首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
We examined how the salience of color is affected by adaptation to different color distributions. Observers searched for a color target on a dense background of distractors varying along different directions in color space. Prior adaptation to the backgrounds enhanced search on the same background while adaptation to orthogonal background directions slowed detection. Advantages of adaptation were seen for both contrast adaptation (to different color axes) and chromatic adaptation (to different mean chromaticities). Control experiments, including analyses of eye movements during the search, suggest that these aftereffects are unlikely to reflect simple learning or changes in search strategies on familiar backgrounds, and instead result from how adaptation alters the relative salience of the target and background colors. Comparable effects were observed along different axes in the chromatic plane or for axes defined by different combinations of luminance and chromatic contrast, consistent with visual search and adaptation mediated by multiple color mechanisms. Similar effects also occurred for color distributions characteristic of natural environments with strongly selective color gamuts. Our results are consistent with the hypothesis that adaptation may play an important functional role in highlighting the salience of novel stimuli by discounting ambient properties of the visual environment.  相似文献   

2.
Hong SW  Blake R 《Vision research》2008,48(8):1018-1026
Color-graphemic synesthetes perceive colors when viewing alphanumeric characters. Theories of color-graphemic synesthesia posit that synesthetic color experience arises from activation of neural mechanisms also involved in ordinary color vision. To learn how early in visual processing those mechanisms exist, we performed several experiments. In one experiment, real colors were altered in appearance by the lightness of their backgrounds, but the appearance of synesthetic colors was immune to surrounding light levels. In the second experiment using a hue cancellation technique, adaptation to synesthetic color had no subsequent effect on the amount of cancelling light to achieve equilibrium yellow, whereas adaptation to real colors did. In the third experiment, vivid synesthetic color had no influence on equilibrium yellow settings of the actual color of the characters evoking synesthesia. Because brightness contrast and chromatic adaptation are putatively mediated by neural mechanisms early in visual processing including retina and primary visual cortex, our results imply that neural events responsible for synesthetic color emerge subsequent to these early visual stages.  相似文献   

3.
We used color contrast adaptation to examine the chromatic and contrast selectivity of central color mechanisms. Adaptation to a field whose color varies along a single axis of color space induces a selective loss in sensitivity to the adapting axis. The resulting changes in color appearance are consistent with mechanisms formed by different linear combinations of the cone signals. We asked whether the visual system could also adjust to higher-order variations in the adapting stimulus, by adapting observers to interleaved variations along both the L versus M and the S versus LM cardinal axes. The perceived hue of test stimuli was then measured with an asymmetric matching task. Frequency analysis of the hue shifts revealed weak but systematic hue rotations away from each cardinal axis and toward the diagonal intermediate axes. Such shifts could arise if the adapted channels include mechanisms with narrow chromatic selectivity, as some physiological recordings suggest, but could also reflect how adaptation alters the contrast response function. In either case they imply the presence of more than two mechanisms within the chromatic plane. In a second set of measurements, we adapted to either the L versus M or the S versus LM axis alone and tested whether the changes in hue could be accounted for by changes in relative contrast along the two axes. For high contrasts the hue biases are larger than the contrast changes predict. This dissociation implies that the contrast and hue changes are not carried by a common underlying signal, and could arise if the contrast along a single color direction is encoded by more than one mechanism with different contrast sensitivities or if different subsets of channels encode contrast and hue. Such variations in contrast sensitivity are also consistent with physiological recordings of cortical neurons.  相似文献   

4.
We examine how the luminance distributions of overlaid surfaces affect the perception of transparency of neutral density filters. Pairs of neutral density filters were generated overlying variegated backgrounds of varying luminance distributions, and observers adjusted a single parameter of one filter until the pair appeared equally transparent. Physically identical filters appeared equally transparent on similar backgrounds, but did not appear equally transparent when backgrounds differed in luminance or contrast. Reducing luminance or contrast of the background decreased perceived transparency of the overlaying filter by a multiplicative factor. Observers matched perceived transparency of physically dissimilar filters by applying a linear trade-off between reflectivity and inner transmittance. In a second experiment, filters had their spatial structure altered in order to abolish the perception of transparency and appeared as patterned opaque disks, and observers equated perceived contrast of the two overlaid areas. Match settings gave results similar to the previous experiment, indicating that, in general, perceived transparency corresponds closely to the perceived contrast of the overlaid region.  相似文献   

5.
Color adaptation is a phenomenon in which, after prolonged exposure to a specific color (i.e. adaptation color), the perceived color shifts to approximately the opposite color direction of the adaptation color. Color adaptation is strongly related to sensitivity changes in photoreceptors, such as von Kries adaptation and cone-opponent mechanisms. On the other hand, the perceptual contrast of colors (e.g. perceptual saturation of the red-green direction) decreases after adaptation to a stimulus with spatial and/or temporal color modulation along the color direction. This phenomenon is referred to as color contrast adaptation. Color contrast adaptation has been used to investigate the representation of colors in the visual system. In the present study, we measured color perception after color contrast adaptation to stimuli with temporal color modulations along complicated color loci in a luminance-chromaticity plane. We found that, after the observers adapted to color modulations with different chromaticities at higher, medium, and lower luminance (e.g. temporal alternations among red, green, and red, each at a different luminance level), the chromaticity corresponding to perceptual achromaticity (the achromatic point) shifted to the same color direction as the adaptation chromaticity in each test stimulus luminance. In contrast, this luminance dependence of the achromatic point shift was not observed after adaptation to color modulations with more complex luminance-chromaticity correspondences (e.g. alternating red, green, red, green, and red, at five luminance levels, respectively). In addition, the occurrence or nonoccurrence of the luminance-dependent achromatic point shift was qualitatively predicted using a noncardinal model composed of channels preferring intermediate color directions between the cardinal chromaticity and luminance axes. These results suggest that the noncardinal channels are involved in the luminance-dependent perceived color shift after adaptation.  相似文献   

6.
A successive, asymmetric color-matching paradigm was used to investigate the link between cone contrast and the stability of perceived colors. We measured the perceived color shifts of 10 Munsell samples, induced by test illuminant A, simulated in u'v' color space. The capacity of the visual system to resist these shifts, otherwise known as color constancy, is measured in terms of the Brunswik ratio, BR. Cone contrasts are calculated with respect to either the physical or perceived background. Subjective cone contrasts show a better fit to the von Kries law than those based on the physical background. Complete cone adaptation occurs when color constancy is high. However we show conditions where cone adaptation seems complete but color constancy is poor.  相似文献   

7.
Beer RD  MacLeod DI 《Vision research》2000,40(22):3083-3088
The gamut of perceived colors can be represented in a space with bright-dark, red-green and blue-yellow axes. Pre-exposure to a field that changes periodically over time in luminance or along one of the color axes reduces vividness of colors along the entire axis [Webster and Mollon (1991) Nature, 349, 235-238]. But is it possible to reduce vividness or perceived contrast selectively for half-axes in color space? We assessed such selective compression of the bright-dark axis using a task where subjects matched tests in a pre-adapted region to ones in an un-adapted region. Tests were bright or dark pinstripes on a gray background, and pre-exposure was to multiple drifting pinstripes. Matches made after pre-exposure indicate a combination of symmetric and asymmetric compression, with more compression when adapting and test stimulus were similar in contrast polarity.  相似文献   

8.
Webster MA  Wilson JA 《Vision research》2000,40(28):1702-3816
Color appearance depends on adaptation processes that adjust sensitivity both to the average color in the stimulus (through light or chromatic adaptation) and to the variations in color (through contrast adaptation). We explored how these different forms of adaptation interact, by examining how the state of chromatic adaptation depends on the time-varying color contrasts in the stimulus, and conversely, how adaptation to the mean determines the stimulus contrasts underlying contrast adaptation. Light adaptation levels remain very similar whether observers adapt to a static chromaticity or to large temporal modulations in cone excitation that vary at rates of 0.5 Hz or higher. This suggests that up to the sites of light adaptation, the response to moderate contrasts is effectively linear and that the adaptation effectively averages over several seconds of the stimulus. For slower flicker rates color is differentially biased by the last half-cycle of the flicker, and perceived contrast may be altered by response polarization. This polarization selectively saturates responses to moderate (but not low) contrasts along the color direction complementary to the mean color bias, implying that the response changes occur within multiple mechanisms tuned to different chromatic axes. Chromatic adaptation often adjusts only partially to the mean color of the stimulus, and thus leaves a residual bias in the color appearance of the field. Contrast adaptation reduces perceived contrast relative to this residual color, and not relative to the stimulus that appears achromatic. Similarly, contrast discrimination thresholds appear lower around the residual color than around the achromatic point. Thus under biased states of chromatic adaptation alternative measures of 'zero contrast' can be dissociated, suggesting that they do not depend on a common null point within the channels encoding chromatic contrast.  相似文献   

9.
Spitzer H  Barkan Y 《Vision research》2005,45(27):3323-3342
The appearance of a patch of color or its contrast depends not only on the stimulus itself but also on the surrounding stimuli (induction effects-simultaneous contrast). A comprehensive computational physiological model is presented to describe chromatic adaptation of the first (retinal) and second (cortical) orders, and to predict the different chromatic induction effects. We propose that the chromatic induction of the first order that yields perceived complementary colors can be predicted by retinal adaptation mechanisms, contrary to previous suggestions. The second order of the proposed adaptation mechanism succeeds to predict the automatic perceived inhibition or facilitation of the central contrast of a texture stimulus, depending on the surrounding contrast. Furthermore, contrary to other models, this model is able to also predict the effect of variegated surrounding on the central perceived color.  相似文献   

10.
11.
According to Hering's color theory, certain hues (red vs green and blue vs yellow) are mutually exclusive as components of a single color; consequently a color cannot be perceived as reddish-green or bluish-yellow. The goal of our study is to test this key postulate of the opponent color theory. Using the method of adjustment, our observers determine the boundaries of chromatic zones in a red-green continuum. We demonstrate on two distinct stimulus sets, one formed using a chromatic grid and neon spreading and the other based on solid colored regions, that the chromatic contrast of a purple surround over a red figure results in perception of 'forbidden' reddish-green colors. The observed phenomenon can be understood as resulting from the construction of a virtual filter, a process that bypasses photoreceptor summation and permits forbidden color combinations. Showing that opponent hue combinations, previously reported only under artificial image stabilization, can be present in normal viewing conditions offers new approaches for the experimental study of the dimensionality and structure of perceptual color space.  相似文献   

12.
Luminance and color information are considered to be processed in parallel systems. The integration of information from these two separate systems is crucial for the visual system to produce a coherent percept. To investigate how luminance and color lights are perceived in time, we measured the perceived duration of light stimuli with and without colors in a paradigm involving simultaneous perception with presentation of two successive stimulus frames. Luminance contrast and color contrast of the stimuli were set with a chromatic substitution technique. In Experiment 1, the perceived duration of both chromatic stimuli and achromatic stimuli increased as the luminance contrast decreased. Experiment 2 tested if the duration of the percept was influenced by color contrast which was defined by colorimetric purity of the stimuli, when luminance contrast was set as low as practically possible. The result showed that the duration of the percept decreased with increasing color contrast of the stimuli. Moreover, Experiment 3 demonstrated that the trend of perceived duration was consistent with the four primary colors, provided that the effective color contrast of stimulus was corrected based on the contrast sensitivity to the color. These experiments indicate that, with a high luminance contrast level, perceived duration of a stimulus is predominantly defined by luminance contrast, whereas in low luminance contrast conditions, the duration depends on the color contrast. The perceived duration of color stimuli showed an "inverse color contrast effect", similar to the well-known "inverse intensity effect" for luminance stimuli. The similarities and the differences between the two systems, as well as their priorities in processing temporal information of visual stimuli are further discussed.  相似文献   

13.
Many previous studies have shown that background color affects the discriminability and appearance of color stimuli. However, research on visual search has not typically considered the role that the background may play. Rosenholtz (2001a) has suggested that color search asymmetries result from the relationship between the stimuli and the background. Here we test the hypothesis that background color should have an effect on asymmetries in visual search based on color, using searches for color stimuli on different colored backgrounds. Observers searched for a single known target stimulus among homogeneous distractor stimuli. The target stimulus differed from the distractors only in chromaticity, but targets and distractors both differed from the backgrounds in luminance so that they were easily visible regardless of chromaticity. Target/distractor pairs differed primarily in saturation (Experiments 1, 2, & 3) or in hue (Experiment 4). Each member of each pair of colors served as target and distractor color on both achromatic and red backgrounds. When the stimuli were presented on an achromatic background, response times were shorter when the more saturated member of each pair of colors served as the target color. When the same stimuli were presented on a red background, the asymmetry was either reversed or abolished. When target and distractors differed in hue, there was little asymmetry on the achromatic background but a sizable asymmetry for some color pairs on the red background. On both backgrounds, the magnitude of the asymmetry varied with the difference between the stimulus colors and the background color. Results confirm that asymmetries in color search are dependent on the relationship between the stimulus colors and the background color. Two candidate models are suggested that show promise in predicting these experimental results: Rosenholtz' saliency model (1999, 2001a) and a modification to signal detection theory models in which the observation noise is proportional to the difference between target/distractor color and background color.  相似文献   

14.
Assigning a basic color name to an object and rating the amount of a particular hue is a fundamental visual capability. Traditional color scaling studies have used increment flashes or isoluminant stimuli of a homogeneous color. Natural objects, however, do not contain a single color but are characterized by a distribution of different chromatic hues. Here we study color scaling using photographs of natural fruit objects. Stimuli were either homogeneous spots, digital photographs of fruit objects (e.g., banana), or outline shapes of the fruit objects. Stimuli were displayed on a CRT monitor on a homogeneous white background; its luminance was varied above and below the medium gray. The chromaticity of the stimuli was varied in 36 equally spaced chromatic directions in the isoluminant plane of the Derrington-Krauskopf-Lennie (DKL) color space. For each stimuli, subjects rated the amount of red, green, blue, and yellow in the stimulus on a scale from 0-8. In agreement with earlier studies we found that the positions of the peak ratings for each color do not coincide with the cardinal axis of DKL color space and are largely invariant under changes of the background luminance. For the average rating we found a dependence on background luminance for all colors: yellow ratings increase with darker backgrounds, whereas ratings for the other colors, in particular green, decrease. For the fruit objects, we found a selective increase in the average color rating for the natural fruit color. For example, the average rating for yellow was 1.7 times higher for the banana images compared to disc stimuli. No such selective increase was found for outline shapes. We conclude that the distribution of hues in natural objects with a characteristic object color can have a profound effect on color scaling and color appearance.  相似文献   

15.
An open question in color rivalry is whether alternation between two colors is caused by a difference in receptoral stimulation or a difference in the neural representation of color appearance. This question was examined with binocular rivalry between physically identical lights that differed in appearance due to chromatic induction. Perceptual alternation was measured between gratings of the same chromaticity; each one was presented within a different patterned surround that caused the gratings, one to each eye, to appear unequal in hue because of chromatic induction. The gratings were presented dichoptically with binocular disparity so the rivalrous gratings appeared in front of the surround. Perceptual alternation in hue was found for the two physically identical chromaticities. Stereoscopic depth also was perceived, corroborating binocular neural combination despite color rivalry (Treisman, 1962). The results show that color rivalry is resolved after color-appearance shifts caused by chromatic context, and that color rivalry does not require competing unequal cone excitations from the rivalrous stimuli.  相似文献   

16.
People perceive roughly constant surface colors despite large changes in illumination. The familiarity of colors of some natural objects might help achieve this feat through direct modulation of the objects' color appearance. Research on memory colors and color appearance has yielded controversial results and due to the employed methods has often confounded perceptual with semantic effects. We studied the effect of memory colors on color appearance by presenting photographs of fruit on a monitor under various simulated illuminations and by asking observers to make either achromatic or typical color settings without placing demands on short-term memory or semantic processing. In a control condition, we presented photographs of 3D fruit shapes without texture and 2D outline shapes. We found that (1) achromatic settings for fruit were systematically biased away from the gray point toward the opposite direction of a fruit's memory color; (2) the strength of the effect depended on the degree of naturalness of the stimuli; and (3) the effect was evident under all tested illuminations, being strongest for illuminations whose chromaticity was closest to the stimulus chromaticity. We conclude that the visual identity of an object has a measurable effect on color perception, and that this effect is robust under illuminant changes, indicating its potential significance as an additional mechanism for color constancy.  相似文献   

17.
An interocular matching technique was used to investigate the variation of chromaticity and brightness following steady viewing of a chromatic test light (identical adapting and testing color). Adaptation times were of sufficient duration to ensure stable matches. Following chromatic adaptation we found changes in hue, saturation and brightness. The spectral colors appeared desaturated. The hue shift for the spectral region 546 to 570 nm was towards green and for 586 to 670 nm was towards red. The brightness decrease, independent of chromaticity, was 0.8 log unit at 150 td and 0.3 log unit at 8 td. Data were analyzed within a two-process framework of brightness. Bezold-Brücke effect measurements showed chromaticity shifts in the same direction as for dimming caused by continuous adaptation. Changes in saturation were also observed but were usually in the opposite direction from those found for adaptation.  相似文献   

18.
Color constancy refers to the phenomenon that the perceived colors of objects are largely unaltered by changes in the illuminant or by viewing through colored filters. Deviations from perfect constancy, induced by filters similar to ophthalmic tints, were investigated in this study. Munsell color chips were forced-choice categorized into R, Y, G, or B. This accurately located the boundaries between these colors on the chip color circle. Testing was performed through 23 different adaptive conditions and chromaticity shifts created by filters. The technique simulates real world situations in which the chromaticity of the objects and the adaptation of the observer both change. Generally, color constancy held quite well. The boundaries between the four colors shifted for some filters, indicating some deviation from perfect constancy. Red filters resulted in more color chips appearing red, blue and green filters resulted in more chips appearing blue, and filters along the Planckian locus resulted in more chips appearing green.  相似文献   

19.
Studies of chromatic discrimination are typically based on homogeneously colored patches. Surfaces of natural objects, however, cannot be characterized by a single color. Instead, they have a chromatic texture, that is, a distribution of different chromaticities. Here we study chromatic discrimination for natural images and synthetic stimuli with a distribution of different chromaticities under various states of adaptation. Discrimination was measured at the adaptation point, where the mean chromaticity of the test stimuli was the same as the chromaticity of the adapting background, and away from the adaptation point. At the adaptation point, discrimination for natural objects resulted in threshold contours that were selectively elongated in a direction of color space matching the chromatic variation of the colors within the natural object. Similar effects occurred for synthetic stimuli. Away from the adaptation point, discrimination thresholds increased and threshold ellipses were elongated along the contrast axis connecting adapting color and test color. Away from the adaptation point, no significant differences between the different stimulus classes were found. The effect of the chromatic texture on discrimination seemed to be masked by the overall increase in discrimination thresholds. Our results show that discrimination of chromatic textures, either synthetic or natural, differs from that of simple uniform patches when the chromatic variation is centered at the adaptation point.  相似文献   

20.
Avital Tsofe 《Vision research》2010,50(22):2284-2294
Vasarely’s ‘nested-squares’ illusion is the perception of a glowing “X” along the diagonals of concentric squares with a luminance gradient. We present here the chromatic Vasarely effect, where the concentric angles have a chromatic gradient, under iso-brightness conditions. The strength of the effect was tested psychophysically by two measures, the length and the color of the illusory folds. The color of the illusory fold is perceived as the complementary color of the color of the nested-squares (or angles). The experimental results show that a large repertoire of stimuli with different colors and angles yielded significantly perceived colors. The results show that the strength of the perceived illusory fold (of both the length and the chroma) is significantly larger at sharper angles of the stimuli. The chromatic first-order adaptation computational model predicts most of the above results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号