首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GABA is the primary inhibitory neurotransmitter in the adult mammalian brain. However, in neonatal animals, activation of Cl(-)-permeable GABA receptors is excitatory and appears to depend on the expression of a Na(+)-K(+)-2Cl- cotransporter (NKCC) that elevates intracellular Cl- levels, leading to a depolarized Cl- equilibrium potential (ECl). The change from excitation to inhibition appears to involve the expression of the K+/Cl- co-transporter, KCC2, which lowers intracellular Cl- levels resulting in a hyperpolarized ECl. In this study, we show that bovine chromaffin cells from 4- to 5-mo-old animals are excited by GABA. Activation of GABAA receptors depolarizes the cells, opens voltage-dependent Ca2+ channels, elevates [Ca2+]i, and promotes the release of catecholamines. Blockade of voltage-dependent Ca2+ channels prevents the elevation of [Ca2+]i by GABA. The extrapolated anion reversal potential in these cells is approximately -28 mV, indicating a resting intracellular anion concentration of approximately 50 mM. Expression of KCC2 protein was not detected in the juvenile chromaffin cells. In contrast, clear expression of NKCC1 was observed. Blockade of NKCC1 should reduce the intracellular Cl- concentration and hyperpolarize ECl. Bumetanide, an NKCC1 blocker, reduced the elevation of [Ca2+]i by GABA. In some cells, activation of GABAA receptors inhibits responses to excitatory neurotransmitters, even though GABA itself is depolarizing. Co-activation of cholinergic and GABAA receptors in chromaffin cells produced elevations in [Ca2+]i that were comparable to those produced by cholinergic receptors alone. Our data showing the selective expression of chloride co-transporters and the resulting strongly depolarized anion reversal potential may help explain how activation of GABAA receptors causes sufficient excitation to elicit catecholamine release from chromaffin cells.  相似文献   

2.
Cultured rat hippocampal astrocytes were used to investigate the mechanism underlying the suppression of Ba2+-sensitive K+ currents by GABAA receptor activation. Muscimol application had two effects on whole cell currents: opening of the well-known Cl- channel of the GABAA receptor and a secondary longer-lasting blockade of outward K+ currents displaying both peak and plateau phases. This blockade was independent of both Na+ (inside and outside) and ATP in the pipette. It also seemed to be independent of muscimol binding to the receptor because picrotoxin application showed no effect on the K+ conductance. The effect is blocked when anion efflux is prevented by replacing Cl- with gluconate (both inside and out) and is enhanced with more permeant anions such as Br- and I-. Moreover, the effect is reproduced in the absence of muscimol by promoting Cl- efflux via lowering of extracellular Cl- levels. These results, along with the requirement for Cl- efflux in muscimol experiments, show a strong dependency of the secondary blockade on Cl- efflux through the Cl- channel of the GABAA receptor. We therefore conclude that changes in the intracellular Cl- concentration alter the outward K+ conductances of astrocytes. Such a Cl--mediated modulation of an astrocytic K+ conductance will have important consequences for the progression of spreading depression through brain tissue and for astrocytic swelling in pathological situations.  相似文献   

3.
This study used imaging and electrophysiological techniques in salamander retinal slices to correlate Ca2+ and Cl- levels in rods and thus test the hypothesis of a feedback interaction between Ca2+- and Ca2+-activated Cl- channels whereby Cl- efflux through Cl- channels can inhibit Ca2+ channels. Increasing [K+]o levels produced a concentration-dependent depolarization of rods accompanied by increases in [Ca2+]i measured with Fura-2. The voltage dependence of increases in [Ca2+]i was compared with the voltage dependence of the calcium current (ICa). [Cl-]i was measured with the dye, MEQ. Depolarization with high K+ to membrane potentials below -20 mV reduced [Cl-]i; larger depolarizations increased [Cl-]i. The Na/K/Cl cotransport inhibitor, bumetanide, shifted the apparent Cl- equilibrium potential (ECl) to more negative potentials, suggesting that this cotransporter helps establish a relatively depolarized ECl. MEQ fluorescence changes evoked by high K+ were inhibited by niflumic acid (0.1 mM), NPPB (2 microM), or replacement of Ca2+ with Ba2+, suggesting that depolarization-evoked Cl- changes result partly from stimulation of Ca2+-activated Cl- channels. Replacing >/=12 mM [Cl-]o with CH3SO4- produced a significant reduction in [Cl-]i. [Ca2+]i increases evoked by 20 or 50 mM K+ were also significantly inhibited by replacing >/=12 mM [Cl-]o with CH3SO4-. Thus modest depolarization can evoke increases in [Ca2+]i that lead to reductions in [Cl-]i, and conversely, reductions in [Cl-]i inhibit depolarization-evoked [Ca2+]i increases. These findings support the hypothesis that feedback interactions between Ca2+- and Ca2+-activated Cl- channels may contribute to the regulation of presynaptic Ca2+ currents involved in synaptic transmission from rod photoreceptors.  相似文献   

4.
Trifluoperazine, a calmodulin antagonist, inhibited the secretory response of cultured bovine adrenal medullary chromaffin cells to acetylcholine (10(-4) M) or a depolarizing concentration of [K+] (56 mM KCl) in a dose-related fashion. The ID50s of this effect were 2 x 10(-7) M and 2.2 x 10(-6) M for acetylcholine and high [K+], respectively. A decrease in external [Ca2+] concentration of the incubation medium from 4.4 to 0.275 mM resulted in an increase in the percentage of inhibition produced by trifluoperazine on the acetylcholine-evoked secretory response from 20.7 to 96.5%, respectively. However, trifluoperazine inhibited the acetylcholine-evoked catecholamine output by a similar absolute magnitude for all [Ca2+] concentrations tested with the exception of 4.4 mM [Ca2+]. Trifluoperazine, unlike the [Ca2+] channel blocker Ni2+, in concentrations (10(-6)-10(-5) M) that were found to inhibit significantly [K+]-induced amine output did not modify [K+]-induced 45Ca uptake or 45Ca efflux. However, trifluoperazine at a concentration of 2.5 x 10(-5) M was found to produce a small decrease in the 45Ca efflux curve and a decrease in the [K+]-evoked 45Ca uptake of 30 +/- 14% (n = 6). In addition, 2.5 x 10(-6) M trifluoperazine, a concentration which was found to suppress high [K+]-induced amine release by 64 +/- 5%, did not inhibit the 45Ca2+-Ca2+ exchange mechanism. These results demonstrate that trifluoperazine, an antipsychotic agent with anticalmodulin activity, blocks catecholamine release from cultured chromaffin cells at a step distal from calcium entry and, consequently, suggests a role for calmodulin in the secretory process of these cells.  相似文献   

5.
Changes in membrane potential and cytosolic free Ca2+ concentrations, [Ca2+]i, in response to L-glutamate and glutamate receptor agonists were measured in rat cerebellar granule cells grown on coverslips. The membrane was depolarized by the application of L-glutamate and kainate, and by elevating the extracellular K+ concentration, as determined by using the membrane potential probe bisoxonol (DiBA-C4-(3)). The [Ca2+]i as measured with fura-2 was 220 nM on average under resting conditions and increased by raising the extracellular K+ and by applying L-glutamate, kainate, quisqualate or N-methyl-D-aspartate (NMDA). Verapamil and nifedipine reduced the high-K+ induced rise in [Ca2+]i but did not significantly affect the responses produced by NMDA, quisqualate and kainate, suggesting that the increase in intracellular Ca2+ in response to glutamate receptor agonists is primarily due to Ca2+ influx through receptor-coupled ion channels.  相似文献   

6.
Membrane vesicles from rat cerebral cortex were prepared and the functional response of the GABAA receptor was followed by monitoring GABA-activated influx of the radiotracer 36Cl- ion. CuCl2 decreased GABA-activated 36Cl- influx into synaptosomal membrane vesicles. The effect of Cu2+ was concentration dependent (5-500 microM CuCl2) and occurred with saturating (1 mM) as well as low (30 microM) GABA concentrations. A similar inhibition of the responses to muscimol (30 microM) was also observed with 50 microM CuCl2. In addition, release of copper from cortical synaptosomes and median eminence was followed by atomic absorption technique. An increased release of copper into the extracellular space was observed upon depolarization with 50 mM K+. A minimal concentration of copper was estimated to be 100 microM in the synaptic cleft. These findings suggest that copper may play a role in regulating neuronal excitability.  相似文献   

7.
We have examined the effects of dantrolene and D2O on the K+-stimulated respiration in frog skeletal muscle. The threshold for K+ stimulation was around 10 mM extracellular potassium concentration ([K+]o). A further marked increase in respiration to levels about ten times the resting level was noted when [K+]o was between 15 and 20 mM. The increase was sustained for hours when [K+]o was less than 20 mM; however, with higher concentrations the stimulation consisted of an initial burst followed by a decline. Dantrolene shifted the relationship between [K+]o and peak increase in respiration toward higher [K+]o by about 10 mM; in addition it nearly completely blocked the sustained component of the increase. D2O, nearly abolished the K+-induced respiration. Neither agent shifted the relationship between [K+]o and membrane potential nor abolished the stimulation of respiration caused by caffeine. Dantrolene did not block the stimulation of Na+ efflux caused by 15 mM K+. The results with these agents are consistent with the proposal that K+-stimulated respiration is due to Ca2+ release into the cytoplasm. In addition, they provide evidence that the stimulated rate of Ca2+ release into the cytoplasm can remain at a persistently high level for hours provided [K+]o does not exceed 20 mM. We calculated that the level of this constant Ca2+ release is about 3.4 X 10(16) ions/(s.cm3).  相似文献   

8.
1. Single-electrode voltage-clamp recordings were made from CA3 pyramidal cells in organotypic hippocampal slice cultures for measurement of membrane currents underlying both the gamma-aminobutyric acid (GABA)-mediated, Cl- -dependent inhibitory postsynaptic potential (IPSC), evoked in response to stimulation of the mossy fiber pathway, and responses to iontophoretically applied GABA. Their reversal potentials are presumed to equal the equilibrium potential for Cl- (37). Mechanisms underlying activity-dependent increases in the intracellular concentration of Cl- ([Cl-]i) were investigated by describing active and passive pathways for Cl- influx and efflux. 2. During 99-s applications of GABA, driving force declined by 51% due to increases in [Cl-]i; thus passive Cl- influx through GABA-activated pathways can significantly affect [Cl-]i. 3. Decreasing the extracellular K+ concentration ([K+]o) from 5.8 to 1 mM caused a rapid hyperpolarizing shift in the mean IPSC reversal potential (EIPSC) from -67.6 to -81.9 mV, even when membrane potential (Vm) was maintained constant and depolarized with respect to EIPSC. 4. Decreasing [K+]o from 5.8 to 1 mM caused a rapid hyperpolarizing shift in the mean GABA reversal potential (EGABA) from -64.7 to -81.1 mV, even when Vm was maintained constant and depolarized with respect to EGABA. Reducing the extracellular Cl- concentration from 153 to 89 mM, while maintaining [K+]o constant at 1 mM, shifted the mean EGABA from -81.1 to -66.2 mV, an amount close to that predicted by the Nernst equation for Cl-. We conclude that reducing [K+]o caused a hyperpolarizing shift in EGABA and EIPSC by decreasing [Cl-]i. 5. The shift of EIPSC and EGABA upon alteration of [K+]o did not result from contamination of the responses by additional K+-mediated components because it was unaffected by block of K+ channels with intracellular Cs+. 6. Reducing the extracellular Na+ concentration from 141 to 70 mM had no effect on EGABA. 7. Furosemide, bath-applied at 5 X 10(-4) M while holding Vm depolarized with respect to EIPSC, caused a rapid, reversible decrease in IPSC driving force averaging 69%, consistent with the presence of a furosemide-sensitive outward Cl- -transport system. 8. Reducing [K+]o from 5.8 to 1 mM in the presence of 5 X 10(-4) M furosemide produced a smaller shift of EIPSC from -61.0 to -71.2 mV, however, after washout of furosemide from [K+]o = 1 mM saline, EIPSC shifted further to -89.8 mV.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Incubation of cultured bovine adrenal medullary cells with 12-O-tetradecanoylphorbol-13-acetate (TPA), an activator of Ca2+/phospholipid-dependent protein kinase (protein kinase C), was associated with increased secretion of catecholamine (CA) from the cells. Polymyxin B (PMB, 30-300 microM), a preferential inhibitor of protein kinase C, inhibited the TPA-induced secretion of CA. PMB also inhibited CA secretion induced by other secretagogues, the Ca2+ ionophore ionomycin (10 microM), 56 mM K+ or acetylcholine (ACh). Ionomycin, 56 mM K+ or ACh increased the concentration of intracellular free Ca2+ ([Ca2+]i) (measured using the fluorescent calcium indicator quin2), whereas TPA did not increase [Ca2+]i. PMB blocked the increase in [Ca2+]i induced by 56 mM K+ or ACh at concentrations similar to those inhibiting the secretion of CA. In contrast, PMB did not affect ionomycin-induced increase in [Ca2+]i. These results strongly suggest that CA secretion induced by TPA or ionomycin is mediated via activation of protein kinase C. The results further indicate that in 56 mM K+- or ACh-evoked CA secretion, PMB inhibits the secretion by blocking Ca2+ influx into the cells.  相似文献   

10.
The effects of antibodies against immunoglobulin delta-heavy chains (anti-delta) on intracellular free Ca2+ concentrations, [Ca2+]i, and 86Rb+ influx in human neoplastic B-cells were tested in vitro. When preloading the cells with high concentrations of the fluorescent Ca2+ chelator quin 2 and subsequently stimulating in EGTA medium, the anti-delta induced rise in [Ca2+]i was strongly reduced or blocked. Nevertheless, 86Rb+ influx, also induced by anti-delta, was potentiated. In fact, in a population of cells in which anti-delta increased [Ca2+]i, but not 86Rb+ influx under standard conditions, the combination of quin-2 preloading and subsequent extracellular Ca2+ chelation by EGTA revealed an anti-delta induced 86Rb+ influx. Most of this influx was ouabain resistant, suggesting only a minor contribution from the Na+/K+ pump. Based on the Ca2+ buffer effect of quin 2 we suggest that the Ca2+ effect on 86Rb+ (K+ analogue) permeability is not mediated by increased [Ca2+]i but rather by the Ca2+ release per se from the plasma membrane.  相似文献   

11.
The effects of epinephrine on insulin release, 86Rb+ fluxes, and 45Ca2+ fluxes were measured in rat islets. In the presence of 10 mM glucose, epinephrine did not affect 86Rb+ influx and slightly increased net uptake. It caused a monophasic inhibition of release and a biphasic decrease in 86Rb+ efflux. A maximum effect was observed with 1 microM epinephrine, but release was more markedly inhibited by lower concentrations of the catecholamine than was the efflux. Epinephrine inhibition of release and efflux was reversed by phentolamine and yohimbine but not by prazosin or propranolol. It was mimicked by norepinephrine and clonidine. The inhibition of 86Rb+ efflux persisted when insulin release was prevented by omission of extracellular calcium. Ouabain or high K+ markedly increased 86Rb+ efflux in the presence of glucose and epinephrine; theophylline and quinine had a similar but smaller effect. None of these agents restored insulin release. Epinephrine abolished the insulinotropic effect of arginine without altering the rise in 86Rb+ efflux triggered by the amino acid. Epinephrine abolished insulin release but inhibited 45Ca2+ efflux only partially during stimulation by glucose or by barium plus theophylline. The results show that epinephrine does not inhibit insulin release by activating the Na pump or by increasing K permeability of the B cell membrane. On the contrary, the inhibition of release is accompanied by a decrease in 86Rb+ efflux. Both result from activation of alpha 2-receptors but are not causally related; they could be due to remodeling of Ca2+ fluxes and/or changes in cAMP levels.  相似文献   

12.
Spontaneous catecholamine (CA) release from bovine chromaffin cells maintained in primary tissue culture has been measured after pre-loading the cells with [3H]noradrenaline. Ouabain inhibited 86Rb+ uptake and increased 3H release in a concentration-dependent manner during a 60 min incubation period. Low external Na+ (5 mM: Li+ substitution) also increased 3H release. Whereas the 3H-releasing action of ouabain was maintained, the Li(+)-evoked release decreased with time. The effects of both ouabain and low Na+ solution on 3H release were completely inhibited by removal of Ca2+ from the external medium even though in Ca2(+)-free solution ouabain further inhibited 86Rb+ uptake into the cells. Readmission of Ca2+ to Na(+)-loaded cells (10-4 M-ouabain in Ca2(+)-free-1 mM-EGTA solution for 60 min) markedly increased the release of 3H. In the additional presence of diphenylhydantoin (DPH, 10-4 M) 3H release was significantly less on Ca2+ readmission. The 3H release from Na(+)-loaded cells was proportional to the concentration of Ca2+ readmitted. The 3H release was further increased from Na(+)-loaded cells in response to Ca2+ readmission when [Na+]o was lowered from 149 to 5 mM (Li+, choline+, Tris+ or sucrose substitution) though Li+ was less effective than the other Na+ substitutes. Potassium removal from the external medium significantly inhibited the 3H release evoked by Ca2+ readmission to Na(+)-loaded cells, even when [Ca2+]o was greater than normal (7.5 mM) or if Ca2+ was readmitted in low [Na+]o solution. Rb+, Cs+ or Li+ could substitute for K+ with the order of potency: Rb+ greater than or equal to K+ greater than Cs+ greater than Li+. A slight increase of external K+ (10.8 mM) potentiated the 3H release from Na(+)-loaded cells on Ca2+ readmission, but a higher concentration of K+ (149.4 mM) had the opposite action. The data is consistent with the hypothesis that ouabain-evoked CA release from bovine chromaffin cells is, in part, a consequence of an internal Na(+)-dependent Ca2+ influx. The evidence also suggests that there is Na(+)-Ca2+ competition at the external arm of the exchanger together with a monovalent cation activation site.  相似文献   

13.
Components of pacemaker potentials recorded from the guinea pig stomach antrum   总被引:11,自引:1,他引:10  
Pacemaker potentials recorded intracellularly from the guinea pig stomach consisted of initial primary and following plateau components. Inhibition of the internal Ca2+ store pump with cyclopiazonic acid depolarized the membrane and inhibited the plateau component of pacemaker potentials. 2-aminoethoxydiphenyl borate (an inhibitor of IP3-induced Ca2+ release) and carbonyl cyanide m-chlorophenyl-hydrazone (a mitochondrial protonophore) depolarized the membrane and abolished pacemaker potentials. Low [Ca2+]o solution reduced the frequency and rate of rise of pacemaker potentials, and the effects were mimicked by BAPTA-AM (an intracellular Ca2+ chelator). 4,4-diisothiocyanatostilbene-2,2-disulphonic acid and low [Cl-]o solution inhibited the plateau component of pacemaker potentials. Depolarization of the membrane with high [K+]o solutions increased the frequency and reduced the dV/dt(max) of pacemaker potentials. During high-[K+]o-induced depolarization, cyclopiazonic acid abolished pacemaker potentials. Caffeine, forskolin, papaverine, 8-bromo-cGMP and (+/-)S-nitroso-N-acetylpenicillamine (SNAP) inhibited the plateau component, with no alteration of the primary component. It is concluded that the primary and plateau components of pacemaker potentials are related to voltage-gated Ca2+ influx and Ca2+-activated Cl- channels, respectively, and cyclic nucleotides inhibit mainly the latter. Pacemaker potentials may be generated by the release of Ca2+ from internal stores through excitation of inositol 1,4,5-trisphosphate receptors, coupled with Ca2+ uptake into mitochondria.  相似文献   

14.
Anoxia can lead to skeletal muscle damage. In this study we have investigated whether an increased influx of Ca2+, which is known to cause damage during electrical stimulation, is a causative factor in anoxia-induced muscle damage. Isolated extensor digitorum longus (EDL) muscles from 4-week-old Wistar rats were mounted at resting length and were either resting or stimulated (30 min, 40 Hz, 10 s on, 30 s off) in the presence of standard oxygenation (95% O2, 5% CO2), anoxia (95% N2, 5% CO2) or varying degrees of reduced oxygenation. At varying extracellular Ca2+ concentrations ([Ca2+]o), 45Ca influx and total cellular Ca2+ content were measured and the release of lactic acid dehydrogenase (LDH) was determined as an indicator of cell membrane leakage. In resting muscles, incubated at 1.3 mM Ca2+, 15-75 min of exposure to anoxia increased 45Ca influx by 46-129% (P<0.001) and Ca2+ content by 20-50% (P<0.001). Mg2+ (11.2 mM) reduced the anoxia-induced increase in 45Ca influx by 43% (P<0.001). In muscles incubated at 20 and 5% O2, 45Ca influx was also stimulated (P<0.001). Increasing [Ca2+]o to 5 mM induced a progressive increase in both 45Ca uptake and LDH release in resting anoxic muscles. When electrical stimulation was applied during anoxia, Ca2+ content and LDH release increased markedly and showed a significant correlation (r2=0.55, P<0.001). In conclusion, anoxia or incubation at 20 or 5% O2 leads to an increased influx of 45Ca. This is associated with a loss of cell membrane integrity, possibly initiated by Ca2+. The loss of cell membrane integrity further increases Ca2+ influx, which may elicit a self-amplifying process of cell membrane leakage.  相似文献   

15.
The concentration of cytosolic Ca2+ ([Ca]in) was examined in single bovine adrenal chromaffin cells by monitoring fura-2 fluorescence with microspectrofluorimetry. To see the correlation between [Ca]in and secretion, we also measured the rates of catecholamine (CA) secretion and 45Ca efflux from populations of cells. [Ca]in was constant in the majority of single cells, but the small oscillatory changes in [Ca]in were observed in a population of cells. These spontaneous Ca oscillations, when observed, disappeared either after removal of extracellular Ca2+ or by addition of D-600 or Mn2+, but still persisted in the presence of tetrodotoxin (TTX) or after removal of extracellular Na+. In the silent cells the Ca fluctuations were often induced by Bay-K-8644. The characteristics of Bay-K-8644-induced Ca fluctuations were very similar to those of spontaneous ones. Low concentrations of nicotine (1 microM), acetylcholine (ACh; 1-2 microM), or KCl (12.5 mM) often induced oscillations riding on a steady rise in [Ca]in. These changes were rapidly suppressed by removal of either extracellular Ca2+ or Na+, or by addition of either D-600 (methoxyverapamil) or TTX. A low concentration of ACh (1 microM) or KCl (12.5 mM) also increased the rate of 45Ca efflux, but substantial secretion was not detected. On the other hand, the sustained rise in [Ca]in was evoked by 0.1 mM ACh, 20 microM nicotine, or 30 mM KCl, which was suppressed by removal of extracellular Ca2+, but was little affected by TTX. A sustained increase in 45Ca efflux upon exposure to ACh was observed, possibly reflecting the sustained rise in [Ca]in. ACh also stimulated CA secretion, which was faded out during the prolonged application. Veratridine, a Na channel activator, caused repetitive sequence of Ca transients followed by a sustained rise in [Ca]in. These results, together with the previous electrophysiological findings, suggest that: (1) the spontaneous Ca fluctuations are closely associated with occurrence of spontaneous Ca2+ and Na+ action potentials; (2) the rise in [Ca]in induced by a low concentration of nicotinic agonists of KCl is mediated by Na+ action potentials as well as gradual membrane depolarizations; (3) the oscillatory changes subsequent to a rise in [Ca]in reflect fluctuations in Ca2+ influx through the Ca2+ channels; (4) the critical [Ca]in needs to be attained before the CA secretion takes place.  相似文献   

16.
1. Conventional and ion-selective double-barrelled microelectrodes were used in an in vitro bovine retinal pigment epithelium (RPE)-choroid preparation to measure the changes in membrane voltage, resistance and intracellular K+ and Cl- activities produced by small, physiological changes in extracellular potassium ([K+]o). 2. In the intact eye, light-induced changes in [K+]o occur in the extracellular (or subretinal) space that separates the neural retina and the RPE apical membrane. These [K+]o changes can be approximated in vitro by decreasing apical bath [K+]o from 5 to 2 mM. 3. This in vitro change in [K+]o simultaneously decreased intracellular Cl- and K+ activities (aCli and aKi) by 25 +/- 6 mM (n = 8) and 19 +/- 7 mM (n = 4) (mean +/- S.D.), respectively. In control Ringer solution (5 mM [K+]o) aCli and aKi were 65 +/- 10 mM (n = 28) and 65 +/- 8 mM (n = 6), respectively. 4. The [K+]o-induced decreases in aCli and aKi were both significantly inhibited, either by blocking the apical membrane K+ conductance with Ba2+ or the basolateral membrane Cl- conductance with DIDS (4,4'-diisothiocyano-stilbene-2,2'-disulphonic acid). 5. Transepithelial current pulses were used to determine the relative basolateral membrane Cl- conductance, TClBAS, was approximately 0.6 (n = 3), and the relative apical membrane K+ conductance, TKAP, was approximately 0.7 (n = 2). Step changes in basal bath [K+]o were used to estimate the relative basolateral membrane K+ conductance, TKBAS, was approximately 0.34 (n = 3). 6. These data show that the apical membrane K+ conductance and the basolateral membrane Cl- conductance are electrically coupled. In vivo, this coupling could have significant functional importance by modulating the relative hydration of the subretinal space, regulating RPE cell volume, and buffering the chemical composition of the subretinal space.  相似文献   

17.
The release of [3H]acetylcholine from the chick retina was studied. A 5 mM increase in K+-concentration caused an increased release, which was Ca2+-dependent. The effect of 5 mM K+ was neither potentiated by bicuculline nor inhibited by isoguvacine or muscimol. This indicates that the K+-induced release is not controlled by GABA. However, bicuculline and picrotoxin increased the spontaneous efflux of radioactivity, whereas GABA had no significant effect. The results suggest that cholinergic neurons are tonically inhibited by a continuous release of endogenous GABA. Neither glycine or strychnine, nor dopamine or haloperidol had any effect on the spontaneous release.  相似文献   

18.
The ionic basis for the low (-40 mV) resting membrane potential of glial cells surrounding the giant axons of the crayfish and their hyperpolarization by cholinergic agents (to -55 mV) was studied using standard electrophysiological techniques, ionic substitutions and pharmacological agents. The resting membrane potential of the glial cell was depolarized by increasing [K+]o, but the response was not Nernstian. Na+ depletion caused a small depolarization of the glial resting membrane potential, whereas Cl- depletion resulted in a hyperpolarization comparable to that seen with carbachol at various [K+]o. Both furosemide (1 mM) and bumetanide (0.1 mM) produced an 8-10 mV hyperpolarization as compared to 15-17 mV seen with Cl- depletion or carbachol. Carbachol has no further effect on the potential following furosemide treatment or Cl- depletion. After carbachol administration or Cl- depletion the resting membrane potential of the glial cell responded to [K+]o in a more Nernstian manner. The data indicate that the low resting membrane potential of glial cells is due to a combination of a low [K+]i and an outwardly-directed (depolarizing) Cl- electrochemical gradient. Carbachol acts to decrease Cl- conductance, resulting in the hyperpolarization of the glial cell membrane and a decrease in the outwardly-directed K+ electrochemical gradient by approximately two-thirds. We hypothesize that this mechanism for modulation of the glial cell membrane potential and the K+ electrochemical gradient serves to enhance the uptake of K+ by the glial cell transport system.  相似文献   

19.
The present study was carried out to elucidate the role of the reverse mode of the Na+/Ca2+ exchanger in an increase in intracellular Ca2+ concentration ([Ca2+]i) induced by a stimulatory concentration of glucose in rat pancreatic islets. The effects of KB-R7943, a selective inhibitor of reverse Na+/Ca2+ exchanger, on Na+o removal-induced [Ca2+]i changes were examined by a microfluorimetric method using fura-2 in perifused preparations of isolated rat pancreatic islets. Na+o removal induced a rapid increase in [Ca2+]i under 100 or 5 mM K+ conditions, respectively. The increases in [Ca2+]i induced by Na+o removal were inhibited by KB-R7943. The net amount of the [Ca2+]i increases during Na+o removal (Delta[Ca2+]i), obtained by subtracting the KB-R7943-independent Delta[Ca2+]i in the presence of KB-R7943 from Delta[Ca2+]i in the absence of KB-R7943, was significantly increased when extracellular K+ was raised. Increasing the external glucose concentration from 3 to 20 mM caused a biphasic increase in [Ca2+]i, which exhibited a transient increase (first phase) followed by a sustained increase (second phase) in [Ca2+]i. KB-R7943 (10 microM) partially inhibited the second phase of the [Ca2+]i increase rather than the first phase. These results suggest that the increase in [Ca2+]i induced by Na+o removal may be enhanced when plasma membrane is depolarized, and consequently, Ca2+ influx through the reverse Na+/Ca2+ exchanger may partially contribute to the glucose-induced [Ca2+]i dynamics in rat pancreatic islet cells.  相似文献   

20.
Selective ion permeability, ion transport properties, and electrical resistance of the perineurial barrier, as they relate to interstitial ion regulation, where studied and characterized electrophysiologically in ion substitution experiments. In high external [K+] a transient spike-like voltage was generated across the perineurial barrier which fell over 1-2 min to a slowly decaying voltage. The glial perineurium had at least a 10 times greater permeability to K+ than Cl-, and was effectively impermeant to Na+. The potential, in high external [K+], was determined by the K+ and Cl- gradients and their relative permeabilities across the sheath. For other cations the selectivity sequence of the perineurial barrier, as determined from electrophysiological measurements, was K+ greater than or equal to Rb+ much greater than NH4+ greater than Cs+ greater than Li+ greater than Na+ corresponding most closely to the Eisenman sequence IV. The perineurium had a resistance of 260 +/- 23 omega cm2 in crayfish physiological solution. In high [K+]0 the resistance fell by over half during the transient spike potential and then recovered towards resting levels as the voltage decayed. In the intact nerve cord interstitial [K+] rose to only 10-20 mM during a 2-min exposure to 100 mM K0+. K influx and efflux were related to the change in barrier permeability and an increased selectivity to K+ which, in these studies, was determined primarily by its electrochemical gradient across the perineurial barrier. The results suggest that the crayfish perineurium is a leaky epithelium capable of a high degree of ion regulation. Trans-perineurial barrier potential and conductance in high external [K+] are primarily functions of passive processes of the perineurial glial cell membranes and of the paracellular conductance channels driven by the electrochemical gradient for the K+. Accordingly, the mass transport of [K+] showed the same quantitative relationship in both directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号