of hetero-oligomeric combinations of NR1 and NR2A/B. Furthermore, co-localization of NMDA and AMPA/KA receptor subunits was demonstrated in individual neurons of the inferior olive. All NR1-containing neurons exhibited GluR1 immunoreactivity, and all NR2A/B-containing neurons showed GluR5/6/7 immunoreactivity. Our data suggest that NMDA and AMPA/KA receptors are involved in glutamate-mediated neurotransmission, contributing to synaptic plasticity and reorganization of circuitry in the inferior olive during postnatal development.  相似文献   

19.
Extracellular single cell recording and microiontophoretic techniques were used to characterize the roles of ionotropic and metabotropic glutamate receptors (iGluRs and mGluRs) in glutamate-induced excitation of rat nucleus accumbens (NAc) neurons in vivo. Pulse-ejected glutamate (16–128 nA) induced a current-dependent increase in the firing of quiescent NAc neurons. A stronger excitatory response to α-amino-3-hydroxy-5-methyl-4-iosoxazole-proprionic acid (AMPA) was observed at much lower ejection currents (0.1–6.4 nA). Compared to AMPA and glutamate, N-methyl-D -aspartate (NMDA) induced a much less potent excitation in a narrow current range (1–4 nA) and only when neurons were previously “primed” with other excitatory amino acids (EAAs). Higher ejection currents of all three EAA agonists drove NAc neurons into a state of apparent depolarization block. AMPA-evoked firing was selectively blocked by the AMPA receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX) whereas NMDA-induced activity was selectively prevented by the NMDA receptor antagonist 2-amino-5-phosphonovalerate (D-AP5). DNQX, but not D-AP5, significantly attenuated glutamate-evoked activity. The mGluR receptor agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-t-ACPD) failed to evoke activity of NAc neurons, but significantly reduced the excitatory effects of other EAAs. This modulatory effect of 1S,3R-t-ACPD was consistently blocked by the selective mGluR antagonist L(+)-2-amino-3-phosphonopropionic acid (L-AP3) whereas another mGluR antagonist (RS)-4-carboxy-3-hydroxy phenylglycine (4C3HPG) was inconsistent in this regard. These results indicate that the excitatory effects of glutamate on rat NAc neurons in vivo are primarily mediated by non-NMDA iGluRs and that mGluRs function to dampen excessive glutamate transmission through iGluRs. © 1996 Wiley-Liss, Inc.  相似文献   

20.
The glutamatergic regulation of 5-hydroxytryptamine (5-HT) neuronal activity has not been extensively studied. Here, we used extracellular single unit recording in midbrain slices to examine glutamate receptor mediated effects on 5-HT neuronal activity in the dorsal raphe nucleus (DRN) and the median raphe nucleus (MRN). Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA; 1 and 3 microm) concentration-dependently increased firing in 5-HT neurons in both the DRN and the MRN. The response to AMPA was blocked by the AMPA receptor antagonist, 6,7-dinitroquinoxaline-2,3(1H-4H)-dione (DNQX; 10 microm) but not the N-methyl-d-aspartate (NMDA) receptor antagonist, 2-amino-5-phosphonopentanoic acid (AP-5; 50 microm). NMDA (10-100 microm) also increased 5-HT neuronal firing in a concentration-dependent manner in both the DRN and MRN; a response that was blocked by AP-5 (50 microm). In some DRN neurons the NMDA response was partially antagonized by DNQX (10 microm) suggesting that NMDA, as well as directly activating 5-HT neurons, evokes local release of glutamate, which indirectly activates AMPA receptors on 5-HT neurons. Responses of DRN 5-HT neurons to AMPA and NMDA were enhanced by the gamma-amino-butyric acid (GABA)(A) receptor antagonist, bicuculline (50 microm), suggesting that both AMPA and NMDA increase local release of GABA. Finally in the DRN the 5-HT(1A) receptor antagonist, WAY100635 (100 nm), failed to enhance the response of 5-HT neurons to AMPA and caused only a small increase in the excitatory response to NMDA suggesting a low degree of tonic activation of 5-HT(1A) autoreceptors even when 5-HT neuronal firing rate is high.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号