首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The two major gram-positive bacterial (GPB) ligands are peptidoglycan (PGN) and lipoteichoic acid (LTA). These polymeric LTA and highly organized PGN contain repeating carbohydrate moieties, which are potential targets for pattern recognition molecules. The major pattern recognition proteins and receptors, which bind GPB, either have a lectin, PGN recognition, collagen or leucine-rich repeat (LRR) domain. The soluble innate immune proteins (IIPs) that bind to PGN and LTA include pulmonary collectins surfactant-associated proteins (SP-) A and D, lectin-like pentraxins C-reactive protein (CRP) and serum amyloid P component (SAP), and sCD14. Membrane-anchored lectin or lectin-like group members include macrophage mannose receptor (MR), complement receptor 3 (CR3, or Mac-1, or integrin CD11b/CD18), scavenger receptor A (SRCL-1), lectin-like oxidized LDL receptor 1 (LOX-1), and GPI-anchored CD14. Although Toll-like receptor (TLR) 2 and 4, and CD14 contain extracellular LRR domains, only TLRs have a cytoplasmic domain for signal transduction. Three of the four recently discovered human PGN recognition proteins (PGRP) have a transmembrane domain, and hence, considered as true receptors for GPB. Since lysozyme is the only known pulmonary enzyme that can lyse bacterial cell wall PGN, other innate immune molecules appear to be responsible for signalling and enhancing the clearance of GPB infection from the lung. Interestingly, pulmonary collectins bind not only to GPB ligands but also to the receptors, CD14 and TLR, and antigen processing cells such as dentritic cells. These complex interactions appear to play major roles in linking innate and adaptive immunity, and maintaining a pathogen-free lung with minimal, or no inflammation.  相似文献   

2.
Pattern recognition receptors in the immune response against dying cells   总被引:1,自引:1,他引:0  
Pattern recognition receptors (PRR), immune sensors that discriminate self from non-self, link innate to adaptive immunity. PRR are involved in microbe internalization by phagocytes (soluble PRR and endocytic receptors) and/or cell activation (signaling PRR). PRR also recognize dying cells (i.e. modified self). Apoptotic cell recognition involves soluble bridging molecules (e.g. pentraxins) and endocytic receptors (e.g. scavenger receptors, the CD91-calreticulin complex). Apoptotic cells induce an immunosuppressive signal, avoiding the initiation of an autoimmune response. By contrast, necrotic cells, via the release of stimulatory molecules [heat shock protein (HSP), high-mobility group box 1 protein (HMGB1)], activate immune cells. This review summarizes the PRR involved in the recognition of dying cells and the consequences on the outcome of the immune response directed against dying cell antigens.  相似文献   

3.
The innate immune system contributes to the earliest phase of the host defense against foreign organisms and has both soluble and cellular pattern recognition receptors for microbial products. Two important members of this receptor group, CD14 and the Toll-like receptor (TLR) pattern recognition receptors, are essential for the innate immune response to components of Gram-negative and Gram-positive bacteria, mycobacteria, spirochetes and yeast. We now find that these receptors function in an antiviral response as well. The innate immune response to the fusion protein of an important respiratory pathogen of humans, respiratory syncytial virus (RSV), was mediated by TLR4 and CD14. RSV persisted longer in the lungs of infected TLR4-deficient mice compared to normal mice. Thus, a common receptor activation pathway can initiate innate immune responses to both bacterial and viral pathogens.  相似文献   

4.
Intestinal intra-epithelial lymphocytes (iIELs) are a major lymphocyte population, reside in close proximity to the intestinal lumen and are conserved throughout vertebrate evolution. iIELs consist of several unique T-cell phenotypes and express both non-rearranged innate immune receptors and rearranged adaptive immune receptors. The ligands for the innate immune receptors on iIELs, such as NKG2D (natural killer-cell receptor), often bind to non-classical MHC class I molecules, such as the human MHC class I-related molecules MICA or MICB. These ligands costimulate T-cell receptor (TCR)-mediated signaling. In most cases, the MHC molecules that bind to the TCR are still unknown. However, recent efforts to understand the MHC molecules that are involved in the development of and antigen recognition by iIELs have revealed several important results. Here, we focus systematically on recent developments in innate immunity and in TCR recognition of different subtypes of iIELs by various MHC molecules.  相似文献   

5.
The interaction of the innate immune system with the microbial world involves primarily two sets of molecules generally known as microbial pattern recognition receptors and microbial pattern recognition molecules, respectively. Examples of the former are the Toll receptors present particularly in macrophages and dendritic cells. Conversely, the microbial pattern recognition molecules are conserved protist homopolymers, such as bacterial lipopolysaccharides, lipoteichoic acids, peptidoglycans, glucans, mannans, unmethylated bacterial DNA, and double-strand viral RNA. However, for protists that lack most of these molecules, such as protozoans, the innate immune system must have evolved receptors that recognize other groups of microbial molecules. Here we present evidence that a highly purified protein encoded by a Leishmania brasiliensis gene may be one such molecule. This recombinant leishmanial molecule, a homologue of eukaryotic ribosomal elongation and initiation factor 4a (LeIF), strongly stimulates spleen cells from severe combined immunodeficient (SCID) mice to produce interleukin-12 (IL-12), IL-18, and high levels of gamma interferon. In addition, LeIF potentiates the cytotoxic activity of the NK cells of these animals. Because LeIF is a conserved molecule and because SCID mice lack T and B lymphocytes but have a normal innate immune system (normal reticuloendothelial system and NK cells), these results suggest that proteins may also be included as microbial pattern recognition molecules. The nature of the receptor involved in this innate recognition is unknown. However, it is possible to exclude the Toll receptor Tlr4 as a putative LeIF receptor because the gene encoding this receptor is defective in C3H/HeJ mice, the mouse strain used in the present studies.  相似文献   

6.
The role of CD94/NKG2 in innate and adaptive immunity   总被引:7,自引:0,他引:7  
CD94/NKG2 is a heterodimer expressed on natural killer (NK) and a small subset of T cells. This receptor varies in function as an inhibitor or activator depending on which isoform of NKG2 is expressed. The ligand for CD94/NKG2 is HLA-E in human and its homolog, Qa1 in mouse, which are both nonclassical class I molecules that bind leader peptides from other class I molecules. Although <5% of CD8 T cells express the receptor in a naïve mouse, its expression is upregulated upon specific recognition of antigen. Similar to NK cells, most CD8 T cells that express high levels of CD94 co-express NKG2A, the inhibitory isoform. The engagement of this receptor can lead to a blocking of cytotoxicity. However, these receptors have also been implicated in the cell survival of both NK and CD8T cells. The level of CD94 expression is inversely correlated with the level of apoptosis in culture. Thus, CD94/NKG2 receptors may regulate effector functions and cell survival of NK cells and CD8 T cells, thereby playing a crucial role in the innate and adaptive immune response to a pathogen.  相似文献   

7.
The non-classical major histocompatibility complex (MHC) class I molecule human leucocyte antigen (HLA)-E is the least polymorphic of all the MHC class I molecules and acts as a ligand for receptors of both the innate and the adaptive immune systems. The recognition of self-peptides complexed to HLA-E by the CD94-NKG2A receptor expressed by natural killer (NK) cells represents a crucial checkpoint for immune surveillance by NK cells. However, HLA-E can also be recognised by the T-cell receptor expressed by alphabeta CD8 T cells and therefore can play a role in the adaptive immune response to invading pathogens. The recent resolution of HLA-E in complex with both innate and adaptive ligands has provided insight into the dual role of this molecule in immunity.  相似文献   

8.
自噬的免疫调节作用和机制   总被引:2,自引:2,他引:0  
自噬是细胞内降解细胞成分的主要通道,对生物体的生存、分化、发育和维持其动态平衡具有关键作用。自噬机制既可作为免疫系统清除细胞内病原物质的效应器,也可作为模式识别受体或细胞因子的效应器,帮助免疫系统确认病原侵入和细胞转化。更为重要的是,自噬过程还可通过将细胞内物质转移到溶酶体降解并呈递给Ⅱ型MHC分子,与细胞应激和炎症反应耦联,参与调节固有免疫和适应性免疫反应。对自噬参与免疫反应分子机制的研究将加深对免疫反应分子机制的全面了解,为自噬相关疾病防治提供新的机会和途径。  相似文献   

9.
Innate immune recognition of microbe-associated molecular patterns by multiple families of pattern-recognition molecules such as Toll-like receptors and Nod-like receptors instructs the innate and adaptive immune system to protect the host from pathogens while also acting to establish a beneficial mutualism with commensal organisms. Although this task has been thought to be performed mainly by specialized antigen-presenting cells such as dendritic cells, recent observations point to the idea that innate immune recognition by stromal cells has important implications for the regulation of mucosal homeostasis as well as for the initiation of innate and adaptive immunity.  相似文献   

10.
CD94 molecules have been suggested to function as inhibitory natural killer cell (NK) receptors involved in the recognition of HLA-B alleles sharing the Bw6 supertypic specificity. In this study, we show that CD94 molecules may play a more general role: they are also involved in the recognition of other HLA class I molecules, including HLA-C and at least some HLA-A alleles. The inhibitory effect mediated by CD94 molecules on NK cytolytic activity is lower in magnitude than that of bona fide inhibitory receptors such as p58 or p70. Distinct from the other human NK receptors involved in HLA class I recognition, CD94 is expressed on virtually all NK cells. In addition, it has been shown to be functionally heterogeneous since, in different clones, CD94 mediated either cell triggering or inhibition. Although NK cells expressing inhibitory CD94 molecules are usually characterized by a CD94bright phenotype, there is no precise correlation between fluorescence intensity and inhibitory or activating function. Here, we describe two novel monoclonal antibodies (mAb) which selectively recognize inhibitory CD94 molecules and bind to a subset (variable in size among different donors) of CD94bright cells. The use of these mAb allows the direct assessment of NK cells expressing inhibitory CD94 receptors both at the population and at the clonal level.  相似文献   

11.
Innate immunity and its role against infections.   总被引:5,自引:0,他引:5  
LEARNING OBJECTIVES: This article reviews current concepts of the innate immune system that offers protection against infections. It offers an overview for the readers to understand how innate immunity, consisting of different receptors, cells, and mediators recognizes pathogens and exerts protective function against pathogens. DATA SOURCES AND STUDY SELECTION: MEDLINE-search articles including original research papers, review articles, textbooks, and references identified from bibliographies of relevant articles. RESULTS AND CONCLUSIONS: The innate immune system is nonspecific immunity present since birth not requiring repeated exposure to pathogens. It is capable of differentiation between self and nonself. Because of its nonspecificity, it has a broad spectrum of resistance to infection. Further, it is thought to play an important role in the control of adaptive immunity by regulating co-stimulatory molecules and effector cytokines. Innate immunity includes pattern recognition molecules/receptors, antimicrobial peptides, the complement system, inflammatory mediators, and cytokines produced by immune cells. Pattern recognition molecules/receptors recognize pathogen-associated molecular patterns that are essential for microorganisms' survival and pathogenicity. Although innate immunity has recently gained increasing importance, further studies are necessary for a better understanding of its role.  相似文献   

12.
A full innate immune system (e.g. complement system, scavenger receptors, Toll-like receptors (TLR)) has been described in the CNS and is thought to be an extremely efficient army designed to fight against invading pathogens and toxic cell debris such as apoptotic cells and amyloid fibrils. The binding of soluble or secreted innate immune molecules on pathogen-associated molecular patterns (PAMPs) as well as apoptotic cell-associated molecular patterns (ACAMPs) provide several "eat me" signals to promote the safe disposal of the intruders by professional and amateur phagocytes. These patterns are deciphered by receptors (pattern recognition receptors, PRRs; e.g. CR3) that control phagocytosis and associated inflammatory response depending on the meaning of these signals. Importantly, in order to avoid excessive collateral damage of surrounding cells, it is increasingly evident that "don't eat me" signals (coined herein as self-associated molecular patterns, SAMPs; e.g. complement regulatory proteins, CD200) are of paramount importance to signal a robust anti-inflammatory response and promote tissue repair. Further knowledge of the innate immune response in the CNS will greatly help to delineate the novel therapeutic routes to protect from CNS inflammation and neurodegeneration.  相似文献   

13.
Autophagy is a specialized cellular pathway involved in maintaining homeostasis by degrading long-lived cellular proteins and organelles. Recent studies have demonstrated that autophagy is utilized by immune systems to protect host cells from invading pathogens and regulate uncontrolled immune responses. During pathogen recognition, induction of autophagy by pattern recognition receptors leads to the promotion or inhibition of consequent signaling pathways. Furthermore, autophagy plays a role in the delivery of pathogen signatures in order to promote the recognition thereof by pattern recognition receptors. In addition to innate recognition, autophagy has been shown to facilitate MHC class II presentation of intracellular antigens to activate CD4 T cells. In this review, we describe the roles of autophagy in innate recognition of pathogens and adaptive immunity, such as antigen presentation, as well as the clinical relevance of autophagy in the treatment of human diseases.  相似文献   

14.
Royet J 《Molecular immunology》2004,41(11):1063-1075
The vertebrate innate immune system recognizes infectious non-self by employing a set of germline-encoded receptors such as nucleotide-binding oligomerisation domain proteins (NODs) or Toll-like receptors (TLRs). These proteins are involved in the recognition of various microbial-derived molecules, including lipopolysaccharide (LPS), peptidoglycan (PGN) and beta1,3-glucan. Drosophila Toll receptors are not directly dedicated to non-self recognition and insect NOD orthologues have not yet been identified. Studies started more than 20 years ago and conducted on different insect models have identified other receptors on which invertebrate innate systems rely to sense invading microorganisms.  相似文献   

15.
Innate and adaptive immune activation of macrophages (Mphi) by microorganisms and antigen-activated lymphoid cells, respectively, plays an important role in host defense and immunopathology. Antigen-presenting cells express a range of pattern recognition receptors including the class A types I and II scavenger receptors (SR-A) and Toll-like receptors (TLR). Recognition of microbial products by SR-A and TLR controls uptake, killing, altered gene expression, and the adaptive immune response; however, the contribution of each receptor and interplay with cytokine stimuli such as interferon-gamma (IFN-gamma) are not defined. We used Neisseria meningitidis (NM), a potent activator of innate immunity, and IFN-gamma, a prototypic T helper cell type 1 proinflammatory cytokine, to compare surface antigens, secretion of mediators, and receptor functions in elicited peritoneal Mphi from wild-type and genetically modified mouse strains. We show that these stimuli regulate major histocompatibility complex type II (MHC-II) and costimulatory molecules differentially, as well as expression of the mannose receptor and of Mphi receptor with collagenous structure (MARCO), a distinct SR-A, which provides a selective marker for innate activation. In combination, NM inhibited up-regulation of MHC-II by IFN-gamma while priming enhanced release of tumor necrosis factor alpha and nitric oxide. The SR-A contributes to phagocytosis of the organisms but not to their ability to induce CD80, CD86, and MARCO or to inhibit MHC-II. Conversely, studies with lipopolysaccharide (LPS)-deficient organisms and/or TLR-4 mutant mice showed that LPS and TLR-4 are at least partially required to induce CD80, CD86, and MARCO, but LPS is not required to inhibit MHC-II. These studies provide an experimental model and identify surface markers for analysis of innate and acquired immune activation of Mphi.  相似文献   

16.
For many years it was thought that T lymphocytes recognized only peptide antigens presented by MHC class I or class II molecules. Recently, it has become clear that a wide variety of lipids and glycolipids are also targets of the T cell response. This novel form of cell-mediated immune recognition is mediated by a family of lipid binding and presenting molecules known as CD1. The CD1 proteins represent a small to moderate sized family of beta2-microglobulin-associated transmembrane proteins that are distantly related to MHC class I and class II molecules. They are conserved in most or all mammals, and control the development and function of T cell populations that participate in innate and adaptive immune responses through the recognition of self and foreign lipid antigens. Here we review the current state of our understanding of the structure and function of CD1 proteins, and the role of CD1-restricted T cell responses in the immune system.  相似文献   

17.
Recognition of pathogens-associated molecular patterns (PAMPs) by Toll-like receptors (TLRs), NOD-like receptors (NLRs) and RIG-I-like receptors (RLR) plays a critical role in protecting host against pathogens. In addition, TLR and NLR also recognize danger-associated molecular patterns (DAMPs) to initiate limited innate immune responses. While innate immune response to DAMPs may be important for tissue repairs and wound healing, it is normally well controlled to avoid autoimmune destruction. Recent data support a role for sialoside-based pattern recognition by members of the Siglec family to attenuate innate immunity. In particular, since CD24-Siglec 10/G interaction selectively dampens host response to DAMPs but not PAMPs, this sialoside-based pattern recognition may serve as a foundation to discriminate PAMPs from DAMPs.  相似文献   

18.
Platelets are nonnucleated cellular elements that play a role in the process of haemostasis, and also in various ways in innate immunity and in inflammation. Platelets also contain numerous secretory products and can exert critical roles in several aspects of haemostasis. In addition, they house and secrete a variety of cytokines, chemokines and associated molecules which behave as ligands for receptors/counterparts displayed by endothelial cells lining tissue vessels and most leukocyte subsets. These latter studies show that platelets have an important role in innate as well as adaptive immunity; thus platelets can take part in an immune directive response. Moreover, platelets display receptors for several types of cytokines/chemokines along with FcgammaRII receptors. Finally, platelets not only express a variety of Toll-like receptors, with recently identified functions or not as-yet fully identified, but have also been demonstrated to express the key tandem pair of inflammatory and antigen presentation molecules (CD40 and CD40-ligand/CD154), this latter function making them the major purveyors of soluble CD40L in the plasma. It appears that platelets may be regarded as one of the neglected components of immune cell regulators, and platelets contribute to some interesting aspects in bridging innate and adaptive immunity. We propose that platelets discriminate danger signals and adapt the subsequent responses, with polarized cytokine secretion. Platelets may recognize several types of infectious pathogens and limit microbial colonization by sequestering these pathogens and releasing immunomodulatory factors. This review allows us to re-explore indications that platelets exert direct anti-infection immunity and we will present experimentally-driven arguments in favour of a role of platelet TLR in regulating certain immune activities.  相似文献   

19.
The expansion of sensing function by cell surface Toll-like receptors (TLRs) has grown to include not only more diverse viral, bacterial, fungal and protozoan surface components, but also a plethora of endogenous molecules arising from host cell and tissue damage as well as the inflammatory response itself. This flexibility in recognition is accommodated not only by physical and structural features of the TLRs themselves, but also by additional innate immune receptors, soluble molecules and subcellular trafficking mechanisms. These events have begun to reveal a remarkable plasticity and complexity within this critical arm of the host innate immune system.  相似文献   

20.
The innate immune system existed prior to the emergence of adaptive immunity in sharks and higher vertebrates. Homologues of many mammalian innate immune-system elements such as the toll-like receptors exist in species as distant as Drosophila. Selective pressure has led to the development of highly conserved, soluble, and cell-surface receptors that recognize functionally essential molecules shared by microbial pathogens. It is thought that molecular patterns that exquisitely distinguish pathogenic cells from mammalian cells are recognized. Therefore, it would seem unlikely that innate immune-system elements should recognize mammalian tissues. However, there is increasing evidence to suggest that this is the case and that innate immunity promotes rejection of transplanted mammalian tissues, particularly those from other species (xenografts). Evidence for innate recognition of mammalian grafts, the nature of this recognition, and the bi-directional interactions between innate and adaptive immunity that contribute to graft rejection are discussed in this review, with the emphasis on nonvascular xenografts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号