首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
2.
3.
: The heparin-binding growth factors fibroblast growth factor (FGF) and hepatocyte growth factor (HGF) are potent mitogens for hepatocellular carcinomas (HCCs). Heparin-binding growth factor signaling is regulated by sulfation of cell-surface heparan sulfate proteoglycans (HSPGs). We hypothesized that hSulf1, a recently described sulfatase, regulates growth signaling in HCCs. :Expression of hSulf1 in human HCC tumors was determined by real-time PCR. Down-regulation of hSulf1 expression was investigated by analyzing loss of heterozygosity (LOH) at the hSulf1 locus and the effect of the DNA methylation inhibitor 5-aza-deoxycytidine on hSulf1 expression. The subcellular location of hSulf1 and sulfation state of cell-surface HSPGs were assessed by immunocytochemistry. FGF and HGF signaling was examined by phospho-specific immunoblot analysis. Cell growth was measured by trypan blue exclusion, and the MTT assay and apoptosis were quantitated by fluorescence microscopy. :hSulf1 expression was decreased in 29% of HCCs and 82% of HCC cell lines. There was LOH at the hSulf1 locus in 42% of HCCs. Treatment with 5-aza-deoxycytidine reactivated hSulf1 expression in hSulf1-negative cell lines. Low hSulf1-expressing cells showed increased sulfation of cell-surface HSPGs, enhanced FGF and HGF-mediated signaling, and increased HCC cell growth. Conversely, forced expression of hSulf1 decreased sulfation of cell-surface HSPGs and abrogated growth signaling. HCC cells with high-level hSulf1 expression were sensitive to staurosporine- or cisplatin-induced apoptosis, whereas low expressing cells were resistant. Transfection of hSulf1 into hSulf1-negative cells restored staurosporine and cisplatin sensitivity. :Down-regulation of hSulf1 contributes to hepatocarcinogenesis by enhancing heparin-binding growth factor signaling and resistance to apoptosis.  相似文献   

4.
5.
6.
7.
8.
Somatostatin is the most effective inhibitor of GH release, and GHRH was recently identified as one of the primary GH-releasing factors in teleosts. In this study, we analyzed the possible intracellular transduction pathways that are involved in the mechanisms induced by SRIF and GHRH to regulate GH release. Using a pharmacological approach, the blockade of the PLC/IP/PKC pathway reversed the SRIF-induced inhibition of GH release but did not affect the GHRH-induced stimulation of GH release. Furthermore, SRIF reduced the GH release induced by two PKC activators. Inhibitors of the AC/cAMP/PKA pathway reversed both the SRIF- and GHRH-induced effects on GH release. Moreover, the GH release evoked by forskolin and 8-Br-cAMP were completely abolished by SRIF. The blockade of the NOS/NO pathway attenuated the GHRH-induced GH release but had minimal effects on the inhibitory actions of SRIF. In addition, inhibitors of the sGC/cGMP pathway did not modify the SRIF- or GHRH-induced regulation of GH release. Taken together, these findings indicate that the SRIF-induced inhibition of GH release is mediated by both the PLC/IP/PKC and the AC/cAMP/PKA pathways and not by the NOS/NO/sGC/cGMP pathway. In contrast, the GHRH-induced stimulation of GH secretion is mediated by both the AC/cAMP/PKA and the NOS/NO pathways and is independent of the sGC/cGMP pathway and the PLC/IP/PKC system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号