首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The defining characteristic of G protein-coupled receptor homologous desensitization is that the receptor must be occupied by an agonist or in an activated conformation that mimics an agonist-induced state. In most instances, the mechanistic basis for this characteristic is the high selectivity of G protein-coupled receptor kinases for the activated receptor. In this issue, Rankin et al. (p. 759) demonstrate that under some conditions, at least, the G protein-coupled receptor kinase GRK4 does not display a preference for the agonist-occupied D1 dopamine receptor. Coexpression of GRK4 and the D1 receptor in a heterologous system induces phosphorylation of the receptor in the absence of agonist, causing constitutive desensitization and internalization of the receptor. Lacking the normal rapid feedback mechanisms associated with homologous desensitization, a system incorporating constitutively active GRK4 will be prone to dysregulation, perhaps explaining the generally low expression of GRK4. Indeed, considerable evidence suggests that just such dysregulation resulting from mutationally activated GRK4 contributes to the heritable component of human essential hypertension (Physiol Genomics 19:223-246, 2004).  相似文献   

2.
3.
G protein-coupled receptor kinases (GRKs) are believed to involve in desensitization of the G protein-coupled receptors. So far, cDNAs of six GRKs were cloned from several species including human and rat. However, it is unknown whether single GRK phosphorylates various receptors and desensitizes them in the cells. To determine whether GRK2 (also called beta ARK1) involves desensitization of the beta 1-adrenergic receptor-mediated response in heart, we tried to apply monoclonal antibody which could recognize only beta ARK1 and inhibit its phosphorylating activity to the heart cells. Monoclonal antibody was obtained by immunization of carboxyl terminus of beta ARK1 as fusion protein of glutathione-S-transferase (GST). The resulting monoclonal antibody specifically reacted with beta ARK1, and inhibited the binding of purified beta gamma subunit to the carboxyl terminus. Monoclonal antibody completely inhibited phosphorylation of the m2 muscarinic acetylcholine receptor as well as phosphorylation of GST-intracellular third loop fusion protein of the m2 receptor. When monoclonal antibody was applied to myocyte prepared from guinea pig heart, the desensitization of the beta 1-adrenergic receptor was partially inhibited as measured by Ca2+ channel activation. Thus intracellular application of monoclonal antibody is promising approach to analyze function of GRKs.  相似文献   

4.
A variety of G protein-coupled receptors (GPCRs) are phosphorylated by G protein-coupled receptor kinase 2 (GRK2). This event promotes the binding of regulatory proteins termed beta-arrestins to GPCRs, leading to uncoupling from G proteins and receptor internalization. Recent data indicate that GRK2 and beta-arrestins also play an important role in the stimulation of the extracellular signal-regulated kinases (ERK)/mitogen-activated protein kinase (MAPK) cascade by GPCRs. In this report, we have investigated the existence of functional interactions between GRK2 and MAPK. We show that activation of beta(2)-adrenergic receptors (beta(2)-AR) promotes the rapid association of GRK2 and MAPK in living cells, as assessed by coimmunoprecipitation experiments in COS-7 cells transfected with beta(2)-AR, GRK2, and an epitope-tagged MAPK. Coimmunoprecipitation of MAPK and GRK2 is blocked by inhibition of the MAPK cascade and is not observed upon activation of MAPK in the absence of beta(2)-AR stimulation, thus indicating that both an active MAPK and agonist occupancy of GPCR are required for the association to occur. Interestingly, we have found that purified ERK1/MAPK can directly phosphorylate the C-terminal domain of GRK2, and that the phosphorylation process is favored by the presence of Gbetagamma-subunits or an activated receptor. Furthermore, GRK2 phosphorylation by MAPK leads to a decreased activity of GRK2 toward GPCR. Taken together, our results suggest that stimulation of GPCRs promotes the rapid association of GRK2 and MAPK leading to modulation of GRK2 functionality, thus putting forward a new feedback mechanism for the regulation of GPCR signaling.  相似文献   

5.
Several lines of evidence over the last decade have established that G protein-coupled receptors (GPCRs) can signal in the absence of their natural ligand which results in ligand-independent or constitutive activity. Natural genetic mutation, overexpression and site-directed mutagenesis all result in constitutive activation of GPCRs. Of the 100 leading pharmaceutical products in 2000, 39, wholly or in part, acted through a GPCR-mediated mechanism, a fact that underlines the extreme importance of GPCRs as pharmaceutical drug targets. In addition, the sequencing of the human genome and database mining has revealed that there are hundreds of putative orphan GPCRs for which the natural ligands have not been identified. These orphan GPCRs have largely been inaccessible to drug discovery because traditional methods have mainly relied on ligand-dependent binding assays to discover and pharmacologically characterize potential drug candidates from this receptor class. In the absence of ligand identification, constitutively active receptors allow for a logical and direct way forward through the drug discovery pathway by providing the tool necessary to find modulators of this receptor class in a ligand-independent fashion.  相似文献   

6.
Several families of G protein-coupled receptors (GPCR) have been shown to activate extracellular signal-regulated kinase (ERK) in transfected cells and non-neuronal systems. However, little is known about GPCR activation of ERK in brain. Because ERK is an important component in the regulation of synaptic plasticity, in this study we examined ERK activation by three families of GPCR that respond to major neuromodulatory neurotransmitters in the hippocampus. We used an immunocytochemical approach to examine ERK activation by muscarinic acetylcholine (mAChR), metabotropic glutamate (mGluR), and beta-adrenergic (beta-AR) receptors in CA1 neurons of mouse hippocampal slices. Because these GPCR families comprise receptors coupling to each of the major heterotrimeric G proteins, we examined whether ERK activation differs according to G-protein coupling. By using immunocytochemistry, we were able to examine not only whether each family of receptors activates ERK, but also the cellular populations and subcellular distributions of activated ERK. We demonstrated that M1 mAChRs and group I mGluRs, both of which are Gq-coupled receptors, activate ERK in CA1 pyramidal neurons, although activation in response to mAChR is more robust. The G(i/o)-coupled group II mGluRs activate ERK in glia scattered throughout CA1, and Gs-coupled beta-AR receptors activate ERK in scattered interneurons. Thus, we demonstrated that GPCR coupling to Gq, G(i/o), and Gs all activate ERK in the hippocampus, although each does so with unique properties and distributions.  相似文献   

7.
MrgD is expressed almost exclusively in dorsal root ganglion(DRG) neurons.And its activation inhibited KCNQ/M-currents that contributes to an increase in excitability of DRG neurons and thus may enhance the signaling of primary afferent nociceptive neurons.Ca2+-activated chloride channels(CaCCs) are found in DRG neurons and regulate neuronal cell excitability as well.But the interaction between CaCCS and MrgD is still unknown.We here found that β-alanine-induced activation of MrgD resulted in eliciting Ca2+-activated chloride currents.The currents were inhibited by flufenamic acid(FFA) and by inhibition of phospholipase C and Ca2+ chelating agent EGTA.However,calphostin C,a PKC inhibitor,had no effect on the currents.These present data show that the inward currents induced by activation of MrgD were mediated through Gq-phospholipase C-IP3-Ca2+ release pathway,but not via Gi pathway.  相似文献   

8.
Rationale and objectives WAY-100635 is a prototypical 5-HT1A receptor antagonist and has been used widely as a pharmacological probe to investigate the distribution and function of 5-HT1A receptors. Results from our studies suggested that WAY-100635 was potently inducing effects unrelated to its 5-HT1A receptor affinity. In the present work, we evaluated the in vitro pharmacology of this compound at two D2-like receptor subtypes.Method The functional properties and binding affinities of WAY-100635 were evaluated in HEK 293 cells stably expressing dopamine D2L or D4.4 receptors.Results Initial screens performed by the NIMH Psychoactive Drug Screening Program indicated that WAY-100635 displayed 940, 370, and 16 nM binding affinities at D2L, D3, and D4.2 receptors, respectively. Subsequent saturation analyses demonstrated that the K d of [3H]WAY-100635 at D4.2 receptors was 2.4 nM, only tenfold higher than 5-HT1A. WAY-100635 and its major metabolite, WAY-100634, were potent agonists in HEK-D4.4 cells (EC50=9.7±2.2 and 0.65±0.2 nM, respectively). WAY-100635 behaved as a full agonist, and WAY-100634 was a nearly full agonist. In HEK-D2L cells, WAY-100635 weakly antagonized the effects of 300 nM quinpirole. Subsequent radioligand binding studies confirmed that WAY-100635 possesses high affinity for D4.4 receptors but binds weakly to D2L receptors (3.3±0.6 and 420±11 nM, respectively).Conclusions This study demonstrates that WAY-100635 is not a “selective” 5-HT1A receptor antagonist, as previously reported, and conclusions drawn from studies that employed WAY-100635 as a selective 5-HT1A antagonist may need to be reevaluated.  相似文献   

9.
10.
G protein-coupled receptors (GPCRs) are key regulators of cell physiology and control processes ranging from glucose homeostasis to contractility of the heart. A major mechanism for the desensitization of activated GPCRs is their phosphorylation by GPCR kinases (GRKs). Overexpression of GRK2 is strongly linked to heart failure, and GRK2 has long been considered a pharmaceutical target for the treatment of cardiovascular disease. Several lead compounds developed by Takeda Pharmaceuticals show high selectivity for GRK2 and therapeutic potential for the treatment of heart failure. To understand how these drugs achieve their selectivity, we determined crystal structures of the bovine GRK2-Gβγ complex in the presence of two of these inhibitors. Comparison with the apoGRK2-Gβγ structure demonstrates that the compounds bind in the kinase active site in a manner similar to that of the AGC kinase inhibitor balanol. Both balanol and the Takeda compounds induce a slight closure of the kinase domain, the degree of which correlates with the potencies of the inhibitors. Based on our crystal structures and homology modeling, we identified five amino acids surrounding the inhibitor binding site that we hypothesized could contribute to inhibitor selectivity. However, our results indicate that these residues are not major determinants of selectivity among GRK subfamilies. Rather, selectivity is achieved by the stabilization of a unique inactive conformation of the GRK2 kinase domain.  相似文献   

11.
The present study was designed to examine the effects of adenosine A(1) receptor on dopamine D(1) receptor desensitization in a human embryonic kidney 293 cell line stably cotransfected with human adenosine A(1) receptor and dopamine D(1) receptor cDNAs (A(1)D(1) cells) by means of cAMP accumulation assay. Long-term exposure of A(1)D(1) cells to dopamine D(1) receptor agonist (+/-)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol hydrochloride (SKF38393) caused a rapid desensitization of dopamine D(1) receptor. Coadministration of adenosine A(1) receptor agonist N(6)-cyclopentyladenosine (CPA) potentiated the effect of SKF38393. This enhancement effect of CPA was blocked by adenosine A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) but not by pertussis toxin, indicating that this effect of CPA was mediated by adenosine A(1) receptor and was G(i) protein independent. Furthermore, the blockade of endogenous adenosine by adenosine deaminase or DPCPX attenuated dopamine D(1) receptor desensitization. Collectively, these results suggest that adenosine A(1) receptor plays an important role in the regulation of dopamine D(1) receptor by potentiating ligand-induced desensitization.  相似文献   

12.
G protein-coupled receptors (GPCRs) are the key elements of a highly regulated transduction machinery that generates different signaling outcomes to hormones and neurotransmitters. Until recently, it was assumed that diverse ligands of a given GPCR differ only in their ability to alter the balance between the OFF and the ON state of the receptor. However, it has now become evident that their activation mechanisms are more complex and that receptors presumably display distinguishable active conformational states, which are induced by different agonists and correlate to specific signaling outputs. The use of different labeling strategies to insert fluorescent labels into purified, reconstituted receptors, or into receptors in intact cells, has made it possible to sense receptor activation via changes in their fluorescence. Here, we summarize recent progress in the analysis of agonist-dependent activation mechanisms of GPCRs acquired using modern spectroscopic and crystallographic techniques.  相似文献   

13.
The mas-like G protein-coupled receptors form a subfamily of G protein-coupled receptors that includes variable member numbers across different species and that have been shown to bind a wide variety of ligands from peptides to amino acid derivatives. While screening a library of peptides against different orphan G protein-coupled receptors, we found that human salusin beta activates the mouse mas-like G protein-coupled receptor, mMrgA1 with an EC(50) of about 300 nM. Salusin beta is a bioactive peptide recently discovered through bioinformatics analysis which stimulates arginine-vasopressin release from rat pituitary and causes rapid and profound hypotension and bradycardia. However, when we further analyzed the generality of the mMrgA1 activation, we found that human salusin beta does not activate corresponding human mas-like G protein-coupled receptors. Our results show that human salusin beta is a surrogate ligand of the mouse MrgA1 and raises a cautionary flag for experiments that analyze the pharmacological profiles of mas-like G protein-coupled receptors from different species.  相似文献   

14.
15.
G protein coupled receptors or serpentine receptors work as signalling switches that turn extracellular signals into activation of multiple molecules at the intracellular face of the plasma membrane. Serpentine receptors are the targets of around 70% of all current drugs in clinical medicine. We suggest that these receptors can be pharmacologically targeted by modification of their unique internal inhibitors the G protein coupled receptor kinases (GRKs). The GRKs constitute a family of serine/threonine kinases that specifically bind to and phosphorylate agonist-activated serpentine receptors. The phosphorylated receptors are recognized by arrestins that bind to the receptor and uncouple them from attached G proteins thereby terminating G protein signalling. This review focuses on a ubiquitously expressed GRK family member dubbed GRK2 (previously called beta-adrenergic receptor kinase 1) that regulates cellular signalling at multiple levels. In Gq-coupled signalling modules GRK2 may function as a feedback inhibitor molecule that monitors, inhibits and re-directs the information flow. GRK2 acts as a negative feedback protein by interacting with at least six key signalling molecules in the Gq pathway including; receptors, free G beta gamma subunits, activated G alpha q subunits, phosphatidylinositol-4, 5-bisphosphate (PIP2), protein kinase C (PKC) and calmodulin (CaM). GRK signalling is important for immune, endocrine and cardiovascular function manifesting itself in disorders such as heart failure and lymphocyte activation especially in chronic inflammation. This review summarizes the advances made in understanding the many actions of GRKs and addresses their potential as novel therapeutic targets.  相似文献   

16.
G蛋白偶联受体激酶活性调控与细胞炎性损伤   总被引:3,自引:2,他引:3  
G蛋白偶联受体激酶 (Gprotein coupledreceptorki nases,GRKs)不仅调节G蛋白偶联受体 (GPCR)磷酸化、介导受体脱敏 ,使信号效应降低或消失 ,而且也调节G蛋白和靶细胞骨架 ,同时它还受到蛋白激酶A(PKA)、蛋白激酶C(PKC)、肌动蛋白和细胞内第二信使钙离子等调节。组织细胞表面存在多种GPCR如血小板活化因子 (PAF)受体、组胺受体、凝血酶受体等 ,介导炎性介质所致细胞损伤的信号转导作用。GRKs磷酸化GPCR ,在炎症诱导细胞损伤过程中起一定调控作用  相似文献   

17.
Guo J  Wu Y  Zhang W  Zhao J  Devi LA  Pei G  Ma L 《Molecular pharmacology》2000,58(5):1050-1056
Agonist-induced receptor phosphorylation is an initial step in opioid receptor desensitization, a molecular mechanism of opioid tolerance and dependence. Our previous research suggested that agonist-induced delta-opioid receptor (DOR) phosphorylation occurs at the receptor carboxyl terminal domain. The current study was carried out to identify the site of DOR phosphorylation during agonist stimulation and the kinases catalyzing this reaction. Truncation (Delta15) or substitutions (T358A, T361A, and S363G single or triple mutants) at the DOR cytoplasmic tail caused 80 to 100% loss of opioid-stimulated receptor phosphorylation, indicating that T358, T361, and S363 all contribute and are cooperatively involved in agonist-stimulated DOR phosphorylation. Coexpression of GRK2 strongly enhanced agonist-stimulated phosphorylation of the wild-type DOR (WT), but Delta15 or mutant DOR (T358A/T361A/S363G) failed to show any detectable phosphorylation under these conditions. These results demonstrate that T358, T361, and S363 are required for agonist-induced and GRK-mediated receptor phosphorylation. Agonist-induced receptor phosphorylation was severely impaired by substitution of either T358 or S363 with aspartic acid residue, but phosphorylation of the T361D mutant was comparable with that of WT. In the presence of exogenously expressed GRK2, phosphorylation levels of T358D and S363D mutants were approximately half of that of WT, whereas significant phosphorylation of the T358/S363 double-point mutant was not detected. These results indicate that both T358 and S363 residues at the DOR carboxyl terminus are capable of serving cooperatively as phosphate acceptor sites of GRK2 in vivo. Taken together, we have demonstrated that agonist-induced opioid receptor phosphorylation occurs exclusively at two phosphate acceptor sites (T358 and S363) of GRK2 at the DOR carboxyl terminus. These results represent the identification of the GRK phosphorylation site on an opioid receptor for the first time and demonstrate that GRK is the prominent kinase responsible for agonist-induced opioid receptor phosphorylation in vivo.  相似文献   

18.
G protein-coupled receptor kinases (GRKs) phosphorylate opioid receptors, which eventually results in receptor sequestration. With respect to kappa-opioid receptors, it is known that internalization occurs in a species-specific manner. That is, the agonist-occupied human kappa-receptors will sequester whereas murine receptors fail to do so. This investigation concentrates on the internalization of kappa-opioid receptors, employing laser scanning microscopy as a major technique to examine receptor internalization in living cells. For this reason, we fused green fluorescence protein to kappa-receptors, and DsRed-fluorescent protein to GRK2 and GRK3. All fusion proteins retained their biologic activities. Permanent cell lines (HEK 293, NG 108-15) were transfected to express either green fluorescent kappa-receptors or to coexpress the tagged receptor and a specific GRK-DsRed construct. The localization of fluorescent receptors and GRKs was monitored by confocal microscopy before and after opioid exposure of transfected cells. Activation of the murine kappa-receptors triggers rapid translocation of tagged GRKs toward the cell membrane, but receptor internalization was not observed. The agonist-occupied human kappa-receptor also causes translocation of GRK2- and GRK3-DsRed, which was followed by the formation of vesicles carrying the green fluorescent kappa-receptors. Moreover, the green fluorescent vesicles consistently harbour red fluorescent GRK2 and GRK3, respectively. The phenomenon of kappa-receptor internalization as well as cointernalization of GRKs is blocked by phosducin, indicating a critical role of G protein-betagamma subunits for kappa-receptor sequestration. Comparing the effect of over-expressed GRK2 and GRK3 on sequestration of kappa-receptors, we conclude that GRK3 more strongly induces kappa-receptor internalization than GRK2.  相似文献   

19.
A-412997 (2-(3',4',5',6'-tetrahydro-2'H-[2,4'] bipyridinyl-1'-yl)-N-m-tolyl-acetamide) is a highly selective dopamine D4 receptor agonist that binds with high affinity to rat dopamine D4 and human dopamine D4.4 receptors (Ki=12.1 and 7.9 nM, respectively). In contrast to the dopamine D4 receptor agonists PD168077 and CP226269, A-412997 showed a better selectivity profile and no affinity <1000 nM for other dopamine receptors or any other proteins in a panel of seventy different receptors and channels. In functional assays using calcium flux, A-412997 was a potent full agonist at rat dopamine D4 receptors (28.4 nM, intrinsic activity=0.83) and did not activate rat dopamine D2L receptors, unlike CP226269. Dopamine D4 receptor selective agonists have been shown to induce penile erection in rats by central mechanisms. A-412997 induces penile erection in a conscious rat model (effective dose=0.1 micromol/kg, s.c.) with comparable efficacy as the nonselective D2-like agonist, apomorphine. When dosed systemically, A-412997 crossed the blood brain barrier rapidly and achieved significantly higher levels than PD168077. A-412997 is a highly selective dopamine D4 receptor agonist and a useful tool to understand the role of dopamine D4 receptors in rat models of central nervous system processes and disease.  相似文献   

20.
An elusive problem in the adhesion G protein-coupled receptor (AGPCR) field is full understanding of the activation mechanisms of the 33-member receptor class. With the recent solution of active-state structures of nearly one quarter of AGPCRs, clarity has been brought to how AGPCRs are activated in response to endogenous full agonists. AGPCRs are self-activated via a tethered peptide agonist (TA) that transitions from a concealed or encrypted location to a decrypted state that binds to a typical GPCR orthosteric binding pocket. Here, we summarize the key milestones that led to the discovery of the AGPCR TA activation mechanism and discuss how extracellular shear forces may initiate TA decryption in physiological contexts. We compare the new active-state AGPCR structures and note that the orthosteric site-engaged TAs adopt a remarkably similar partial α-helical hook-like conformation, despite divergence of overall receptor similarity. Further, we contrast the TA-bound AGPCR structures to a partially active AGPCR structure to highlight the transitions AGPCRs may undergo during activation. Finally, we provide commentary on the validity of alternative AGPCR activation mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号