首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 409 毫秒
1.
《Clinical neurophysiology》2009,120(3):588-593
ObjectiveThe n10 component (n10) of the ocular vestibular evoked myogenic potential (oVEMP) to brief bone conducted vibration (BCV) of the forehead at Fz is probably caused by the vibration selectively activating vestibular otolithic receptors. If the n10 is due primarily to utricular activation then diseases which affect only the superior division of the vestibular nerve (SVN) should reduce or eliminate n10.MethodsThe n10 component of the oVEMP was measured in 13 patients with unilateral SVN but with inferior vestibular nerve function preserved.ResultsWe compared the n10 to BCV of these 13 SVN patients to previously published data for healthy subjects and patients after complete unilateral vestibular loss. We found that in 12 out of the 13 patients with SVN, n10 was markedly reduced or absent under the contralesional eye.ConclusionSince all utricular afferents course in the superior vestibular nerve and in 12/13 of these patients the n10 was reduced we conclude that the n10 component of the oVEMP to BCV is probably mediated by the superior vestibular nerve and probably due to activation of mainly utricular receptors.SignificanceThe n10 appears to be a simple new test of superior vestibular nerve and probably mainly utricular function.  相似文献   

2.
《Clinical neurophysiology》2010,121(7):1092-1101
ObjectiveTwo indicators of otolithic function were used to measure dynamic otolith function in the same patients both during an acute attack of Ménière’s disease (MD) and in the quiescent period between attacks.MethodsThe early negative component (n10) of the ocular vestibular-evoked myogenic potential (the oVEMP) to brief 500 Hz bone conducted vibration (BCV) stimulation of the forehead, in the midline at the hairline (Fz) was recorded by surface EMG electrodes just beneath both eyes while the patient looked up. It has been proposed that the n10 component of the oVEMP to 500 Hz Fz BCV indicates utricular function. It has been proposed that the early positive component (p13) of the cervical vestibular-evoked myogenic potential (the cVEMP) recorded by surface electrodes on both tensed SCM neck muscles to 500 Hz Fz BCV indicates saccular function.ResultsSixteen healthy control subjects tested on two occasions showed no detectable change in the symmetry of oVEMPs or cVEMPs to 500 Hz Fz BCV. In response to 500 Hz Fz BCV 15 early MD patients tested at both attack and quiescent phases showed a dissociation: there was a significant increase in contralesional of n10 of the oVEMP during the attack compared to quiescence but a significant decrease in the ipsilesional p13 of the cVEMP during the attack compared to quiescence.ConclusionsDuring an MD attack, dynamic utricular function in the affected ear as measured by the n10 of the oVEMP to 500 Hz Fz BCV is enhanced, whereas dynamic saccular function in the affected ear as measured by the p13 of the cVEMP to 500 Hz Fz BCV is not similarly affected.SignificanceThe MD attack appears to affect different otolithic regions differentially.  相似文献   

3.
To clarify the changes of cervical (cVEMP) and ocular (oVEMP) vestibular evoked myogenic potentials induced by air-conducted sound (ACS) and bone-conducted vibration (BCV) in patients with vestibular neuritis (VN), patients with VN (n = 30) and normal controls (n = 45) underwent recording of cVEMP and oVEMP in response to ACS (1,000 Hz, 5 ms, tone bursts) and BCV (500 Hz, short tone burst). Patients with VN showed a high proportion of oVEMP abnormalities in response to both ACS (80.0 %) and BCV at the forehead (Fz, 73.3 %) or the mastoid (76.7 %). In contrast, cVEMPs were mostly normal with both ACS and BCV in the patients. The dissociations in the abnormalities of cVEMP and oVEMP induced by ACS and BCV at the mastoids and at the forehead in patients with VN suggest that oVEMP reflects functions of the superior vestibular nerve and most likely the utricular function. The results of our study suggest that oVEMP induced by either ACS or BCV appears to depend on integrity of the superior vestibular nerve, possibly due to the utricular afferents travelling in it. In contrast, cVEMP elicited by either ACS or BCV may reflect function of the saccular afferents running in the inferior vestibular nerve.  相似文献   

4.
OBJECTIVE: To provide the empirical basis for using ocular vestibular evoked myogenic potentials (oVEMPS) in response to Fz bone conducted vibration (BCV) stimulation to indicate vestibular function in human subjects. To show the generality of the response by testing a large number of unselected healthy subjects across a wide age range and the repeatability of the response within subjects. To provide evidence that the response depends on otolithic function. METHODS: The early negative component (n10) of the oVEMP to brief BCV of the forehead, in the midline at the hairline (Fz) is recorded by surface EMG electrodes just beneath the eyes. We used a Bruel and Kjaer 4810 Mini-Shaker or a light tap with a tendon hammer to provide adequate BCV stimuli to test a large number (67) of unselected healthy people to quantify the individual differences in n10 magnitude, latency and symmetry to Fz BCV. A Radioear B-71 bone oscillator at Fz is not adequate to elicit a reliable n10 response. RESULTS: The n10 oVEMP response showed substantial differences in amplitude between subjects, but is repeatable within subjects. n10 is of equal magnitude in both eyes with an average asymmetry around 11%. The average n10 amplitude for Mini Tone Burst BCV is 8.47microV+/-4.02 (sd), the average latency is 10.35ms+/-0.63 (sd). The amplitude of n10 decreases and its latency increases with age. CONCLUSIONS: oVEMPs are a new reliable, repeatable test to indicate vestibular and probably otolithic function. SIGNIFICANCE: This study shows the optimum conditions for recording oVEMPs and provides baseline values for individual differences and asymmetry. oVEMPs can be measured in senior subjects without difficulty.  相似文献   

5.
《Clinical neurophysiology》2014,125(3):615-620
ObjectiveTo explore the stimulus site and stimulus configuration dependency for bone-conducted low-frequency vibration-induced ocular vestibular evoked myogenic potentials (oVEMPs).MethodsoVEMPs were tested in response to 125 Hz single cycle bone-conducted vibration in healthy subjects (n = 12) and in patients with severe unilateral vestibular lesions (n = 10). The stimulus sites were the mastoids and vertex. Both directions of initial stimulus motion were used.ResultsAt mastoid stimulation, the oVEMP to initial laterally directed acceleration of the labyrinth was delayed approximately the length of time of a stimulus half-cycle, as compared with the response to initial medially directed acceleration. At vertex stimulation, the oVEMP to positive initial acceleration was similar to the oVEMP to mastoid stimulation causing lateral initial acceleration. Likewise, the oVEMP to vertex negative initial acceleration was similar to mastoid stimulation causing initial medial acceleration. Further, patients with unilateral vestibular loss had, compared to healthy subjects, similar oVEMP from the healthy labyrinth.ConclusionsA fundamental dependency on medially directed accelerations of the labyrinth, based on the latency differences revealed, may theoretically account for oVEMP in response to low-frequency stimulation.SignificanceLow-frequency bone vibration stimulation at vertex might serve for simultaneous oVEMP testing of both ears.  相似文献   

6.
The aim of the present study was to evaluate vestibular nerve involvement in patients with Bell’s palsy with ocular and cervical vestibular evoked myogenic potentials (oVEMP and cVEMP). Ten patients who were diagnosed with Bell’s palsy and ten healthy controls were included. All patients underwent VEMP recordings within 6 days after their initial presentation. Patients with Bell’s palsy had greater oVEMP asymmetry ratio comparing to healthy controls (?38.4 ± 28.7 % vs ?1.3 ± 19.3 %, p = 0.005). As well N10 latencies of the oVEMP response were prolonged comparing to healthy controls (11.575 vs 9.72 ms). There was no difference in cVEMP asymmetry ratio or latencies between groups. We found no correlation between House–Brackmann grading scale and oVEMP asymmetry ratio (r = 0.003, p = 0.994). There are three possible explanations for increased oVEMP amplitudes on the affected side: (1) oVEMP response on the ipsilateral eye could be contaminated by facial nerve activity (blink reflex); (2) the amplitude of N10-P33 could be affected through the stapedial reflex; and (3) increased oVEMP amplitude could be the consequence of the vestibular nerve dysfunction itself, with prolonged latencies of the N10 oVEMP further supporting this explanation. The results of this study indicate possible involvement of the superior branch of the vestibular nerve in patients with Bell’s palsy.  相似文献   

7.
ObjectiveThis study compared the results of combined and individual ocular vestibular-evoked myogenic potential (oVEMP) and cervical VEMP (cVEMP) tests in healthy subjects and patients with unilateral vestibular hypofunction to confirm the effectiveness of the combined oVEMP and cVEMP test.MethodsTwenty healthy volunteers and 12 patients with unilateral vestibular hypofunction underwent individual oVEMP and cVEMP tests in a random order, and combined oVEMP and cVEMP test on another day.ResultsTwenty healthy subjects had 100% response rates for oVEMPs and cVEMPs in both individual and combined stimulation modes. Significant positive correlations exist between individual and combined oVEMPs/cVEMPs in terms of latencies and amplitudes. In 12 patients with unilateral vestibular hypofunction, differences in abnormal percentages of oVEMPs or cVEMPs were non-significant. Additionally, the characteristic parameters of oVEMP/cVEMP among ears of healthy subjects, good and pathological ears of patients with unilateral vestibular hypofunction did not differ significantly, regardless of whether the individual or combined mode was used.ConclusionsThe combined oVEMP and cVEMP test generates similar information to that obtained by individual mode, regardless of whether subjects are healthy or have unilateral vestibular hypofunction.SignificanceSimultaneous oVEMP and cVEMP tests may be a convenient screening tool for assessing crossed vestibulo-ocular reflex and ipsilateral sacculo-collic reflex, which definitely shortens the diagnostic test time. Thus, it may favor the large diffusion of these techniques.  相似文献   

8.
OBJECTIVE: To investigate cortical regions related to voluntary blinking. METHODS: Transcranial magnetic stimulation (TMS) was applied to the facial motor cortex (M1) and the midline frontal region (Fz) in 10 healthy subjects with eyes opened and closed. Motor-evoked potentials were recorded from the orbicularis oculi (OOC), orbicularis oris (OOR), abductor digiti minimi and tibialis anterior using surface and needle electromyography electrodes. Facial M waves and blink reflex were measured using supramaximal electrical stimulation of the facial and supraorbital nerves. RESULTS: TMS at Fz elicited 3 waves in OOC with no response in other tested muscles except for the early wave in OOR. Facial M1 stimulation produced only early and late waves. Because of their latencies, shapes, and relationship to coil position and stimulation intensity, early and late waves appeared to be analogous to the facial M wave and R1 component of the blink reflex. The intermediate wave at 6-8 ms latency was elicited in OOC by Fz stimulation with eyes closed. CONCLUSIONS: Since its latency matches the central conduction time of other cranial muscles and it has characteristic of muscle activation-related facilitation, the intermediate wave is presumably related to cortical stimulation. This result provides evidence that the cortical center for the upper facial movements, including blinking, is not principally located in the facial M1, but rather in the mesial frontal region.  相似文献   

9.
The corneal reflex and the R2 component of the blink reflex   总被引:2,自引:0,他引:2  
A reflex contraction of the human orbicularis oculi muscles can be evoked by stimulation of either the supraorbital region ("blink reflex") or the cornea ("corneal reflex"). We found that the latency of the corneal reflex was longer, and the duration was longer than the R2 component of the blink reflex. The absolute refractory period of the R2 component of the blink reflex was longer after supraorbital than after corneal conditioning stimulation. When the R2 component of the blink reflex was habituated by repetitive stimuli, stimulation of the cornea still evoked a reflex, but supraorbital stimulation produced only a depressed R2 response. These findings suggest that the two reflexes do not have identical neural connections.  相似文献   

10.
《Clinical neurophysiology》2009,120(3):581-587
ObjectivesCervical vestibular evoked myogenic potentials (cVEMPs) have been found to be useful for clinical testing of vestibular function. Recently, investigators showed that short-latency, initially negative surface EMG potentials can be recorded around the extraocular muscles (oVEMPs) in response to air-conducted sound (ACS), bone-conducted vibration (BCV), and head taps. Although these evoked potentials, which are located around the eyes, most likely originate primarily from the otolith-ocular pathway, the possibility of contamination by other nerve activities cannot be completely eliminated. The purpose of the present study was to clarify the origin of oVEMPs by examining these possibilities using clinical findings.MethodsTwelve healthy subjects and 15 patients were enrolled. Of the 15 patients, 3 patients had undergone exenteration of the unilateral intraorbital contents, one had undergone exenteration of the right eyeball with preservation of extraocular muscles, 5 had facial palsy, and 6 had profound hearing loss. ACS and/or BCV were used in these subjects.ResultsExenteration of the unilateral intraorbital contents resulted in absence of myogenic potentials on the affected side. On the other hand, exenteration of the eyeball with preservation of extraocular muscles did not have a major impact on the responses. There were no significant differences in the waveforms between healthy subjects and patients with facial palsy or profound hearing loss.ConclusionsThe results suggested that short-latency, initially negative evoked potentials recorded below the eyes are not affected by cochlear or facial nerve activities and are dependent on the presence of extraocular muscles.SignificanceThis study provides the evidence that oVEMPs originate from exraocular muscles activated through the vestibulo-ocular pathway.  相似文献   

11.
《Clinical neurophysiology》2010,121(2):132-144
In addition to activating cochlear receptors, air conducted sound (ACS) and bone conducted vibration (BCV) activate vestibular otolithic receptors, as shown by neurophysiological evidence from animal studies – evidence which is the foundation for using ACS and BCV for clinical vestibular testing by means of vestibular-evoked myogenic potentials (VEMPs). Recent research is elaborating the specificity of ACS and BCV on vestibular receptors. The evidence that saccular afferents can be activated by ACS has been mistakenly interpreted as showing that ACS only activates saccular afferents. That is not correct – ACS activates both saccular and utricular afferents, just as BCV activates both saccular and utricular afferents, although the patterns of activation for ACS and BCV do not appear to be identical. The otolithic input to sternocleidomastoid muscle appears to originate predominantly from the saccular macula. The otolithic input to the inferior oblique appears to originate predominantly from the utricular macula. Galvanic stimulation by surface electrodes on the mastoids very generally activates afferents from all vestibular sense organs. This review summarizes the physiological results, the potential artifacts and errors of logic in this area, reconciles apparent disagreements in this field. The neurophysiological results on BCV have led to a new clinical test of utricular function – the n10 of the oVEMP. The cVEMP tests saccular function while the oVEMP tests utricular function.  相似文献   

12.
OBJECTIVE: To evaluate the possible blink reflex responses in facial muscles reinnervated by the accessory nerve. METHOD: Eleven patients with a complete facial palsy were submitted to a surgical repair by an accessory facial nerve anastomosis (AFA). In this pathological group, blink reflex was studied by means of percutaneous electrical stimulation of the supraorbital nerve and recording from the orbicularis oculi muscle. A control group comprised seven normal people and seven patients with a complete Bell's facial palsy; in this group, responses on the sternocleidomastoideus (SCM) muscles were studied after supraorbital nerve stimulation. RESULTS: All the patients with AFA showed a consistent degree of facial reinnervation. Ten out of the 11 patients with AFA showed reflex responses; in six, responses were configured by a double component pattern, resembling the R1 and R2 components of the blink reflex; three patients had an R1-like response and one patient showed a unique R2 component. Mean values of latencies were 15.2 (SD 4.6) ms for the R1 and 85.3 (SD 9.6) ms for the R2. In the control group, eight out of 14 people had evidence of reflex responses in the SCM muscles; these were almost exclusively configured by a bilateral late component (mean latency 63.5 (SD15.9) ms) and only one of the subjects showed an early response at 11 ms. CONCLUSION: The trigemino-accessory reflex response in the pathological group was more complex and of a significantly higher incidence than in the control group. These differences could be tentatively explained by a mechanism of synaptic plasticity induced by the impairment of the efferent portion of the reflex. This could unmask the central linking between the trigeminal and the accessory limbs of the reflex. The findings described could be a demonstration of neurobionomic function in the repairing process of the nervous system.  相似文献   

13.
Abstract

Purpose: This study aimed to assess the clinical value of ocular vestibular evoked myogenic potential (oVEMP) and cervical vestibular evoked myogenic potential (cVEMP) for monitoring the rehabilitation of vestibular function in patients treated for peripheral vertigo.

Materials and methods: Fifteen patients who had been diagnosed with peripheral vertigo and showed no VEMP response on the affected side but exhibited symptom alleviation and VEMP responses after therapies were retrospectively enrolled. We analyzed the restoration and parameters of their VEMP response.

Results: After treatment, six patients with sudden sensorineural hearing loss showed VEMP recovery, including two with both oVEMP and cVEMP recovery, three with oVEMP recovery only, and one with cVEMP recovery only. Two patients with Meniere’s disease (MD) showed cVEMP recovery, while the other three MD patients showed oVEMP recovery. Three patients with herpes zoster oticus exhibited cVEMP recovery. One patient with vestibular neuritis exhibited cVEMP recovery. Among the patients with cVEMP and/or oVEMP restoration, most patients presented normal VEMP parameters; however, some patients showed abnormal VEMP parameters after treatment.

Conclusion: Combined oVEMP and cVEMP are objective tools for assessing vestibular otolithic end organ function during dynamic functional recovery from vestibular diseases.  相似文献   

14.
It has been shown that in patients in whom the central stump of the hypoglossal nerve has been anastomosed to the peripheral stump of a lesioned facial nerve, supraorbital nerve stimulation can elicit a short-latency reflex (12.5±0.6 ms; mean±S.D.) in facial muscles similar to the R1 disynaptic blink reflex response, but not followed by an R2 blink reflex component46. Thus in addition to replacing the facial neurons at peripheral synapses, these hypoglossal nerves contribute to a trigemino-hypoglossal reflex. The aim of this work was to study the type of reflex activities which can be elicited in both facial and tongue muscles by electrical stimulation of cutaneous (supraorbital nerve) or mucosal (lingual nerve) trigeminal (V) afferents in normal subjects. The results show that although stimulation of cutaneous V1 afferents elicits the well-known double component (R1–R2) blink reflex response in the orbicularis oculi muscles, it does not produce any detectable reflex response in the genioglossus muscle, even during experimental paradigms designed to facilitate the reflex activity. Conversely, stimulation of mucosal V3 afferents can elicit a single reflex response of the R1 type in the genioglossus muscle but not in the orbicularis oculi muscles, even during experimental paradigms designed to facilitate the reflex activity. These data are discussed in terms of two similar but separate circuits for the R1 responses of cutaneous (blink reflex) and mucosal (tongue reflex) origins. They suggest that in patients with hypoglossal-facial (XII–VII) nerve anastomosis, the short-latency trigemino-‘hypoglossal-facial' reflex of the R1 blink reflex type observed in facial muscles following supraorbital nerve stimulation could be due to changes in synaptic effectiveness of the central connectivity within the principal trigeminal nucleus where both cutaneous and mucosal trigeminal afferents project.  相似文献   

15.
Patients with hemifacial spasm (HFS) have an abnormal muscle response (AMR) that can be elicited by stimulating one branch of the facial nerve and recording electromyographically from muscles innervated by other branches of the facial nerve. In addition, the R1 component of the blink reflex can be elicited from the affected side in patients with HFS who are undergoing microvascular decompression (MVD) operations under inhalation anesthesia. A synkinetic component of the blink reflex response that corresponds to the R1 component can be recorded from the mentalis muscle. In the present study we show that the blink reflex elicited by electrical stimulation of the supraorbital nerve can suppress the AMR elicited by electrical stimulation of the temporal branch of the facial nerve in patients with HFS when the interval between stimulation of the supraorbital nerve and stimulation of the temporal branch of the facial nerve (interstimulus interval, ISI) is such that the blink reflex response would appear later than the AMR if they had been elicited independently. Within a short range of ISIs the two responses suppress each other partially or totally. We find evidence that the suppression of the AMR is the result of an interaction in the facial motonucleus. We believe that the results of the present study support the hypothesis that the facial motonucleus is hyperactive in patients with HFS, and we suggest that the AMR is a result of backfiring from the facial motonucleus and that it may thus be an exaggerated F-response.  相似文献   

16.
《Clinical neurophysiology》2014,125(6):1238-1247
ObjectiveTo determine the amplitude changes of vestibular evoked myogenic potentials (VEMPs) recorded simultaneously from the neck (cVEMPs) and eyes (oVEMPs) in response to 500 Hz, 2 ms air-conducted sound pips over a 30 dB range.MethodsFifteen healthy volunteers (mean age 29, range 18–57 years old) and one patient with unilateral superior canal dehiscence (SCD) were studied. The stimulus was reduced in increments to 105 dB pSPL for the normals (81 dB pSPL for the SCD patient). A statistical criterion was used to detect responses.ResultsIpsilateral (i-p13/n23) and contralateral (c-n12/p24/n30) peaks for the cVEMP montage and contralateral (c-n10/p16/n21) and ipsilateral (i-n13) peaks for the oVEMP montage were present for the baseline intensity. For the lowest intensity, 6/15 subjects had responses for the i-p13 cVEMP potential and 4/15 had c-n10 oVEMP responses. The SCD patient showed larger responses for nearly all intensities. The cVEMP potentials were generally well fitted by a power law relationship, but the oVEMP c-n10, p16 and n21 potentials showed a significant increase in gradient for the higher intensities.ConclusionMost oVEMP and cVEMP responses follow a power law relationship but crossed oVEMP responses showed a change in gradient above a threshold.SignificanceThe pattern of response to AC stimulation may be a property of the pathways underlying the potentials.  相似文献   

17.
《Clinical neurophysiology》2014,125(8):1700-1708
ObjectiveWe investigated the effect of alcohol on the cervical and ocular vestibular evoked myogenic potentials (cVEMPs and oVEMPs). As alcohol produces gaze-evoked nystagmus (GEN), we also tested the effect of nystagmus independent of alcohol by recording oVEMPs during optokinetic stimulation (OKS).MethodsThe effect of alcohol was tested in 14 subjects over multiple rounds of alcohol consumption up to a maximum breath alcohol concentration (BrAC) of 1.5‰ (mean 0.97‰). The effect of OKS was tested in 11 subjects at 5, 10 and 15 deg/sec.ResultsoVEMP amplitude decreased from baseline to the highest BrAC level by 27% (range 5–50%, P < 0.001), but there was no significant effect on oVEMP latency or cVEMP amplitude or latency. There was a significant negative effect of OKS on oVEMP amplitude (16%, P = 0.006).ConclusionsWe found a selective effect of alcohol on oVEMP amplitude, but no effect on the cVEMP. Vertical nystagmus elicited by OKS reduced oVEMP amplitude.SignificanceAlcohol selectively affects oVEMP amplitude. Despite the effects of alcohol and nystagmus, both reflexes were reliably recorded in all subjects and conditions. An absent response in a patient affected by alcohol or nystagmus indicates a vestibular deficit.  相似文献   

18.
ObjectivesTo clarify the origin and afferent pathways of short-latency ocular vestibular-evoked myogenic potential (oVEMP) in response to air-conducted sound (ACS), we evaluated cervical (cVEMP) and ocular VEMPs in patients with vestibular neuritis (VN).MethodsIn response to air-conducted tone burst, the oVEMP and cVEMP were measured in 60 healthy controls and in 41 patients with acute VN. The VN selectively involved the superior vestibular nerve (superior VN) in 30 patients, affected the inferior vestibular nerve only (inferior VN) in three and damaged both superior and inferior vestibular nerve branches in eight.ResultsAll 30 patients with superior VN presented normal cVEMPs, indicating preservation of the saccular receptors and their afferents in the inferior vestibular nerve. However, the oVEMP was abnormal in all patients with superior VN. By contrast, the patients with inferior VN showed normal oVEMP and abnormal cVEMP.ConclusionThese dissociations in the abnormalities of cVEMP and oVEMP in patients with VN selectively involving the superior or inferior vestibular nerve suggest that the origin of the vestibular nerve afferents of oVEMP differ from those of cVEMP.SignificanceThe oVEMP in response to ACS may be mediated by the superior vestibular nerve, probably due to an activation of the utricular receptors.  相似文献   

19.
Poncelet AN 《Muscle & nerve》2000,23(9):1435-1438
Abnormalities of the silent period (SP) and blink reflexes occur in diseases that interfere with inhibitory pathways, such as tetanus and stiff-person syndrome (SPS). The SP is abnormal in tetanus but not in SPS. Studies of the blink reflex in tetanus are limited. In this report, a patient with generalized tetanus is described. The masseteric-and mixed-nerve SP was absent or truncated. In contrast to SPS, blink reflex studies revealed no bilateral R1 component, and a discrete R3 was only present ipsilateral to right supraorbital stimulation. This reflects the distinct inhibitory pathways underlying these disorders.  相似文献   

20.
It has been claimed that functional recovery of the blink reflex occurs after hypoglossal-facial nerve anastomosis. This has been explained through central nervous system plasticity and reorganization of neuronal connections. In 5 patients with reinnervated facial muscles after hypoglossal-facial nerve anastomosis, we observed “R1-like” responses that fulfilled criteria for facial nerve axon reflexes or ephapses. First, displacement of the stimulating electrode from the supraorbital to the zygomatic area shortened the latency of the evoked response. Second, these responses were stable (jitter mean consecutive difference < 25 μs) and they had complex potential shapes unmodified by high-frequency stimulation. Finally, collision techniques demonstrated antidromic conduction of impulses in the facial nerve from supraorbital to zygomatic points. Therefore, these “R1-like” responses are not the early component of a functionally recovered blink reflex but motor axon reflexes or ephaptic responses similar to the short latency responses observed following facial nerve regeneration or from sutured nerves in human forearms. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号