首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In some neurodegenerative diseases, genetic anticipation correlates with expansions of the CAG/CTG repeat sequence above the normal range through the generations of a pedigree. Among these neurodegenerative diseases are late onset autosomal dominant cerebellar ataxias (ADCA). ADCA are genetically heterogeneous disorders with different cloned genes for spinocerebellar ataxia type 1 (SCA1), type 2 (SCA2), type 3 or Machado-Joseph disease (SCA3/MJD), and type 6 (SCA6). Another related dominant ataxia, dentatorubral-pallidoluysian atrophy (DRPLA), also shows CAG/CTG repeat expansions. Genetic anticipation has been reported for all of them except for the recently cloned SCA6 gene. Other, as yet undetected SCA genes may show the same features. We have used the repeat expansion detection (RED) method to detect repeat expansions directly in DNA samples from ADCA patients not resulting from known genes. Our sample consists of 19 affected index cases, corresponding to 52.8% of our ADCA families without CAG/CTG repeat expansions in the SCA1, SCA2, SCA3/MJD, SCA6, or DRPLA genes. Eighty-nine percent of the index cases had expansions of a CAG/CTG sequence greater than 40 repeats by RED, while these were observed in only 26.9% of 78 healthy subjects from the general population (p < 0.0001). The distribution of RED fragments in controls and ADCA patients also shows significant differences with the Mann-Whitney U test (U = 376.5, p = 0.0007). Moreover, there was a significant inverse correlation between the size of expansion and the age of onset (r = -0.54, p = 0.018). These results show CAG/CTG repeat expansions of over 40 repeats in our sample of ADCA families not resulting from known SCA genes.  相似文献   

2.
The expansion of an unstable CAG repeat causes spinocerebellar ataxia type 1 (SCA1) and several other neurodegenerative diseases. How polyglutamine expansions render the resulting proteins toxic to neurons, however, remains elusive. Hypothesizing that long polyglutamine tracts alter gene expression, we found certain neuronal genes involved in signal transduction and calcium homeostasis sequentially downregulated in SCA1 mice. These genes were abundant in Purkinje cells, the primary site of SCA1 pathogenesis; moreover, their downregulation was mediated by expanded ataxin-1 and occurred before detectable pathology. Similar downregulation occurred in SCA1 human tissues. Altered gene expression may be the earliest mediator of polyglutamine toxicity.  相似文献   

3.
Using a molecular diagnostic approach, we investigated 101 kindreds with autosomal dominant cerebellar ataxias (ADCAs) from the central Honshu island of Japan, including spinocerebellar ataxia type 1 (SCA1), spinocerebellar ataxia type 2 (SCA2), Machado–Joseph disease (MJD), dentatorubral and pallidoluysian atrophy (DRPLA) and spinocerebellar ataxia type 6 (SCA6). In our unselected series, MJD was the most common type of ADCA, accounting for 33.7% followed by DRPLA (19.8%), SCA2 (5.9%) and SCA6 (5.9%). No SCA1 mutations were identified. We analysed the clinical features of six molecular confirmed SCA6 kindreds: in each family, there was an expanded allele in the α1A-voltage dependent calcium channel comprising between 23 and 25 CAG repeats. The mean age at onset of symptoms was 43±13 years. The clinical features consisted predominantly of cerebellar ataxia, dysarthria and horizontal nystagmus, which was generally consistent with ADCA type 3. However several new clinical features were found in some patients: dramatic anticipation, rapid disease progression, severe ataxia associated with action tremor or action myoclonus, and very early onset, which are not described as the classical features of ADCA type 3.  相似文献   

4.
The frequency of autosomal-dominant cerebellar ataxia (ADCA) subtypes was examined in 86 unrelated families originating from Nagano prefecture. In Nagano, the prevalence of spinocerebellar degeneration (SCD) was approximately 22 per 100,000 population. Among ADCA families, SCA6 was the most prevalent subtype (16 families, 19%), followed by DRPLA (nine families, 10%), SCA3/MJD (three families, 3%), SCA1 (two families, 2%), and SCA2 (one family, 1%). No families with SCA7, SCA12, or SCA17 were detected. Compared with other districts in Japan, the prevalence of SCA3/MJD was very low in Nagano. More interestingly, the ratio of genetically undetermined ADCA families was much higher in Nagano (55 families, 65%) than in other districts in Japan. These families tended to accumulate in geographically restricted areas such as Kiso, Saku, and Ina, indicating that the founder effect might be responsible for the high frequency of ADCA in these areas. Most patients clinically showed slowly progressive pure cerebellar ataxia of late-onset (ADCA III). In the case of 36 patients from 36 genetically undetermined ADCA III families, however, no one was completely consistent with the founder allele proposed for 16q-ADCA. These results indicate that there might be genetically distinct ADCA subtypes in Nagano.  相似文献   

5.
Spinocerebellar ataxia type 28 is an autosomal dominant form of cerebellar ataxia (ADCA) caused by mutations in AFG3L2, a gene that encodes a subunit of the mitochondrial m‐AAA protease. We screened 366 primarily Caucasian ADCA families, negative for the most common triplet expansions, for point mutations in AFG3L2 using DHPLC. Whole‐gene deletions were excluded in 300 of the patients, and duplications were excluded in 129 patients. We found six missense mutations in nine unrelated index cases (9/366, 2.6%): c.1961C>T (p.Thr654Ile) in exon 15, c.1996A>G (p.Met666Val), c.1997T>G (p.Met666Arg), c.1997T>C (p.Met666Thr), c.2011G>A (p.Gly671Arg), and c.2012G>A (p.Gly671Glu) in exon 16. All mutated amino acids were located in the C‐terminal proteolytic domain. In available cases, we demonstrated the mutations segregated with the disease. Mutated amino acids are highly conserved, and bioinformatic analysis indicates the substitutions are likely deleterious. This investigation demonstrates that SCA28 accounts for ~3% of ADCA Caucasian cases negative for triplet expansions and, in extenso, to ~1.5% of all ADCA. We further confirm both the involvement of AFG3L2 gene in SCA28 and the presence of a mutational hotspot in exons 15–16. Screening for SCA28, is warranted in patients who test negative for more common SCAs and present with a slowly progressive cerebellar ataxia accompanied by oculomotor signs. Hum Mutat 31:1–8, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Lin Y  Zheng JY  Jin YH  Xie YC  Jin ZB 《Neuroscience letters》2008,434(2):230-233
Spinocerebellar ataxia type 7 is a rare autosomal dominant cerebellar ataxia (ADCA). Herein, we describe the molecular and clinical findings in patients within six generations of a large Chinese family with spinocerebellar ataxia. To identify the genetic cause(s), 4 affected patients and 26 asymptomatic relatives were recruited for the study. Molecular screening of the SCA1 and SCA7 genes was carried out by subcloning and direct PCR-sequencing methods. Both neurological and ophthalmic examinations were performed to investigate the clinical characteristics of the disease. The patients had typical cerebellar ataxia, achromatopsia and macular degeneration, and displayed a rare phenotype manifesting as a combination of cerebellar ataxia and craniocervical dystonia. Mutational analysis of the SCA7 genes demonstrated expanded CAG-repeats in the four patients. In conclusion, we identified expanded CAG-repeats in the SCA7 gene within members of a large Chinese family with spinocerebellar ataxia. The defined phenotypic characteristics of the patients may be helpful for clinical diagnosis and genetic typing of new patients.  相似文献   

7.
8.
Spinocerebellar ataxia type 7 (SCA7) represents a very rare and severe autosomal dominantly inherited cerebellar ataxia (ADCA). It belongs to the group of CAG-repeat or polyglutamine diseases with its underlying molecular genetical defect on chromosome 3p12-p21.1. Here, we performed a systematic study of the neuropathology on unconventional thick serial sections of the first available brain tissue of a genetically confirmed late-onset SCA7 patient with a very short CAG-repeat expansion. Along with myelin pallor of a variety of central nervous fiber tracts, we observed i) neurodegeneration in select areas of the cerebral cortex, and ii) widespread nerve cell loss in the cerebellum, thalamus, nuclei of the basal ganglia, and brainstem. In addition, upon immunocytochemical analysis using the anti-polyglutamine antibody 1C2, immunopositive neuronal intranuclear inclusions bodies (NI) were observed in all cerebellar regions, in all parts of the cerebral cortex, and in telencephalic and brainstem nuclei, irrespective of whether they underwent neurodegeneration. These novel findings provide explanations for a variety of clinical symptoms and paraclinical findings of both our and other SCA7 patients. Finally, our immunocytochemical analysis confirms previous studies which described the presence of NI in obviously degenerated brain and retinal regions as well as in apparently well-preserved brain regions and retina of SCA7 patients.  相似文献   

9.
10.
This pilot study was initiated to show the existence of founder effects in the Dutch autosomal dominant cerebellar ataxia (ADCA) population. The ADCAs comprise a clinically heterogeneous group of neurodegenerative disorders and the estimated prevalence in the Netherlands is approximately 3:100 000 individuals. Here, we focused on the SCA3 and SCA6 genes because mutations in these genes occur most frequently in the Netherlands. We were able to determine a common origin of the CAG repeat expansions in the majority of Dutch SCA3 and SCA6 families. Haplotype analysis and linkage disequilibrium studies with polymorphic markers revealed shared haplotypes surrounding the SCA3 and SCA6 genes. These results strongly suggest that ADCA families can be traced back to common ancestors in particular parts of the Netherlands.  相似文献   

11.
Spinocerebellar ataxia 7 (SCA7) is caused by the expansion of an unstable CAG repeat in the first exon of the SCA7 gene. We have analyzed the SCA7 mutation in 19 families and one isolated case of various geographical origins, presenting with autosomal dominant cerebellar ataxia with progressive macular dystrophy. The SCA7 CAG repeat was expanded in 77 patients and in 11 at-risk individuals, with alleles containing from 37 to 130 repeats, demonstrating that SCA7 is genetically homogeneous. Repeats on normal alleles contained from 7 to 35 CAGs. There was a strong negative correlation (r = -0.84) between the age at onset and the size of the CAG repeat expansion in SCA7 patients. Larger expansions were associated with earlier onset, a more severe and rapid clinical course, and a higher frequency of decreased vision, ophthalmoplegia, extensor plantar response and scoliosis. The frequency of other clinical signs such as dysphagia and sphincter disturbances increased with disease duration. The mutation was highly unstable during transmission, with a mean increase of 10 +/- 16 CAG repeats, which was significantly greater in paternal (15 +/- 20) than in maternal (5 +/- 5) transmissions. This correlated well with the marked anticipation (19 +/- 13 years) observed in the families. Gonadal mosaicism, observed in the sperm of a patient, was particularly important, with expanded alleles ranging from 42 to >155 CAG repeats. The degree of instability during transmission, resulting mostly in expansions, is greater than in the seven other neurodegenerative disorders caused by polyglutamine expansions.   相似文献   

12.
Recently, moderate (CAG)>20 repeat expansions in the alpha1A-voltage- dependent calcium channel gene (CACNL1A4) have been identified in a previously unmapped type of SCA which has been named SCA6. We investigated the (CAG)n repeat length of the CACNL1A4 gene in 733 patients with sporadic ataxia and in 46 German families with dominantly inherited SCA which do not harbor the SCA1, SCA2, or MJD1/SCA3 mutation, respectively. The SCA6 (CAG)n expansion was identified in 32 patients most frequently with late manifestation of the disease. The (CAG)n stretch of the affected allele varied between 22 and 28 trinucleotide units and is therefore the shortest trinucleotide repeat expansion causing spinocerebellar ataxia. The (CAG)n repeat length is inversely correlated with the age at onset. In 11 parental transmissions of the expanded allele no repeat instability has been observed. Repeat instability was also not found for the normal allele investigating 431 meioses in the CEPH families. Analyzing 248 apparently healthy octogenerians revealed one allele of 18 repeats which is the longest normal CAG repeat in the CACNL1A4 gene reported. The SCA6 mutation causes the disease in approximately 10% of autosomal dominant SCA in Germany. Most importantly, the trinucleotide expansion was observed in four ataxia patients without obvious family history of the disease which necessitates a search for the SCA6 (CAG)n expansion even in sporadic patients.   相似文献   

13.
Autosomal dominant cerebellar ataxia (ADCA) is a genetically heterogeneous group of neurodegenerative disorders. To shed further light on the clinical and genetic spectrum of ADCA in Japan, we conducted a study to determine the frequency of a new variety of different subtypes of SCAs among ADCA patients. This current study was carried out from April 1999 to December 2006 on the basis of patients with symptoms and signs of ADCA disorders. PCR and/or direct sequencing were evaluated in a total of 113 families. Among them, 35 families were found to have the mutation associated with SCA6, 30 with SCA3, 11 with SCA1, five with SCA2, five with DRPLA, and one with SCA14. We also detected the heterozygous −16C → T single nucleotide substitution within the puratrophin-1 gene responsible for 16q22.1-linked ADCA in ten families. In this study, unusual varieties of SCA, including 27, 13, 5, 7, 8, 12, 17, and 16 were not found. Of the 113 patients, 14% had as yet unidentified ADCA mutations. The present study validates the prevalence of genetically distinct ADCA subtypes based on ethnic origin and geographical variation, and shows that 16q-linked ADCA has strong hereditary effects in patients with ADCAs in Japan. Rehana Basri, Ichiro Yabe, and Hiroyuki Soma contributed equally to this work.  相似文献   

14.
Zhao Y  Tan EK  Law HY  Yoon CS  Wong MC  Ng I 《Clinical genetics》2002,62(6):478-481
We report the prevalence and ethnic differences of autosomal-dominant cerebellar ataxia (ADCA) in Singapore. Amongst 204 patients with ataxia who underwent genetic testing for dentatorubral-pallidoluysian atrophy (DRPLA) and for spinocerebellar ataxias (SCA) 1, 2, 3, 6, 7, 8, 10 and 12, 58 (28.4%) patients from 36 families tested positive. SCA 3 was identified in 31 (53.4%) patients from 15 families, SCA 2 in 17 (29.3%) patients from 12 families and SCA 1 in four (6.9%) patients from four families. Other SCA subtypes were rare. SCA 2 was the only subtype identified amongst ethnic Malay and ethnic Indian families. The estimated prevalence of ADCA in Singaporean families was at least 1 : 27,000. Based on the history and ancestry of Singaporeans, our study supported a founder effect for specific SCA subtypes and the association of ethnicity-specific SCA subtypes. Our findings suggest that SCA 2 is relatively common amongst the Malay race and that priority testing for SCA 3 and SCA 2 for ethnic Chinese, and SCA 2 for ethnic Malay, may be cost effective and relevant for the region.  相似文献   

15.
 Autosomal dominant cerebellar ataxia (ADCA) is a group of heterogeneous neurodegenerative disorders. We previously mapped a gene locus for ADCA with pure cerebellar syndrome (ADCA type III) to a 3-cM region in chromosome 16q, and found a common haplotype among affected individuals. This region was exactly within the locus for another ADCA, spinocerebellar ataxia type 4 (SCA4). To identify the gene causing 16q-linked ADCA type III, we constructed a contig with 38 bacterial artificial chromosome clones between D16S3043 and D16S3095. The size of this contig was estimated to be 4.8 Mb. We found more than 500 nucleotide tandem repeats, including 9 CAG/CTG repeats in this candidate region, although none of the 94 tandem repeats analyzed were expanded in affected individuals. However, we found 11 new polymorphic markers, giving 22 markers spanning the candidate region. By typing these markers on eight Japanese families with ADCA type III, including two new families, we found that a common “founder” haplotype is seen in a more restricted 3.8-Mb region, spanning markers GGAA05 and D16S3095. We present here a newly refined critical interval of 16q-ADCA type III/SCA4. Data of 11 new DNA markers on 16q22.1 would also be useful for other research of genes mapped to this region. Received: June 25, 2002 / Accepted: November 22, 2002 Correspondence to:H. Mizusawa  相似文献   

16.
Spinocerebellar ataxia type1 (SCA1) is one of several neurodegenerative disorders caused by expansions of translated CAG trinucleotide repeats which code for polyglutamine in the respective proteins. Most hypotheses about the molecular defect in these disorders suggest a gain of function, which may involve interactions with other proteins via the expanded polyglutamine tract. In this study we used ataxin-1, the SCA1 gene product, as a bait in the yeast two-hybrid system and identified the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase as an ataxin-1 interacting protein. In addition, the yeast two hybrid data demonstrate that wild type and mutant ataxin-1 form homo and heterodimers. Physical interaction between GAPDH and ataxin-1 was also demonstrated in vitro. To investigate if GAPDH might interact with other glutamine repeat-containing proteins involved in neurodegenerative disorders, we tested its binding to the androgen receptor which is mutated in spinobulbar muscular atrophy. The androgen receptor interacts with GAPDH both in the yeast two-hybrid system and in vitro. The binding of both ataxin-1 and the androgen receptor to GAPDH does not vary with the length of the polyglutamine tract. While provocative, these findings do not address the selective neuronal loss in each of these disorders in light of the wide expression patterns of GAPDH and the respective polyglutamine containing proteins. Nonetheless, such interactions may increase the susceptibility of specific neurons to a variety of insults and initiate degeneration.   相似文献   

17.
遗传性脊髓小脑型共济失调的CAG三核苷酸突变检测   总被引:18,自引:5,他引:13  
目的 评价SCA1、SCA2、SCA3/MjD、SCA6、SCA7和DRPLA的CAG三核苷酸异常扩增突变「(CAG)n」,在中国人遗传性脊髓小脑型共济失调(spinocerebellar ataxia,SCA)患者的分布频率。方法 经聚合酶链反应、变性聚丙烯酰按凝胶电泳和银染显带技术,检测分析了85个中国人常染色体显性遗传SCA家系(其中患者167例)和37例散发SCA患者的SCA1、SCA2、  相似文献   

18.
Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant disorder caused by the expansion of a polymorphic (CAG)(n) tract, which is translated into an expanded polyglutamine tract in the ataxin-2 protein. Although repeat length and age at disease onset are inversely related, approximately 50% of the age at onset variance in SCA2 remains unexplained. Other familial factors have been proposed to account for at least part of this remaining variance in the polyglutamine dis-orders. The ability of polyglutamine tracts to interact with each other, as well as the presence of intra-nuclear inclusions in other polyglutamine disorders, led us to hypothesize that other CAG-containing proteins may interact with expanded ataxin-2 and affect the rate of protein accumulation, and thus influence age at onset. To test this hypothesis, we used step-wise multiple linear regression to examine 10 CAG-containing genes for possible influences on SCA2 age at onset. One locus, RAI1, contributed an additional 4.1% of the variance in SCA2 age at onset after accounting for the effect of the SCA2 expanded repeat. This locus was further studied in SCA3/Machado-Joseph disease (MJD), but did not have an effect on SCA3/MJD age at onset. This result implicates RAI1 as a possible contributor to SCA2 neurodegeneration and raises the possibility that other CAG-containing proteins may play a role in the pathogenesis of other polyglutamine disorders.  相似文献   

19.
Spinocerebellar ataxia type 2 (SCA2) is a hereditary neurodegenerative disorder caused by the expansion of the trinucleotide CAG repeats encoding elongated polyglutamine tract in ataxin‐2, the SCA2 gene product. Polyglutamine diseases comprise nine genetic entities, including seven different forms of spinocerebellar ataxias, Huntington's disease, and spinal and bulbar muscular atrophy. These are pathologically characterized by neuronal loss and intranuclear aggregates or inclusions of mutant proteins including expanded polyglutamine in selected neuronal groups. Previously, we examined immunolocalization of ubiquitin, expanded polyglutamine (probed by 1C2 antibody), and ataxin‐2 in genetically confirmed SCA2 patients. In the present study, we expanded this approach by distinguishing different patterns of subcellular 1C2 immunoreactivity (“granular cytoplasmic,” “cytoplasmic and nuclear” and “nuclear with inclusions.”) and by quantifying their regional frequencies in three autopsied SCA2 brains at different stage of the disease. Comparison with neuronal loss and gliosis revealed that overall 1C2 immunoreactivity was paralleled with their severity. Furthermore, appearance of granular cytoplasmic pattern corresponded to early stage, cytoplasmic and nuclear pattern to active stage, and nuclear with inclusions pattern to final stage. We conclude that this 1C2‐immunoreactive typing may be useful for evaluating the overall severity and extent of affected regions and estimating the neuropathological stage of SCA2.  相似文献   

20.
Autosomal dominant cerebellar ataxias (ADCA) of type I, a group of clinically heterogeneous neurodegenerative disorders, are known to be genetically heterogeneous since a second locus for ADCA type I (SCA2) has been identified on the long arm of chromosome 12. Linkage analysis was performed in 7 French ADCA type I families in order to estimate its frequency. We analysed 121 individuals, 39 of whom were affected. In 6 families, the SCA2 candidate interval, spanning 12.8 cM, was excluded by bi- and multipoint analysis. In one family (SAL-315), however, the maximal positive lod score reached 2.03 at the D12S79 locus. A posterior probability of 94% in favor of linkage to SCA2 was calculated by homogeneity analysis. The clinical profile of this family was similar to that of previously described SCA1 and non-SCA1 families, except that dementia was observed in 2 out of 6 patients. This may be a clinical idiosyncrasy in this family and was insufficient for a genotype-phenotype correlation. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号