首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growth acceleration and bone maturation were studied for 3 y in 69 children with severe short stature and a history of intrauterine growth retardation (IUGR), to determine the effect of treatment with recombinant human growth hormone (r-hGH). The patients were enrolled in an open, multicentre trial and were randomly allocated to either the treated group (Group 1) or the control group (Group 2). The children in Group 1 were treated daily with 0.2 IU/kg/body weight (0.067 mg/kg) s.c, during 3 y and the children in Group 2 started the study with a 1-y observation period followed by a 3-y treatment period. At birth, their mean weight standard deviation score (SDS) was -2.5 and their mean length SDS -3.5. At baseline, the patients were prepubertal, non-GHdeficient, with no known dysmorphic features. Mean age was 4.5 y, bone age was 3.3 y, height SDS was -3.4, height velocity (HV) SDS was -1.6, and body mass index SDS was -1.4. After 1 y of treatment, linear HV in Group 1 increased in comparison with the pre-treatment period (from 5.7 ± 2.0 to 10.1 ± 1.7cm/y; p < 0:001)and with the firstyear of observation in Group2( p < 0:001). Increased HV was sustained during the second and third year of treatment and was significantly higher than at baseline. A similar growth pattern was seen during the 3y of GH treatment in Group 2. Mean height SDS for chronological age increased by 2.0 ± 0.7 in the two groups after 3 y of treatment. HV after 1 y of treatment was negatively correlated with growth velocity at baseline. Bone age remained retarded but increased with a mean of almost 4 y after 3y of treatment in both groups. Even at a dose that is three times the replacement dose treatment with r-hGH was well tolerated. From these results, we conclude that r-hGH treatment over 3 y can induce sustained catch-up growth in young children with severe short stature and a history of IUGR. Long-term studies are needed to assess ultimate effects on final height.  相似文献   

2.
Since the first reported efficacious use of human growth hormone in 1958, numerous children have been treated with this hormone. This review discusses the five indications for use of human growth hormone in children that have been approved to date by the United States Food and Drug Administration.
Conclusion: Further, long-term studies will be needed to address the optimal use of this hormone in each of these conditions.  相似文献   

3.
Analyses to predict the growth response to recombinant human growth hormone (GH) in prepubertal children during the first year of treatment were performed on data from 472 patients with idiopathic GH deficiency (IGHD), 202 children with Turner's syndrome, 327 children with idiopathic short stature (ISS) and 135 children with intrauterine growth retardation (IUGR). In IGHD, 56% of the variability of the response could be predicted from a model based on six variables. These variables could be ranked in order of importance as follows: target height SDS minus height SDS, chronological age, frequency of GH injections, dose of GH, weight-for-height index, and birth weight SDS. When the model for IGHD was applied to Turner's syndrome, ISS and IUGR, there was a high degree of similarity between the predicted and achieved growth response in ISS and IUGR. However, an uneven distribution within the plot of Studentized residuals in ISS and IUGR suggested heterogeneity within these populations. Prediction of growth in Turner's syndrome was greatly exaggerated by the model for IGHD, suggesting a different pathogenesis as the basis of the growth disorder. Specific prediction models were therefore developed for Turner's syndrome, ISS and IUGR. In all three disorders, the dose of GH was found to be the most important predictor, suggesting that, in contrast to IGHD, first-year growth is governed less by the difference between height and the presumed genetically determined target height. Again, in contrast to IGHD, this suggests that catch-up phenomena are not involved. As the predictability of the variation in growth response in Turner's syndrome, ISS and IUGR did not exceed 32% (for ISS), the search for new predictors should continue in these disorders.  相似文献   

4.
A minority of children born small for gestational age (SGA) fail to achieve sufficient catch-up growth during infancy and remain short throughout childhood, apparently without being growth hormone (GH) deficient. The effect of GH administration was evaluated over 2 years in short prepubertal children born SGA. The children ( n = 244), who were taking part in four independent multicentre studies, had been randomly allocated to groups receiving either no treatment or GH treatment at a daily dose of 0.1, 0.2 or 0.3 IU/kg (0.033, 0.067 or 0.1 mg/kg) s.c. At birth, their mean length SD score (SDS) was -3.6 and their mean weight SDS -2.6; at the start of the study, mean age was 5.2 years, bone age 3.8 years, height SDS -3.3, height SDS adjusted for parental height -2.4, weight SDS -4.7 and body mass index (BMI) SDS -1.4. The untreated children had a low-normal growth velocity and poor weight gain. Although bone maturation progressed more slowly than chronological age, final height prognosis tended to decrease, according to height SDS for bone age. GH treatment induced a dose-dependent effect on growth, up to a near doubling of height velocity and weight gain; BMI SDS was not altered. Bone maturation was also accelerated differentially; however, final height prognosis increased in all GH treatment groups. The more pronounced growth responses were observed in younger children with a lower height and weight SDS. In conclusion, GH administration is a promising therapy for normalizing short stature and low weight after insufficient catch-up growth in children born SGA. Long-term strategies incorporating GH therapy now remain to be established.  相似文献   

5.
Seven children with significant idiopathic short stature (SISS) whose heights were significantly below the third percentile (SD score for height —2.5 to —3.5) and who had normal levels of growth hormone (GH) were treated with growth hormone releasing hormone (GH-RH) in a dose of 30 /μg/kg/day. Therapy was discontinued if patients failed to increase their rates of growth by more than 2.0 cm/year over their pre-therapy growth rate. Treatment was discontinued in two of the patients after 12 months but was continued in the other five for 24 months. These data demonstrate that some patients with SISS grow well during the first 2 years of treatment with GH-RH.  相似文献   

6.
The auxological characteristics and the response to growth hormone (GH) treatment of children with idiopathic short stature were studied, using the database of the Kabi Pharmacia International Growth Study. Pretreatment data from a total of 271 children were analysed. The children were selected for a birth weight above -2 SDS. The correlation coefficient of birth weight SDS and birth length SDS was 0.51, compared with 0.72 for the reference population. Median length at birth was -0.6 SDS, which fell to -2.5 SDS by 3 years of age. Thereafter, there was no further loss in height SDS. The response to GH treatment was studied in 222 of these prepubertal children who were given six or seven injectiodweek over a 3-year period. During this time, the median height SDS increased from -2.5 to -1.5, with those children receiving more than 0.65 IU/kg/week having a greater gain in height SDS than those on 0.5 IU/kg/week or less. The degree of bone age delay did not appear to influence the response to GH therapy.  相似文献   

7.
Within the Kabi Pharmacia International Growth Study (KIGS) database, there is information on 1017 (700 male/317 female) patients with idiopathic short stature (ISS). These patients were started on recombinant human growth hormone (GH) at a median age of 10.8 years, a bone age of -1.8 SDS, a height of -2.6 SDS and a predicted adult height (PAH) (Bailey–Pinneau method) of -2.5 SDS. The median dose of GH was 0.6 IU/kg body weight/week and the frequency of injections was six/week. According to the relationship with target height the patients were classified into'familial short stature (FSS)'(height SDS > target height SDS - 1.28) and into'non-FSS'(height SDS < target height SDS - 1.28). During the first year of GH treatment there was an overall increment in the median height velocity from 4.4 to 7.4 cm/year. Over 3 years of GH treatment, cross-sectional analysis demonstrated an overall increment in median PAH of 1.2 SDS. There was a positive correlation between gain in PAH and the GH dose (n = 202, r = 0.18, p < 0.01) during the first year. Longitudinal analysis in 84 patients showed an overall increment of PAH of 0.7 SDS over 2 years of treatment. When applying the KIGS first-year prediction model for patients with idiopathic GH deficiency on cohorts of prepubertal children with FSS and non-FSS, a lower responsiveness to GH in the non-FSS group was observed. It is concluded that higher than substitutive doses of GH are required for the long-term improvement of growth in ISS.  相似文献   

8.
Growth responses to growth hormone (GH) treatment in Noonan syndrome are compared with those in short children with the other growth disorders. The responses in Noonan syndrome are much less than those in children with GH deficiency, a little less than those in children with non-endocrine short stature and almost the same as those in children with Turner syndrome. As it is speculated that GH induces puberty earlier that expected in Noonan Syndrome, the efficiency of GH treatment for final height in Noonan syndrome is not promising.  相似文献   

9.
目的:观察生长激素受体(GHR)基因Ex3多态性与重组人生长激素(rhGH)治疗青春期前特发性矮小(ISS)疗效间的相关性。方法:青春期前ISS患儿30例,均采用rhGH[0.116±0.02 IU/(kg/d)]治疗;其外周血白细胞中抽提基因组DNA,采用多重PCR扩增GHR基因Ex3区域。对不同基因型患儿治疗后生长速率(GV)、年龄对应身高标准差积分(HtSDSCA)及骨龄对应身高标准差积分(HtSDSBA)、预测终身高进行比较。结果:rhGH治疗半年后d3/d3基因型组GV较fl/fl基因型组明显增加[(6.3±1.6)cm/年 vs (3.4±0.5)cm/年,P<0.05]。结论:ISS患儿GHR Ex3基因型与rhGH促生长疗效存在一定关联,d3/d3等位基因型患儿用rhGH治疗后生长速率明显优于fl/fl等位基因型。[中国当代儿科杂志,2010,12(9):730-733]  相似文献   

10.
目的 建立重组人生长激素(rhGH)治疗生长激素不同分泌状态青春前期矮身材患儿近期(1年)疗效的预测模型,并进行初步验证.方法回顾性分析62例生长激素不同分泌状态的青春前期矮身材患儿[模型组,分为全模型组(模型组全部病例)和生长激素缺乏症模型组(模型组中生长激素缺乏症的病例)]经rhGH治疗1年后的追赶性生长指标:生长速度(HV)和身高Z分增值(ΔHtSDS).根据单因素相关分析的结果,通过多元回归的方法,分别建立对HV和ΔHtSDS的2个预测方程(Model-GHD和Model-total).前瞻性分析另14例(验证组),将资料代入前述方程进行验证.结果单因素相关分析显示,与HV和ΔHtSDS显著(负)相关的是同一组影响因素.所得4个预测方程,R2在0.244~0.519,P值均<0.05.HV的2个预测方程和对生长激素缺乏症患儿1ΔHtSDS的预测方程(实测值和预测值呈显著正相关,r在0.753~0.996;配对t检验示两者差异无统计学意义).结论预测模型建立成功,有助于预测不同生长激素分泌状态青春期矮身材患儿的生长激素的近期疗效.  相似文献   

11.
Being born small for gestational age (SGA) is one of the most common causes of childhood short stature, and recombinant GH therapy has been recently licensed to promote growth in short SGA children from the age of 4 years old. Studies are now reporting very encouraging effects on adult height gains, especially in those children who started GH therapy early, at least 2 years prior to the onset of puberty. Compared to the age at starting treatment, the GH dose has a less significant impact on final height, and more attention needs to be paid now to identify earlier those SGA children who fail to catch-up spontaneously. The benefits are not just in terms of height, but also in body composition and possibly blood pressure and lipid levels. However the risk of side effects and long-term complications, particularly related to the expected metabolic effects of GH in inducing insulin resistance and hyperinsulinaemia, need to be carefully monitored especially in SGA children with a family history of type 2 diabetes. Recently, GH therapy was found to amplify the adrenarche of short SGA children and to induce a pro-inflammatory shift, as judged by a rise of neutrophil count and circulating interleukin-6 (IL-6), and a fall in adiponectin levels. Further progress is anticipated to assess the addition of insulin-sensitizing therapy to attenuate the GH-induced hyperinsulinemia, in order to alter the pro-inflammatory course, to avoid excessive release of adrenal androgens, and to slow down the potential rapid tempo of pubertal progression in SGA children. In the meantime, post-SGA short stature is rapidly becoming one of the prime indications for GH therapy in childhood.  相似文献   

12.
13.
BACKGROUND: We report a 13-year-old male with Diamond Blackfan anemia and short stature. He had a normal biochemical response to growth hormone (GH) stimulation, but his bone age was delayed, his insulin-like growth factor 1 (IGF-1) was low, and he had a poor growth velocity. He was started on daily GH injections. METHODS: From the patient's medical record the following data were collected: serial heights, serial weights, hemoglobin, hematocrit, bone age, IGF-1, and steroid dose. RESULTS: This patient had an increase in growth velocity up to 8.2 cm/year. CONCLUSIONS: Growth hormone therapy should be considered in children with DBA, short stature and poor growth velocity.  相似文献   

14.
Stanhope, R., Ackland, F., Hamill, G., Clayton, J., Jones, J. and Preece, M.A. (Department of Growth and Development, Institute of Child Health, London and Serono Laboratories, UK). Physiological growth hormone secretion and response to growth hormone treatment in children with short stature and intrauterine growth retardation. Acta Paediatr Scand [Suppl] 349: 47, 1989.
Physiological growth hormone (GH) secretion was examined in 31 children (8 girls, 23 boys) with short stature secondary to intrauterine growth retardation (IUGR). Seventeen (4 girls, 13 boys) had dysmorphic features of Russell-Silver syndrome. Four of the 31 children had GH insufficiency with peak GH levels of < 20 mU/I during the night. Nine of the patients (8 of whom had Russell-Silver syndrome) had a single nocturnal GH pulse. Twenty-three children (6 girls, 17 boys) were randomized into two groups treated with either 15 or 30 U/m2/week of GH by daily subcutaneous injections. Age, sex distribution, pretreatment height velocity SD score (SDS), and distribution of dysmorphic and non-dysmorphic children were similar in both groups. The group treated with 15 U/m2/week for a mean of 0.82 years showed an increase in mean height velocity SDS from - 0.61 to +1.09, and the group treated with 30 U/m2/week for a mean of 0.92 years showed an increase in mean height velocity SDS from -0.69 to +3.48. The results suggest that physiological GH insufficiency is probably common in children with Russell-Silver syndrome and that both dysmorphic and non-dysmorphic children with short stature secondary to IUGR will respond to GH treatment. Initial evidence suggests that the increase in short-term growth velocity does not result in an improved final height prognosis.  相似文献   

15.
The aim of the study was to evaluate whether treatment with recombinant human growth hormone (rhGH) affects the quality of life of young adults who were diagnosed as idiopathic short stature (ISS) during childhood, and whether their quality of life and aspects of the personality are different from normal. Experiences and expectations concerning rhGH treatment of the subjects and their parents were also investigated. Eighty-nine subjects were included into the study: 24 subjects (16M, 8F) were treated with rhGH from childhood, whereas 65 subjects (40M, 25F) were never treated. At the time of the interview all subjects had attained final height [mean (SD) -2.3 (0.9) SDS for Dutch references], and the age of the treated subjects was 20.5 (1.0)y, and 25.7 (3.5)y of the control subjects (p < 0:001). The level of education was similar, but the treated subjects had less often a partner compared to the control subjects (adjusted for age and gender, p < 0:001). The Nottingham Health Profile and Short Form 36 Health Survey showed no difference in general health state between treated and control subjects, and the healthy Dutch age-specific references (norm group). Although 74% of the subjects reported one or more negative events related to their height, and 61% would like to be taller, only 22% and 11% were willing to trade-off at Time Trade-Off and Standard Gamble, respectively. The personality of the subjects, which was measured by the Minnesota Multiphasic Personality Inventory, was not different from the norm group. The satisfaction with the rhGH treatment was high, as it had caused 12 (8) cm and 13 (7) cm gain in final height according to the subjects and parents, respectively. Based on initial predicted adult height (Bayley & Pinneau), this gain was only 3.3(5.6) cm. We concluded that although the treated subjects had a partner less often when compared to the control subjects, the quality of life of subjects with ISS at adult age is normal and appears not to be affected by rhGH therapy, The treated subjects were very satisfied with the treatment, probably by overestimation of the final height gain.  相似文献   

16.
The aim of this study was to compare the growth response of 22 short pre-pubertal children without growth hormone deficiency, treated with a single daily growth hormone injection (group A), to the growth response of 27 similar children, treated with the same daily dose divided into 2 subcutaneous injections per day (group B), for 1 y, in a randomized study. GH treatment significantly promoted growth parameters, height standard deviation score and height velocity standard deviation score in both groups. Serum insulin-like growth factor I was also increased. There were no significant differences in growth response, serum IGF-I levels, or the advance in bone age between the two study groups after 1 y of GH therapy. We conclude that twice daily s.c. growth hormone injections provide no advantages over once daily injection of the same dose in promoting the linear growth of short children without growth hormone deficiency.  相似文献   

17.
AIM: To examine psychosocial functioning of young adults with idiopathic short stature or short stature born small for gestational age after growth hormone (GH) and gonadotropin-releasing hormone agonist (GnRHa) treatment in early adolescence or no intervention. METHODS: Thirty young adults (18 treated, 12 untreated; age 17-23 years; on average 5.5 years after the end of treatment) completed questionnaires regarding perceived competence and psychological distress. They and their parents were interviewed on social circumstances, height-related psychosocial stressors and parental worries about prospects in society. RESULTS: Height gain was on average 2.3 cm more for the treated than for the untreated group. On none of the psychosocial variables differences were found between treated and untreated participants. Compared to Dutch population norms, psychological and social functioning was normal. CONCLUSION: GH/GnRHa treatment, with arrest of pubertal development and lower than expected effects on final height, is not observed to lead to long-term negative or positive effects. Both treated and untreated participants go well through the psychosocial transition period of young adulthood. This suggests that, in the long term and independent of hormone treatment, adequate psychosocial adjustment is expected in case of short stature.  相似文献   

18.
A total of 130 short children were included in a French multicentre study and randomized between a control group (group A) and two groups treated with daily subcutaneous injections of GH at doses of 0.7 IU/kg/week (group B) and 1.4 IU/kg/week (group C) for 2 years. Height velocity was significantly increased ( p <0.0005) in groups B and C, with a greater increase in group C than in group B ( p < 0.001). The benefit after 2 years compared with controls was 4.3 cm in group B and 5.9 cm in group C. The rate of bone maturation was not affected by GH therapy. These results led to the conclusion that 2 years of treatment with GH improves final height prognosis in children with short stature secondary to IUGR, and that this effect is dose dependent. The effect on final height has still to be demonstrated.  相似文献   

19.
Using the database from the Kabi Pharmacia International Growth Study, 105 patients with intrauterine growth retardation (IUGR) (82 males, 23 females) and 45 with Silver-Russell syndrome (SRS) (32 males, 13 females) with persistent postnatal growth failure were studied. Patients with IUGR had a birth length and birth weight more than 2 SD below the mean for gestational age. Their height deficit at the start of GH treatment was -3.0 SDS at a median chronological age of 8.7 years and a median bone age of 7.0 years. Mean paternal and maternal heights were 166 and 153 cm, respectively. The median dose of GH was 0.5 IU/kg/week, given at a median frequency of five injections/week. The median height SDS for chronological age after 1, 2 and 3 years of GH treatment were -2.5, -2.1 and -1.9, respectively. In the 45 patients with SRS, median chronological age and median bone age at the start of treatment were 6.7 and 3.2 years, respectively, and mean paternal and maternal heights were 167.5 and 160 cm, respectively. The median dose of GH was 0.7 IU/kg/week, given at a median frequency of six injections/week. The median height SDS for chronological age at the start of treatment and after 1, 2 and 3 years were -3.5, -2.9, -2.8 and -2.2, respectively. Although the criteria used by physicians when diagnosing SRS were not controlled or verified in this study, it appears that patients with SRS can be differentiated from those with IUGR with persistent growth failure by their reduced bone age for chronological age at the start of treatment, and by the fact that patients with SRS tended to be born to parents of normal height. GH treatment in both groups induced catch-up growth, though long-term follow-up studies will be required to assess the effects of treatment on final height.  相似文献   

20.
Growth hormone therapy   总被引:1,自引:0,他引:1  
Growth hormone (GH) therapy has revolutionized treatment of children with growth hormone deficiency (GHD). Improved height outcome with final height in the target height range has been achieved in these children. Identification of Creutzfeldt-Jakob disease, a deadly prion mediated disorder, in recipients of pituitary GH accelerated the transition from pituitary derived GH to recombinant GH. Once daily subcutaneous administration of the freeze-dried preparation at evening is the recommended mode of GH therapy. Studies have led to use of higher dose of GH for improving height outcome (0.33 mg/kg/week or 0.14 IU/kg/day) albeit at a significantly high cost. Growth velocity increases from 3–4 cm/year before therapy to 10–12 cm/year during the first two years of therapy and is maintained at 7–8 cm/year after a period of two years. Close follow-up with regular clinical and laboratory monitoring is essential for achieving a desirable height outcome. A theoretical unlimited supply has led to wide spread use of GH in a variety of disorders other than GHD. Initially started in children with Turner syndrome, GH has now been used in chronic renal failure, idiopathic short stature and intrauterine growth restriction besides a wide array of newly emerging indications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号