首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 524 毫秒
1.
Two of the cytosolic NADPH oxidase components, p47-phox and p67-phox, translocate to the plasma membrane in normal neutrophils stimulated with phorbol myristate acetate (PMA). We have now studied the translocation process in neutrophils of patients with chronic granulomatous disease (CGD), an inherited syndrome in which the oxidase system fails to produce superoxide due to lesions affecting any one of its four known components: the gp91-phox and p22-phox subunits of cytochrome b558 (the membrane-bound terminal electron transporter of the oxidase), p47-phox, and p67-phox. In contrast to normal cells, neither p47-phox nor p67-phox translocated to the membrane in PMA-stimulated CGD neutrophils which lack cytochrome b558. In one patient with a rare X-linked form of CGD caused by a Pro----His substitution in gp91-phox, but whose neutrophils have normal levels of this mutant cytochrome b558, translocation was normal. In two patients with p47-phox deficiency, p67-phox failed to translocate, whereas p47-phox was detected in the particulate fraction of PMA-stimulated neutrophils from two patients deficient in p67-phox. Our data suggest that cytochrome b558 or a closely linked factor provides an essential membrane docking site for the cytosolic oxidase components and that it is p47-phox that mediates the assembly of these components on the membrane.  相似文献   

2.
The superoxide-forming NADPH oxidase of human phagocytes is composed of membrane-bound and cytosolic proteins which, upon cell activation, assemble on the plasma membrane to form the active enzyme. Patients suffering from chronic granulomatous disease (CGD) are defective in one of the following components: p47-phox and p67-phox, residing in the cytosol of resting phagocytes, and gp91-phox and p22-phox, constituting the membrane-bound cytochrome b558. In an X-linked CGD patient we identified a novel missense mutation predicting an Asp-->Gly substitution at residue 500 of gp91-phox, associated with normal amounts of nonfunctional cytochrome b558 in the patient's neutrophils. In PMA-stimulated neutrophils and in a cell-free translocation assay with neutrophil membranes and cytosol, the association of the cytosolic proteins p47-phox and p67-phox with the membrane fraction of the patient was strongly disturbed. Furthermore, a synthetic peptide mimicking domain 491-504 of gp91-phox inhibited NADPH oxidase activity in the cell-free assay (IC50 about 10 microM), and the translocation of p47-phox and p67-phox in the cell-free translocation assay. We conclude that residue 500 of gp91-phox resides in a region critical for stable binding of p47-phox and p67-phox.  相似文献   

3.
In phagocytes, superoxide generation by the NADPH oxidase is accompanied by metabolic acid production. Cytoplasmic acidification during this metabolic burst is prevented by a combination of H+ extrusion mechanisms, including a unique H+ conductance. NADPH oxidase is deficient in chronic granulomatous disease (CGD) patients. The burst of acid production is absent in CGD patients lacking the 47-kD (p47-phox) or the 91-kD (gp91-phox) subunits of the oxidase. Activation of the H+ conductance is also defective in these patients suggesting that (a) the oxidase itself undertakes H+ translocation or (b) oxidase assembly is required to stimulate a separate H+ conducting entity. To discern between these possibilities, three rare forms of CGD were studied. In neutrophils expressing nonfunctional cytochrome b, the conductance was activated to near-normal levels, implying that functional oxidase is not required to activate H+ extrusion. CGD cells expressing diminished amounts of cytochrome displayed H+ conductance approaching normal levels, suggesting that the oxidase itself does not translocate H+. Finally, the conductance was only partially inhibited in patients lacking the 67-kD subunit, indicating that this component is not essential for stimulation of H+ transport. We propose that normal assembly of the oxidase subunits is required for optimal activation of a closely associated but distinct H+ conducting entity.  相似文献   

4.
Chronic granulomatous disease was diagnosed in a boy who suffered from severe generalized infections. Family investigations revealed the inheritance of the disease to be X-linked. However, unlike other cases of X-linked chronic granulomatous disease, the membrane oxidase of the neutrophils from this patient was not totally defective and sufficient activity was left to result in a normal phorbol myristate acetate-stimulated nitroblue tetrazolium slide test. Also, unlike the usual findings in X-linked chronic granulomatous disease, cytochrome b was present in normal amounts in the neutrophils from this patient. The cytochrome was normal, judged from its midpoint potential of -245 mV and its ability to bind CO. It is thus apparent that X-linked chronic granulomatous disease may result from at least two different defects and that the phorbol myristate acetate stimulated nitroblue tetrazolium slide test fails to detect some cases.  相似文献   

5.
6.
The superoxide-generating enzyme of human neutrophils, NADPH oxidase, is present in a dormant state in unstimulated neutrophils. It can be converted to an active form in a cell-free system if both the plasma membrane and cytosol fractions are incubated together in the presence of arachidonic acid. This system was used to determine the nature of the biochemical defect in seven patients with the autosomal recessive, cytochrome b-positive form of chronic granulomatous disease (CGD). A severe deficiency in the cytosol factor was identified in each patient. The defective activity was not caused by the presence of an inhibitor, nor could it be restored to normal by combining cytosol fractions from different patients. In contrast, the membrane fractions from all seven patients contained normal levels of NADPH oxidase when activated in the presence of control cytosol. Of family members tested (obligate heterozygotes for this disorder), seven of eight had intermediate levels of cytosol factor activity. The respiratory burst defect in this form of CGD is caused by an abnormality in the cytosolic factor required for NADPH oxidase activation.  相似文献   

7.
The NADPH-binding site of the respiratory burst oxidase system of neutrophils has been proposed to be either at a cytosolic component or at the beta-subunit of cytochrome b558. In this study, affinity labeling of resting and stimulated membranes, the latter having been assembled by all of the oxidase components from both membrane and cytosol, was carried out using [32P]NADPH dialdehyde (oNADPH). Stimulation of human neutrophils with PMA greatly increased O2(-)- generating activity and caused considerable translocation of the cytosolic components p47phox and p67phox. Nevertheless, PMA stimulation did not produce a labeled band which included positions at 47, 67, and approximately 32 kD. The most intense band reflected a molecular mass of 84 kD regardless of the state of activation, but a labeled band was never found near the beta-subunit (91 kD) of cytochrome b558. This 84- kD protein was further confirmed in neutrophils of 14 patients with gp91phox-deficient X-linked chronic granulomatous disease. These results indicate that the NADPH-binding component is not recruited from the cytosol, and also, that a membranous redox component besides cytochrome b558 must be involved in the NADPH oxidase system.  相似文献   

8.
NADPH oxidase deficiency in X-linked chronic granulomatous disease.   总被引:5,自引:18,他引:5       下载免费PDF全文
We measured the cyanide-insensitive pyridine nucleotide oxidase activity of fractionated resting and phagocytic neutrophils from 11 normal donors, 1 patient with hereditary deficiency of myeloperoxidase, and 7 patients with X-linked chronic granulomatous disease (CGD). When measured under optimal conditions (at pH 5.5 and in the presence of 0.5 mM Mn++), NADPH oxidase activity increased fourfold with phagocytosis and was six-fold higher than with NADH. Phagocytic neutrophils from patients with CGD were markedly deficient in NADPH oxidase activity.  相似文献   

9.
The NADPH:O2 oxidoreductase (NADPH oxidase) of human neutrophils is converted from a dormant to an active state upon stimulation of the cells. We have studied the soluble fraction that is required for NADPH oxidase activation in a cell-free system. Human neutrophils were separated in a membrane-containing and a soluble fraction. The soluble fraction was separated on carboxymethyl (CM) Sepharose in 10 mM 4-morpholino-ethanesulfonic acid buffer of pH 6.8. Reconstitution of the NADPH oxidase activity, measured as O2 consumption, was only found when the membrane fraction was combined with the flowthrough of the CM Sepharose column as well as with a fraction that eluted at 125 mM NaCl. This result indicates that at least two soluble components are necessary for reconstitution of the NADPH oxidase activity: one that does not bind to CM Sepharose and one that does bind. These components were designated soluble oxidase component (SOC) I and SOC II, respectively. Boiling destroyed the activity in both fractions. In the soluble fraction of human lymphocytes and thrombocytes neither SOC I nor SOC II activity was found. SOC II copurified with a 47-kD phosphoprotein, previously found defective in patients with the autosomal form of chronic granulomatous disease (CGD). Inactive soluble fractions of cells from autosomal CGD patients were reconstituted with a SOC II fraction from control cells. The result of this experiment indicates that autosomal CGD patients are normal in SOC I but defective in SOC II.  相似文献   

10.
Most cases of cytosol-defective chronic granulomatous disease are due to the deficiency of a 47-kD protein (p47-phox) whose phosphorylation normally accompanies the activation of the respiratory burst oxidase. Recently, a form of chronic granulomatous disease was described in which the failure of O2- production was associated with the absence of a 67-kD polypeptide (p67-phox) from the cytosol of affected neutrophils. Using neutrophils obtained from a patient with this form of the disease, we examined the function of p67-phox in the activation of the oxidase. Our studies showed that in whole p67-phox-deficient neutrophils, p47-phox was phosphorylated in a normal fashion. In the cell-free oxidase-activating system, the ability of the p67-phox-deficient cytosol to support oxidase activation was partly restored by the addition of p47-phox-deficient cytosol; the p67-phox-deficient cytosol, however, was not complemented by cytosol inactivated with NADPH dialdehyde, an affinity label previously found to block the NADPH-binding component of the oxidase. Despite these differences, the kinetic properties of the p67-phox-deficient cytosol closely resembled those of the p47-phox-deficient cytosol. Taken together with earlier findings, these results suggest that (a) in the neutrophil cytosol, p67-phox is at least partly complexed to p47-phox; (b) it is in the form of this complex that p67-phox participates in oxidase activation; and (c) p47-phox appears to be translocated from the cytosol to the plasma membrane during oxidase activation, but complexation to p67-phox is not necessary for this translocation, nor for the accompanying extra protein phosphorylation.  相似文献   

11.
Sonicates from unstimulated human neutrophils produce no measurable superoxide since the superoxide-generating enzyme, NADPH oxidase, is inactive in these preparations. Previous attempts to activate the oxidase in disrupted cells with conventional neutrophil stimuli have been unsuccessful. This report describes a cell-free system in which arachidonic acid (82 microM) was able to activate superoxide generation that was dependent upon the presence of NADPH and the sonicate. For activation to occur, both the particulate and supernatant fractions of the sonicate must be present. Calcium ions, which are required for activation of intact neutrophils by arachidonate, were not necessary in the cell-free system. In quantitative terms, the superoxide-generating activity in the cell-free system could account for at least 20-50% of the superoxide rate observed in intact neutrophils stimulated with arachidonate. Sonicates from patients with chronic granulomatous disease (CGD) could not be activated by arachidonic acid in the cell-free system. In three patients representing both genetic forms of CGD, the defect appeared to reside in the particulate fraction. The soluble cofactor was normal in all three patients and could be used to activate normal neutrophil pellets in the presence of arachidonic acid. Thus, at least a portion of the activation mechanism in the neutrophil, that residing in the soluble phase, appeared to be normal in patients with CGD.  相似文献   

12.
Mild heating of human neutrophils inactivates the respiratory burst oxidase, producing a defect in superoxide production and bacterial killing comparable to that seen in patients afflicted with chronic granulomatous disease (CGD). We have now investigated the mechanism and specificity of this inactivation by examining the effect of mild heating on the known oxidase components: the membrane-bound subunits of the cytochrome b558 (gp91-phox and p22-phox) and the two cytosolic oxidase factors (p47-phox and p67-phox). Heating (46 degrees C for 7.5 min) caused intact neutrophils to lose greater than 85% of their capacity to produce superoxide, a defect which was localized to the cytosolic, but not the membrane, fraction. Complementation studies with CGD cytosols deficient in either p47-phox or p67-phox suggested that the defective component of heat-inactivated cytosol was p67-phox. This was confirmed by experiments showing that recombinant p67-phox, but not p47-phox, exhibited lability at 46 degrees C and completely reconstituted oxidase activity of heat-treated cytosol. These studies indicate that mild heating of either intact neutrophils or normal neutrophil cytosol results in a selective inactivation of p67-phox, providing a model oxidase system for the extremely rare p67-phox-deficient form of CGD.  相似文献   

13.
Three patients (two sisters and a brother) in one family are described with chronic granulomatous disease. The granulocytes of these patients did not respond with a metabolic burst to various stimuli and failed to kill catalase-positive microorganisms. The magnitude of the cytochrome b signal in the optical spectrum of the patients' granulocytes was less than 4% of the normal value, whereas the amount of noncovalently bound flavin in these cells was normal. The mode of inheritance of the genetic defect in this family is autosomal because the granulocytes of both parents (first cousins) and a nonaffected sister of the patients expressed 70-80% of the normal cytochrome b signal, showed low-normal or subnormal oxidative reactions during stimulation, and did not display mosaicism in the stimulated nitroblue-tetrazolium slide test. Somatic cell hybridization was performed between the monocytes from the affected boy in this family with monocytes from either a cytochrome b-negative male patient with X-linked chronic granulomatous disease or a cytochrome b-positive male patient with the classic autosomal form of this disease. In both combinations, monocyte hybrids were observed with nitroblue tetrazolium reductase activity after stimulation with phorbol myristate acetate. This complementation of the oxidase activity required protein synthesis. Our results prove that the defect in this family is genetically distinct from that in the other two forms of chronic granulomatous disease. Moreover, our results also indicate that the expression of cytochrome b in human phagocytes is coded by at least two loci, one on the X chromosome and one on an autosome.  相似文献   

14.
The mechanisms regulating activation of the respiratory burst enzyme, NADPH oxidase, of human neutrophils (PMN) are not yet understood, but protein phosphorylation may play a role. We have utilized a defect in a cytosolic factor required for NADPH oxidase activation observed in two patients with the autosomal recessive form of chronic granulomatous disease (CGD) to examine the role of protein phosphorylation in activation of NADPH oxidase in a cell-free system. NADPH oxidase could be activated by SDS in reconstitution mixtures of cytosolic and membrane subcellular fractions from normal PMN, and SDS also enhanced phosphorylation of at least 16 cytosolic and 14 membrane-associated proteins. However, subcellular fractions from CGD PMN plus SDS expressed little NADPH oxidase activity, and phosphorylation of a 48-kD protein(s) was selectively defective. The membrane fraction from CGD cells could be activated for NADPH oxidase when mixed with normal cytosol and phosphorylation of the 48-kD protein(s) was restored. In contrast, the membrane fraction from normal cells expressed almost no NADPH oxidase activity when mixed with CGD cytosol, and phosphorylation of the 48-kD protein(s) was again markedly decreased. Protein kinase C (PKC) activity in PMN from the two patients appeared to be normal, suggesting that a deficiency of PKC is not the cause of the defective 48-kD protein phosphorylation and that the cytosolic factor is not PKC. These results demonstrate that the cytosolic factor required for activation of NADPH oxidase also regulates phosphorylation of a specific protein, or family of proteins, at 48 kD. Although the nature of this protein(s) is still unknown, it may be related to the functional and phosphorylation defects present in CGD PMN and to the activation of NADPH oxidase in the cell-free system.  相似文献   

15.
Cytochrome b deficiency in the peripheral granulocytes of two male patients with chronic granulomatous disease was demonstrated by an immunocytochemical assay using a monoclonal antibody, 7D5, against human neutrophil cytochrome b. A mosaic of cytochrome b positive and negative neutrophils, indicating a carrier state in an X-linked trait, was found in the mother of patient 1 but not in the mother of patient 2.  相似文献   

16.
BACKGROUND: The flow cytometric dihydrorhodamine 123 (DHR) assay is used as a screening test for chronic granulomatous disease (CGD), but complete myeloperoxidase (MPO) deficiency can also lead to a strongly decreased DHR signal. Our aim was to devise simple laboratory methods to differentiate MPO deficiency (false positive for CGD) and NADPH oxidase abnormalities (true CGD). METHODS: We measured NADPH-oxidase and MPO activity in neutrophils from MPO-deficient patients, CGD patients, NADPH-oxidase-transfected K562 cells and cells with inhibited and substituted MPO. RESULTS: Eosinophils from MPO-deficient individuals retain eosinophilic peroxidase and therefore generate a normal DHR signal. The addition of recombinant human MPO enhances the DHR signal when simply added to a suspension of MPO-deficient cells but not when added to NADPH-oxidase-deficient (CGD) cells. Lucigenin-enhanced chemiluminescence (LCL) is increased in neutrophils from MPO-deficient patients, whereas neutrophils from patients with CGD show a decreased response. CONCLUSIONS: A false-positive result caused by MPO deficiency can be easily ascertained because, unlike cells from a CGD patient, cells from MPO-deficient patients (a) contain functionally normal eosinophils, (b) show a significant enhancement of the DHR signal following addition of rhMPO, and (c) generate a strong LCL signal.  相似文献   

17.
Epstein-Barr virus-transformed lymphocytes generate superoxide in response to various agonists in an enzymatic reaction similar to that which occurs in stimulated phagocytes. We generated transformed B lymphoblast cell lines from controls, from four patients with p47-phox-deficient chronic granulomatous disease, and from three parents. The cells from controls and from the parents generated 7.0-35 nmol of O2-/10(7) cells per 30 min in response to phorbol myristate acetate. None of the patient cell lines generated any detectable superoxide. Both p47-phox and p67-phox were detected by immunoblot in the cytosol of control and parent cell lines and, as in neutrophils, these proteins had affinity for GTP-agarose. The patients' cell lines contained no detectable p47-phox by immunoblot. mRNA for both cytosolic proteins was detected in all cell lines. We generated cDNA and obtained multiple clones from two patients by polymerase chain reaction. One patient was a compound heterozygote with each allele resulting in an early stop codon. Clones derived from the other patient demonstrated only a GT deletion at base 75. The cDNA for p47-phox was inserted into an EBV-expression vector and stably transfected cell lines were obtained using hygromycin B selection. Transfected cell lines from a p47-phox-deficient patient generated normal levels of superoxide and had readily detectable cytosolic p47-phox. Thus, B lymphoblasts provide an excellent model system for studies of the NADPH oxidase, for expression of functional recombinant forms of oxidase components, and for initial experimental approaches to genetic reconstitution in CGD.  相似文献   

18.
We studied neutrophil function and clinical responses in seven patients with severe congenital neutropenia (SCN) after they received treatment with recombinant human granulocyte colony stimulating factor (rhG-CSF). Two subpopulations of patients with SCN were defined by their pattern of absolute neutrophil response, superoxide production, and cytochrome b559 levels. One group had an oscillating absolute neutrophil count and reduced ability to produce superoxide and cytochrome b559 (n = 4), and the second group had a relatively constant absolute neutrophil count response with normal superoxide and cytochrome levels (n = 3). Neutrophils from both groups had decreased surface expression of FcRIII and abnormal upregulation of the C3bi receptor (CR3). All patient neutrophils, however, had normal contents of the primary granule constituent, beta-glucuronidase, and the specific granule constituent, vitamin B 12 binding protein. The clinical response to rhG-CSF was evident by marked improvement in the degree of periodontitis and reduction in the number of oral ulcers in both groups of patients. Although neutrophil function is not completely normal in patients with SCN, it is likely that enough redundancy exists in neutrophil bactericidal capacity to promote normal host response to inflammation.  相似文献   

19.
A particulate fraction isolated from human neutrophils by homogenization, then centrifugation at 27,000 g, was demonstrated to generate chemiluminescence. This luminescence required the addition of reduced pyridine nucleotide and was very low in fractions from resting normal cells. Stimulation of neutrophils with opsonized zymosan, phorbol myristate acetate, or ionophore A23187 resulted in marked enhancement of the chemiluminescence measured in subsequently isolated particulate fractions. Stimulation did not boost the luminescence produced by fractions from cells of patients with chronic granulomatous disease. The chemiluminescence of particulate fractions from stimulated neutrophils was linear with increasing protein concentration, had a pH optimum of 7.0, and was higher with NADPH as substrate than with NADH. These results confirm previous studies suggesting that the enzyme system responsible for the respiratory burst in neutrophils is present in this fraction. The particulate fraction was used to examine the nature and origin of neutrophil luminescence by investigating the effect on this phenomenon of certain chemical and enzymatic scavengers of oxygen metabolites. Results suggest that the energy responsible for the luminescence of particulate fractions and, presumably, the intact cell, is derived from more than one oxygen species and that luminescence is a product of the interaction of these species and excitable substrates within the cell.  相似文献   

20.
Patients with autosomal recessive protein kinase C δ (PKCδ) deficiency suffer from childhood-onset autoimmunity, including systemic lupus erythematosus. They also suffer from recurrent infections that overlap with those seen in patients with chronic granulomatous disease (CGD), a disease caused by defects of the phagocyte NADPH oxidase and a lack of reactive oxygen species (ROS) production. We studied an international cohort of 17 PKCδ-deficient patients and found that their EBV-B cells and monocyte-derived phagocytes produced only small amounts of ROS and did not phosphorylate p40phox normally after PMA or opsonized Staphylococcus aureus stimulation. Moreover, the patients’ circulating phagocytes displayed abnormally low levels of ROS production and markedly reduced neutrophil extracellular trap formation, altogether suggesting a role for PKCδ in activation of the NADPH oxidase complex. Our findings thus show that patients with PKCδ deficiency have impaired NADPH oxidase activity in various myeloid subsets, which may contribute to their CGD-like infectious phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号