首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When multiple objects are present in a visual scene, they compete for cortical processing in the visual system; selective attention biases this competition so that representations of behaviorally relevant objects enter awareness and irrelevant objects do not. Deployments of selective attention can be voluntary (e.g., shift or attention to a target's expected spatial location) or stimulus driven (e.g., capture of attention by a target-defining feature such as color). Here we use functional magnetic resonance imaging to show that both of these factors induce spatially selective attentional modulations within regions of human occipital, parietal, and frontal cortex. In addition, the voluntary attentional modulations are temporally sustained, indicating that activity in these regions dynamically tracks the locus of attention. These data show that a convolution of factors, including prior knowledge of location and target-defining features, determines the relative competitive advantage of visual stimuli within multiple stages of the visual system.  相似文献   

2.
OBJECT: The lateral occipital cortex in humans is known as the "extrastriate visual cortex." It is, however, an unexplored field of research, and the anatomical nomenclature for its surface has still not been standardized. This study was designed to investigate whether the lateral occipital cortex in humans has retinotopic representation. METHODS: Four right-handed patients with a diagnosis of intractable epilepsy from space-occupying lesions in the occipital lobe or epilepsy originating in the occipital lobe received permanently implanted subdural electrodes. Electrical cortical stimulation was applied directly applied to the brain through metal electrodes by using a biphasic stimulator. The location of each electrode was measured on a lateral skull x-ray study. Each patient considered a whiteboard with vertical and horizontal median lines. The patient was asked to look at the midpoint on the whiteboard. If a visual hallucination or illusion occurred, the patient recorded its outline, shape, color, location, and motion on white paper one tenth the size of, and with vertical and horizontal median lines similar to those on, the whiteboard. Polar angles and eccentricities of the midpoints of the phosphenes from the coordinate origin were measured on the paper. On stimulation of the lateral occipital lobe, 44 phosphenes occurred. All phosphenes were circular or dotted, with a diameter of approximately 1 cm, except one that was like a curtain in the peripheral end of the upper and lower visual fields on stimulation of the parietooccipital region. All phosphenes appeared in the visual field contralateral to the cerebral hemisphere stimulated. On stimulation of the lateral occipital lobe, 22 phosphenes moved centrifugally or toward a horizontal line. From three-dimensional scatterplots and contour maps of the polar angles and eccentricities in relation to the x-ray coordinates of the electrodes, one can infer that the lateral occipital cortex in humans has retinotopic representation. CONCLUSIONS: The authors found that phosphenes induced by electrical cortical stimulation of the lateral occipital cortex represent retinotopy. From these results one can assert that visual field representation with retinotopic relation exists in the extrastriate visual cortex.  相似文献   

3.
A model of normal attentional function, based on the concept of competitive parallel processing, is used to compare attentional deficits following parietal and frontal lobe lesions. Measurements are obtained for visual processing speed, capacity of visual short-term memory (VSTM), spatial bias (bias to left or right hemifield) and top-down control (selective attention based on task relevance). The results show important differences, but also surprising similarities, in parietal and frontal lobe patients. For processing speed and VSTM, deficits are selectively associated with parietal lesions, in particular lesions of the temporoparietal junction. We discuss explanations based on either grey matter or white matter lesions. In striking contrast, measures of attentional weighting (spatial bias and top-down control) are predicted by simple lesion volume. We suggest that attentional weights reflect competition between broadly distributed object representations. Parietal and frontal mechanisms work together, both in weighting by location and weighting by task context.  相似文献   

4.
The control and allocation of attention is an essential, ubiquitous neural process that gates our awareness of objects and events in the environment. Neural representations of the locus of spatial attention have been previously demonstrated in parietal cortex. However, the behavioral relevance of these neural representations is not known. While undergoing functional magnetic resonance imaging, subjects performed a covert spatial attention task that yielded a wide range of performance values. Voxels in parietal cortex selective for attended target location also dynamically modulated, becoming more or less responsive as performance levels changed. Surprisingly, this relationship was not linear. Responses peaked at intermediate performance levels and dropped both when performance was very high and when it was very low. Such dynamic modulation may represent a mechanism for organizing neural control signals according to behavioral task demands.  相似文献   

5.
We compared cortical reactivity to pattern and luminance stimuli by recording evoked responses and spontaneous brain rhythms from 10 subjects with a whole-scalp neuromagnetometer. Hemifield patterns (black-and-white checkerboards) elicited strong contralateral transient activation of the occipital V1/V2 cortex, maximum at 65-75 ms, followed by sustained activation during the 2 s stimulus. Responses to hemifield luminance stimuli also had an occipital component, but they were dominated by activation of the medial parieto-occipital sulcus (POS) 60- 70 ms later. The POS region was equally well activated by foveal and extrafoveal stimuli. The occipital responses to hemifield luminance stimuli differed from those to pattern stimuli in two main aspects: the sustained activation was significantly weaker, and the responses were almost symmetrical, indicating a surprisingly bilateral occipital activation. These effects were similar with foveal and extrafoveal stimuli. The spontaneous 10 Hz alpha rhythm, originating predominantly in the POS region, was suppressed after both stimulus onsets and offsets, more strongly for luminance than pattern stimuli. Activation of the occipital cortex dominated after pattern stimuli, whereas the effect of luminance stimulation was stronger in the parieto-occipital region. The distinct signal distributions in the occipital and POS regions suggest that the two types of stimuli activate the magno- and parvocellular pathways to a varying degree. These findings are also in line with a stronger attention-catching value of the luminance than pattern stimuli.   相似文献   

6.
We applied magnetoencephalography (MEG) to record oscillatory brain activity from human subjects engaged in planning a double-step saccade. In the experiments, subjects (n = 8) remembered the locations of 2 sequentially flashed targets (each followed by a 2-s delay), presented in either the left or right visual hemifield, and then made saccades to the 2 locations in sequence. We examined changes in spectral power in relation to target location (left or right) and memory load (one or two targets), excluding error trials based on concurrent eye tracking. During the delay period following the first target, power in the alpha (8-12 Hz) and beta (13-25 Hz) bands was significantly suppressed in the hemisphere contralateral to the target. When the second target was presented, there was a further suppression in the alpha- and beta-band power over both hemispheres. In this period, the same sensors also showed contralateral power enhancements in the gamma band (60-90 Hz), most significantly prior to the initiation of the saccades. Adaptive spatial filtering techniques localized the neural sources of the directionally selective power changes in parieto-occipital areas. These results provide further support for a topographic organization for delayed saccades in human parietal and occipital cortex.  相似文献   

7.
The kinetic occipital region in human visual cortex   总被引:8,自引:5,他引:3  
In the present study we showed that the kinetic occipital (KO) region, located laterally in occipital cortex approximately 20 mm behind human MT/V5, can be strongly and bilaterally activated under passive viewing conditions. We used continuous, randomly changing visual stimulation to compare kinetic gratings to uniform motion and kinetic gratings to luminance defined gratings. The KO activations under these passive conditions are stronger than those observed when the two types of gratings are compared under active conditions, i.e. while subjects perform a task (counting gratings of a given orientation). Region KO was shown to process both shape and motion information, the conjunction of which is typically present in kinetic contours. Area MT/V5 also processes these two aspects of visual stimulation but favors motion signals. Clear segregation of shape and motion processing was observed only in occipitotemporal and parietal regions respectively. Although neurons with properties similar to those derived from the conditions activating the KO region have been documented in the macaque monkey, their location seems inappropriate for them to correspond to the KO activation observed in humans.   相似文献   

8.
A series of recordings in cat visual cortex suggest that synchronous activity in neuronal cell ensembles serves to bind the different perceptual qualities belonging to one object. We provide evidence that similar mechanisms seem also to be observable in human subjects for the representation of supramodal entities. Electroencephalogram (EEG) was recorded from 19 scalp electrodes (10/20 system) in 19 human subjects and EEG amplitude and coherence were determined during presentation of objects such as house, tree, ball. Objects were presented in three different ways: in a pictorial presentation, as spoken words and as written words. In order to find correlates of modality-independent processing, we searched for patterns of activation common to all three modalities of presentation. The common pattern turned out to be an increase of coherence between temporal and parietal electrodes in the 13-18 Hz beta1 frequency range. This is evidence that population activity of temporal cortex and parietal cortex shows enhanced coherence during presentation of semantic entities. Coherent activity in this low-frequency range might play a role for binding of multimodal ensembles.  相似文献   

9.
We examined the connections of posterior parietal cortex (PPC) with motor/premotor cortex (M1/PM) and other cortical areas. Electrical stimulation (500 ms trains) delivered to microelectrode sites evoked movements of reach, defense, and grasp, from distinct zones in M1/PM and PPC, in squirrel and owl monkeys. Tracer injections into M1/PM reach, defense, and grasp zones showed dense connections with M1/PM hand/forelimb representations. The densest inputs outside of frontal cortex were from PPC zones. M1 zones were additionally connected with somatosensory hand/forelimb representations in areas 3a, 3b, and 1 and the somatosensory areas of the upper bank of the lateral sulcus (S2/PV). Injections into PPC zones showed primarily local connections and the densest inputs outside of PPC originated from M1/PM zones. The PPC reach zone also received dense inputs from cortex caudal to PPC, which likely relayed visual information. In contrast, the PPC grasp zone was densely connected with the hand/forelimb representations of areas 3a, 3b, 1, and S2/PV. Thus, the dorsal parietal-frontal network involved in reaching was preferentially connected to visual cortex, whereas the more ventral network involved in grasping received somatosensory inputs. Additional weak interlinks between dissimilar zones (e.g., PPC reach and PPC grasp) were apparent and may coordinate actions.  相似文献   

10.
It has often been proposed that regions of the human parietal and/or frontal lobe may modulate activity in visual cortex, for example, during selective attention or saccade preparation. However, direct evidence for such causal claims is largely missing in human studies, and it remains unclear to what degree the putative roles of parietal and frontal regions in modulating visual cortex may differ. Here we used transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) concurrently, to show that stimulating right human intraparietal sulcus (IPS, at a site previously implicated in attention) elicits a pattern of activity changes in visual cortex that strongly depends on current visual context. Increased intensity of IPS TMS affected the blood oxygen level-dependent (BOLD) signal in V5/MT+ only when moving stimuli were present to drive this visual region, whereas TMS-elicited BOLD signal changes were observed in areas V1-V4 only during the absence of visual input. These influences of IPS TMS upon remote visual cortex differed significantly from corresponding effects of frontal (eye field) TMS, in terms of how they related to current visual input and their spatial topography for retinotopic areas V1-V4. Our results show directly that parietal and frontal regions can indeed have distinct patterns of causal influence upon functional activity in human visual cortex.  相似文献   

11.
Goal-directed perceptual decisions involve the analysis of sensory inputs, the extraction and accumulation of evidence, and the commitment to a choice. Previous neuroimaging studies of perceptual decision making have identified activity related to accumulation in parietal, inferior temporal, and frontal regions. However, such effects may be related to factors other than the integration of evidence over time, such as changes in the quantity of stimulus input and in attentional demands leading up to a decision. The current study tested an accumulation account using 2 manipulations. First, to test whether patterns of accumulation can be explained by changes in the quantity of sensory information, objects were revealed with a high quality but consistent quantity of evidence throughout the trial. Imaging analysis revealed patterns of accumulation in frontal and parietal regions but not in inferior temporal regions. This result supports a framework in which evidence is processed in sensory cortex and integrated over time in higher order cortical areas. Second, to test whether accumulation signals are driven by attentional demands, task difficulty was increased on some trials. This manipulation did not affect the nature of accumulating functional magnetic resonance imaging signals, indicating that accumulating signals are not necessarily driven by changes in attentional demand.  相似文献   

12.
The anatomical and physiological substrata of eye-hand coordination during reaching were studied through combined anatomical and physiological techniques. The association connections of parietal areas V6A and PEc, and those of dorso-rostral (F7) and dorso-caudal (F2) premotor cortex were studied in monkeys, after physiological characterization of the parietal regions where retrograde tracers were injected. The results show that parieto-occipital area V6A is reciprocally connected with F7, and receives a smaller projection from F2. Local parietal projections to V6A arise from areas MIP and, to a lesser extent, 7m, PEa and PEC: On the contrary, parietal area PEc is strongly and reciprocally connected with the part of F2 located close to the pre-central dimple (pre-CD). Local parietal projections to PEc come from a distributed network, including PEa, MIP, PEci and, to a lesser extent, 7m, V6A, 7a and MST. Premotor area F7 receives parietal projections mainly from 7m and V6A, and local frontal projections mainly from F2. On the contrary, premotor area F2 in the pre-CD zone receives parietal inputs from PEc and, to a lesser extent, PEci, while in the peri-arcuate zone F2 receives parietal projections from PEa and MIP. Local frontal projections to F2 pre-CD mostly stem from F4, and, to a lesser extent, from F7 and F3, and CMAd; those addressed to peri-arcuate zone of F2 arise mainly from F5 and, to a lesser extent, from F7, F4, dorsal (CMAd) and ventral (CMAv) cingulate motor areas, pre-supplementary (F6) and supplementary (F3) motor areas. The distribution of association cells in both frontal and parietal cortex was characterized through a spectral analysis that revealed an arrangement of these cells in the form of bands, composed of cell clusters, or 'columns'. The reciprocal connections linking parietal and frontal cortex might explain the presence of visually related and eye-position signals in premotor cortex, as well as the influence of information about arm position and movement direction in V6A and PEC: The association connections identified in this study might carry sensory as well motor information that presumably provides a basis for a re-entrant signaling. This might be necessary to match retinal-, eye- and hand-related information underlying eye-hand coordination during reaching.  相似文献   

13.
Visual attention is a mechanism by which observers select relevant or important information from the current visual array. Previous investigations have focused primarily on the ability to select a region of space for further visual analysis. These studies have revealed a distributed frontoparietal circuit that is responsible for the control of spatial attention. However, vision must ultimately represent objects and in real scenes objects often overlap spatially; thus attention must be capable of selecting objects and their properties nonspatially. Little is known about the neural basis of object-based attentional control. In two experiments, human observers shifted attention between spatially superimposed faces and houses. Event-related functional magnetic resonance imaging (fMRI) revealed attentional modulation of activity in face- and house-selective cortical regions. Posterior parietal and frontal regions were transiently active when attention was shifted between spatially superimposed perceptual objects. The timecourse of activity provides insight into the functional role that these brain regions play in attentional control processes.  相似文献   

14.
Recently, 8 areas (5Ci, 5M, 5L, 7PC, 7A, 7P, 7M, hIP3) in the human superior parietal cortex (SPC) were delineated in 10 postmortem brains using observer-independent cytoarchitectonic analysis. Here we present 3D probabilistic maps of these areas, quantifying the interindividual overlap for each voxel in stereotaxic reference space, and a maximum probability map, providing a contiguous parcellation. For all areas, we determined probabilities of mutual borders, calculated stereotaxic centers of gravity, and estimated volumes. A basic pattern of areas and borders was observed, which showed, however, intersubject variations and a significant interhemispheric asymmetry (7P, 7M) that may be functionally relevant. There was a trend toward higher intersubject anatomical variability in lateral compared with medial areas. For several areas (5M, 7PC, 7A, 7P), variability was significantly higher in the left hemisphere and/or in men, whereas for areas 5Ci and 5M there was a hemisphere-by-gender interaction. Differences in anatomical variability could bias group analyses in functional imaging studies by reducing sensitivity for activations of entities with high variability. The probabilistic maps provide an objective anatomical reference and account for the structural variability of the human brain. Integrated into functional imaging experiments, they can improve structure-function investigations of the human SPC.  相似文献   

15.
The human superior parietal cortex (SPC; Brodmann areas [BA] 5 and 7) comprises the superior parietal lobule and medial wall of the intraparietal sulcus (mIPS) laterally and the posterior paracentral lobule and precuneus medially. Receptor autoradiographic and functional studies indicate more complex segregations in the SPC than suggested by Brodmann (1909). Differences to other historical maps may be due to anatomical variability between brains and different definition criteria for areas. To provide a reliable anatomical reference of the SPC, we performed an observer-independent cytoarchitectonic mapping of this region in 10 human postmortem brains. Cytoarchitecture was analyzed in cell-body-stained brain sections using gray-level index profiles. Multivariate statistical analysis of profile shape allowed the exact localization of cytoarchitectonic borders and quantification of interareal differences. We identified 3 areas in BA 5 (5L, 5M, and 5Ci), 4 in BA 7 (7PC, 7A, 7P, and 7M), and 1 in the anterior mIPS (hIP3). Locations of their borders relative to macroanatomical landmarks varied considerably between brains and hemispheres. Cytoarchitectonic profiles of areas 5Ci and hIP3 differed most from those of the remaining areas, and differences between subareas were stronger in BA 5 than in BA 7. These areas are possible structural correlates of functional segregations within the SPC.  相似文献   

16.
Three regions of the macaque inferior parietal lobule and adjacent lateral intraparietal sulcus (IPS) are distinguished by the relative strengths of their connections with the superior colliculus, parahippocampal gyrus, and ventral premotor cortex. It was hypothesized that connectivity information could therefore be used to identify similar areas in the human parietal cortex using diffusion-weighted imaging and probabilistic tractography. Unusually, the subcortical routes of the 3 projections have been reported in the macaque, so it was possible to compare not only the terminations of connections but also their course. The medial IPS had the highest probability of connection with the superior colliculus. The projection pathway resembled that connecting parietal cortex and superior colliculus in the macaque. The posterior angular gyrus and the adjacent superior occipital gyrus had a high probability of connection with the parahippocampal gyrus. The projection pathway resembled the macaque inferior longitudinal fascicle, which connects these areas. The ventral premotor cortex had a high probability of connection with the supramarginal gyrus and anterior IPS. The connection was mediated by the third branch of the superior longitudinal fascicle, which interconnects similar regions in the macaque. Human parietal areas have anatomical connections resembling those of functionally related macaque parietal areas.  相似文献   

17.
Spectral and temporal processing in human auditory cortex.   总被引:4,自引:5,他引:4  
Hierarchical processing suggests that spectrally and temporally complex stimuli will evoke more activation than do simple stimuli, particularly in non-primary auditory fields. This hypothesis was tested using two tones, a single frequency tone and a harmonic tone, that were either static or frequency modulated to create four stimuli. We interpret the location of differences in activation by drawing comparisons between fMRI and human cytoarchitectonic data, reported in the same brain space. Harmonic tones produced more activation than single tones in right Heschl's gyrus (HG) and bilaterally in the lateral supratemporal plane (STP). Activation was also greater to frequency-modulated tones than to static tones in these areas, plus in left HG and bilaterally in an anterolateral part of the STP and the superior temporal sulcus. An elevated response magnitude to both frequency-modulated tones was found in the lateral portion of the primary area, and putatively in three surrounding non-primary regions on the lateral STP (one anterior and two posterior to HG). A focal site on the posterolateral STP showed an especially high response to the frequency-modulated harmonic tone. Our data highlight the involvement of both primary and lateral non-primary auditory regions.  相似文献   

18.
Spectral and temporal processing in human auditory cortex.   总被引:19,自引:11,他引:8  
We used positron emission tomography to examine the response of human auditory cortex to spectral and temporal variation. Volunteers listened to sequences derived from a standard stimulus, consisting of two pure tones separated by one octave alternating with a random duty cycle. In one series of five scans, spectral information (tone spacing) remained constant while speed of alternation was doubled at each level. In another five scans, speed was kept constant while the number of tones sampled within the octave was doubled at each level, resulting in increasingly fine frequency differences. Results indicated that (i) the core auditory cortex in both hemispheres responded to temporal variation, while the anterior superior temporal areas bilaterally responded to the spectral variation; and (ii) responses to the temporal features were weighted towards the left, while responses to the spectral features were weighted towards the right. These findings confirm the specialization of the left-hemisphere auditory cortex for rapid temporal processing, and indicate that core areas are especially involved in these processes. The results also indicate a complementary hemispheric specialization in right-hemisphere belt cortical areas for spectral processing. The data provide a unifying framework to explain hemispheric asymmetries in processing speech and tonal patterns. We propose that differences exist in the temporal and spectral resolution of corresponding fields in the two hemispheres, and that they may be related to anatomical hemispheric asymmetries in myelination and spacing of cortical columns.  相似文献   

19.
To what extent does neural activation in human visual cortex follow the temporal dynamics of the optical retinal stimulus? Specifically, to what extent does stimulus evoked neural activation persist after stimulus termination? In the present study, we used functional magnetic resonance imaging (fMRI) to explore the resulting temporal non-linearities across the entire constellation of human visual areas. Gray-scale images of animals, houses and faces were presented at two different presentation rates - 1 and 4 Hz - and the fMRI signal was analyzed in retinotopic and in high order occipito-temporal visual areas. In early visual areas and the motion sensitive area MT/V5, a fourfold increase in stimulus presentation rate evoked a twofold increase in signal amplitude. However, in high order visual areas, signal amplitude increased only by 25%. A control experiment ruled out the possibility that this difference was due to signal saturation ('ceiling') effects. A likely explanation for the stronger non-linearities in occipito-temporal cortex is a persistent neuronal activation that continues well after stimulus termination in the 1 Hz condition. These persistent activations might serve as a short term (iconic) memory mechanism for preserving a trace of the stimulus even in its absence and for future integration with temporally correlated stimuli. Two alternative models of persistence (inhibitory and excitatory) are proposed to explain the data.  相似文献   

20.
Function of parietal and frontal shunts in childhood hydrocephalus   总被引:3,自引:0,他引:3  
This study was performed to determine if cerebrospinal fluid (CSF) shunts inserted via the frontal and parietal regions function for similar lengths of time. The medical records of 114 children with CSF shunts were reviewed. In 83 of these cases computerized tomography scans were also available. Ninety percent of the operations were to insert the child's first shunt. The site of insertion, cause of hydrocephalus, patient's age, surgeon, duration of function (time from insertion to malfunction or to latest follow-up evaluation), presence of infection, catheter location within the ventricle, and duration of function of the subsequent shunt were recorded. Data were analyzed by the chi-square, logistic regression, and life-table methods. Shunts had been inserted via the frontal route in 62 children and via the parietal route in 52. The children's ages, causes of hydrocephalus, and infection rates were similar in both groups. Duration of shunt function was predicted by the site of shunt insertion and the catheter position within the ventricles: shunts inserted via the frontal region functioned significantly longer than parietally inserted shunts, both as the initial shunt (Wilcoxon, p = 0.0008) and after a malfunction, and catheters positioned within the ipsilateral frontal horn functioned significantly longer than those in other ventricular locations (Wilcoxon, p = 0.03).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号