首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lipoprotein apheresis and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors are last therapeutic resorts in patients with familial hypercholesterolemia (FH). We explored changes in lipoprotein subclasses and high-density lipoprotein (HDL) function when changing treatment from lipoprotein apheresis to PCSK9 inhibition.We measured the levels of low-density lipoprotein (LDL) and HDL particle subclasses, serum amyloid A1 (SAA1), paraoxonase-1 (PON1) activity and cholesterol efflux capacity (CEC) in three heterozygous FH patients. Concentrations of all LDL particle subclasses were reduced during apheresis (large 68.0?±?17.5 to 16.3?±?2.1?mg/dL, (p?=?0.03), intermediate 38.3?±?0.6 to 5.0?±?3.5?mg/dL (p?=?0.004) and small 5.0?±?2.6 to 0.2?±?0.1?mg/dL (p?=?0.08)). There were non-significant reductions in the LDL subclasses during evolocumab treatment. There were non-significant reductions in subclasses of HDL particles during apheresis, and no changes during evolocumab treatment. CEC was unchanged throughout the study, while the SAA1/PON1 ratio was unchanged during apheresis but decreased during evolocumab treatment.In conclusion, there were significant reductions in large and intermediate size LDL particles during apheresis, and a non-significant reduction in small LDL particles. There were only non-significant reductions in the LDL subclasses during evolocumab treatment.  相似文献   

2.
A 49 years old woman (weight 68 kg, BMI 27.3 kg/m2) with heterozygous familial hypercholesterolemia (HeFH) and multiple statin intolerance with muscle aches and creatine kinase elevation, presented at the Outpatient Lipid Clinic of Verona University Hospital in May 2015. Hypercholesterolemia was firstly diagnosed during adolescence, followed in adulthood by a diagnosis of Cogan's syndrome, a rheumatologic disorder characterized by corneal and inner ear inflammation. No xanthomas, corneal arcus, or vascular bruits were detectable at physical examination. Screening for macrovascular complications did not reveal relevant damages. Ongoing medical therapy included salicylic acid, methylprednisolone, methotrexate, and protonic‐pump inhibitor. In the absence of specific lipid‐lowering therapy, plasma lipid levels at first visit were: total‐cholesterol = 522 mg/dL, LDL‐cholesterol = 434 mg/dL, HDL‐cholesterol = 84 mg/dL, triglycerides = 120 mg/dL, Lp(a) = 13 mg/dL. On December 2015, evolocumab 140 mg sc every 2 weeks was initiated. After a 24‐week treatment, the LDL‐cholesterol levels decreased by an average of 21.2% to 342 ± 22 mg/dL (mean ± SD). On May 2016, LDL‐apheresis (H.E.L.P.system) was started as add‐on therapy. Compared to the average levels obtained during the evolocumab monotherapy period, the LDL‐cholesterol was reduced by 49.4%, thus reaching an inter‐apheresis level (mean ± SD) of 173 ± 37 mg/dL. This report suggests that a combination therapy with evolocumab and lipoprotein‐apheresis may have synergic effects on circulating lipid levels. Its relevance as a highly effective treatment option for hyperlipidemia in HeFH patients warrants further investigation in larger datasets.  相似文献   

3.
A subset of patients with familial hypercholesterolemia (FH) have an inadequate lipid-lowering response to diet and drug treatment and should be considered for low-density lipoprotein (LDL)-apheresis therapy. This procedure selectively removes apolipoprotein B-containing particles [LDL, very-low-density lipoprotein, lipoprotein(a)] from plasma independent of diet and drug therapy. Methods for performing LDL-apheresis include dextran sulfate cellulose adsorption, immunoadsorption, and heparin-induced extracorporeal precipitation. The Liposorber Study Group evaluated LDL removal using the Liposorber® LA-15 LDL-apheresis System in 64 patients with FH who had not responded adequately to diet and maximal drug therapy. Mean acute reductions in LDL cholesterol (LDL-C) were 76% in heterozygous FH (HtFH) patients and 81% in homozygous FH (HoFH) patients. Time-averaged levels of LDL-C were lowered 41% in HtFH and 53% in HoFH patients. Hypotension was the most frequent side effect, occurring in 3% of procedures. The Liposorber® LA-15 System has been approved by the Food and Drug Administration and is recommended for 1) patients with functional homozygous FH (LDL-C level >500 mg/dL; 2) patients with coronary artery disease (CAD) and LDL-C levels ≥200 mg/dL; 3) patients without CAD, but an LDL-C level ≥300 mg/dL. © 1996 Wiley-Liss, Inc.  相似文献   

4.
Low density lipoprotein (LDL) apheresis is at present one method of treatment in homozygous cases of familial hypercholesterolemia (FH). It is also effective in the prevention of the development of coronary atherosclerosis in patients with heterozygous FH and other types of mild hypercholesterolemia, leading to the regression of the stenosing lesions. In this paper, an overview is presented on the development of the devices for LDL apheresis and its short- and long-term effects on FH mainly based upon experience with the Liposorber system. LDL apheresis has served to protect the lives of patients from life threatening diseases like myocardial infarction although observations for more than 10 years in some laboratories have shown that the progression of atherosclerosis has taken place in many patients, and more importantly, the involvement of the aortic valve with calcification has developed, especially in patients who had homozygous FH, making this the most obstinate complication of FH. Therefore, more aggressive treatment or the combination of LDL apheresis with other therapies is required in the future. LDL apheresis has also been approved for the treatment of glomerulosclerosis and arteriosclerosis obliterans.  相似文献   

5.
Correlations between serum cholesterol levels and progression of coronary and peripheral atherosclerosis have been found in many recent studies. It has also been demonstrated that aggressive cholesterol-lowering therapy with low-density lipoprotein (LDL) apheresis, a method of LDL elimination by extracorporeal circulation, is effective not only for coronary artery disease, but also for systemic circulatory disturbance in severe hypercholesterolemic patients with familial hypercholesterolemia (FH) in particular. We found that LDL apheresis treatment with medical therapy improved coronary atherosclerotic lesions, based on coronary angiography evaluation and histopathological observation, suppressed progression of early carotid atherosclerotic lesions on annual B-mode ultrasonography, and improved diabetic scleredema in FH patients. This effectiveness of LDL apheresis appears to be due to recovery of vascular endothelial function and improvement of blood rheology. For diseases that are possibly due to circulation disturbance and that are intractable with drugs alone. LDL apheresis may be worth trying, particularly for patients complicated by hyperlipemia.  相似文献   

6.
The long-term effects of low-density lipoprotein (LDL) apheresis (LA) on the progression and regression of atherosclerosis were evaluated by angiographic and pathological findings as well as ultrasonography based studies, and the clinical significance of the treatment was evaluated. We studied 11 patients with familial hypercholesterolemia (FH), 2 with homozygous FH and 9 with severe heterozygous FH who received combined LA and drug therapy for a mean of 7.7 years. During the treatment period, the mean time-averaged level of LDL cholesterol was 181+/-52 mg/dl. According to the coronary angiographic results, 3 patients showed regression, 6 patients showed progression, and 2 patients showed no change. Cardiac events occurred in 6 patients. We pathologically examined at autopsy the coronary arteries of 1 FH patient who had received long-term LA therapy before death. The results revealed the process of scarring of atheromatous plaque, suggesting pathological regression correlated with the angiographic regression shown in serial angiograms taken during LA treatment. It was further suggested that the formation of an eccentric thick end wall lesion rich in collagen fiber prevented atheromatous plaque from tearing off. However, the annual progression rate of the mean maximal intima-media thickness in the common carotid artery was 0.0002 mm/year in the LA group, which was significantly lower than the mean of 0.251 mm/year seen in the control group (drug therapy only group). In the patients with heterozygous FH (9 patients), the annual progression rate was lowered to 0.0023 mm/year, suggesting regression. The findings of the present study indicate that patients with severe FH refractory to drug treatment may benefit from more aggressive cholesterol lowering treatments such as LA combined with cholesterol lowering drug therapy. The progression of atherosclerosis may be prevented, plaque may be stabilized (regressed), and clinical events may be reduced as seen with patients with non-FH hypercholesterolemia.  相似文献   

7.
New recommendations for the indication of treatment with selective extracorporeal plasma therapy low-density lipoprotein apheresis (LDL-apheresis) in the prevention of coronary heart disease are urgently needed. The following points are the first results of the ongoing discussion process for indications for LDL-apheresis in Germany: all patients with homozygous familial hypercholesterolemia with functional or genetically determined lack or dysfunction of LDL receptors and plasma LDL cholesterol levels >13.0 mmol/L (>500 mg/dL); patients with coronary heart disease (CHD) documented by clinical symptoms and imaging procedures in which over a period of at least 3 months the plasma LDL cholesterol levels cannot be lowered below 3.3 mmol/L (130 mg/dL) by a generally accepted, maximal drug-induced and documented therapy in combination with a cholesterol-lowering diet; and patients with progression of their CHD documented by clinical symptoms and imaging procedures and repeated plasma Lp(a) levels >60 mg/dL, even if the plasma LDL cholesterol levels are lower than 3.3 mmol/L (130 mg/dL). Respective goals for LDL cholesterol concentrations for high-risk patients have been recently defined by various international societies. To safely put into practice the recommendations for LDL-apheresis previously mentioned, standardized treatment guidelines for LDL-apheresis need to be established in Germany that should be supervised by an appropriate registry.  相似文献   

8.
The chief indication for low density lipoprotein (LDL) apheresis is the treatment of homozygous familial hypercholesterolemia (FH), a potentially fatal condition that responds poorly to conventional therapy. Dextran sulfate/cellulose adsorption columns (Kaneka) and on-line heparin precipitation (HELP) are the most popular systems used in LDL apheresis. Weekly or biweekly procedures plus concomitant drug therapy enable LDL cholesterol to be maintained at 30-50% of its untreated level, with regression of xanthomas, arrest of progression of coronary atherosclerosis, and improved life expectancy. However, aortic stenosis may progress despite apheresis and necessitate valve replacement. Better control of hypercholesterolemia results from combining apheresis with a new 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, atorvastatin. LDL apheresis can also be useful in treating drug-resistant FH heterozygotes with coronary disease. However, the FH Regression Study showed no evidence that reduction by apheresis of both LDL and lipoprotein(a), was more advantageous than reduction by combination drug therapy of LDL alone.  相似文献   

9.
Familial hypercholesterolemia (FH) can cause early disability and death from premature atherosclerotic cardiovascular disease. Patients homozygous for the disease have very high plasma cholesterol, extensive xanthomatosis, and die from atherosclerosis in childhood or early adulthood. Past attempts to improve the prognosis included removal of cholesterol from the circulation by ileal bypass or biliary diversion. Neither treatment was successful. Direct removal by plasmapheresis of low-density lipoprotein (LDL), the primary carrier of cholesterol in plasma, was first performed on an FH homozygous patient in 1966. The treatment was well tolerated and led to rapid diminution of xanthomas. Other experimental treatments included selective LDL apheresis with monoclonal or polyclonal antibody affinity columns. A method for selective LDL apheresis was developed in 1983 by Armstrong, Seidel, and colleagues based on heparin precipitation of LDL at low pH. This method, called HELP, removes all apolipoprotein B-containing lipoproteins including LDL and lipoprotein (a), as well as some fibrinogen. LDL apheresis by HELP is well tolerated; the incidence of side effects is low, and the treatment has been associated with regression of cardiovascular disease. LDL apheresis, rather than liver transplantation, is the treatment of choice for patients with severe, life-threatening hypercholesterolemia which does not respond to diet and drug therapy. © 1996 Wiley-Liss, Inc.  相似文献   

10.
LDL apheresis has been developed as the treatment for refractory familial hypercholesterolemia (FH). Currently, plasma exchange, double membrane filtration, and selective LDL adsorption are available in Japan, and selective LDL adsorption is most common method. LDL apheresis can prevent atherosclerosis progression even in homozygous (HoFH). However, in our observational study, HoFH who started LDL apheresis from adulthood had poor prognosis compared with patients who started from childhood. Therefore, as far as possible, HoFH patients need to start LDL apheresis from childhood. Although indication of LDL apheresis in heterozygous FH (HeFH) has been decreasing with the advent of strong statin, our observational study showed that HeFH patients who were discontinued LDL apheresis therapy had poor prognosis compared with patients who were continued apheresis therapy. These results suggest that high risk HeFH need to be treated by LDL apheresis even if their LDLC is controlled by lipid-lowering agents. However, by launching new class of lipid lowering agents, that is, PCSK-9 antibody and MTP inhibitor, indication of LDL-apheresis in FH may be changed near the future. LDL-apheresis can provide symptom relief of peripheral artery disease (PAD). Therefore, PAD patients who have insufficient effect by other therapeutic approach including revascularization are also treated by LDL apheresis. Thus, LDL apheresis is still one of good therapeutic options for severe atherosclerotic diseases in Japan.  相似文献   

11.
BACKGROUND: Familial hypercholesterolemia (FH) is characterized by an autosomal dominantly inherited deficiency of LDL-receptor expression on the cell surface, leading to excess plasma LDL-cholesterol and severe premature atherosclerosis. In patients with heterozygous FH, a major therapeutic objective of conventional drug therapy is to stimulate maximally the residual cellular capacity to produce LDL-receptors via inhibition of endogenous cholesterol synthesis. In contrast, LDL-immunoapheresis aims at reducing the plasma LDL-cholesterol level by extracorporeal elimination of LDL particles. The present study investigates whether LDL-immunoapheresis applied in addition to conventional drug therapy is able to further stimulate residual LDL-receptor expression capacity in patients with heterozygous FH via the withdrawal of external cholesterol supply, thereby exerting a second accessory lipid lowering effect. METHODS: LDL-receptor expression--calculated by transforming mean fluorescence intensities into numbers of antibody binding sites per cell (S/C)--was determined flow-cytometrically on peripheral blood monocytes before and after LDL-apheresis. For a comparison with the maximum obtainable receptor expression capacity, in vitro stimulation experiments under completely LDL deficient conditions were performed. RESULTS: Prior to LDL-apheresis, LDL-receptor density was comparable in patients (N = 7; 2014 +/- 359 S/C) and controls (N = 10; 1782 +/- 252 S/C). Under in vitro conditions LDL-receptor expression of controls exceeded that of patients with FH by 1.6 times. Immediately after apheresis, LDL-receptor expression significantly increased to almost the same level as obtained by in vitro stimulation (3640 +/- 423 S/C and 3632 +/- 572 S/C). The LDL-receptor expression in FH subsequent to LDL-apheresis exhibited two patterns of kinetics [Type 1: maximal receptor stimulation (288 +/- 70%; P < 0.07) already during apheresis; Type 2: highest receptor density 24 hours after treatment (149 +/- 11%; P < 0.01)]. CONCLUSIONS: These results demonstrate that despite drug therapy, LDL-apheresis significantly stimulates the residual LDL-receptor expression in FH via the reduction of available extracellular cholesterol resulting in delayed reappearance of hypercholesterolemia in between treatments.  相似文献   

12.
Hypercholesterolemia can be adequately controlled by appropriate diet and maximum lipid lowering drug therapy in most patients. Nevertheless, there exists a group of patients, including those with familial hypercholesterolemia (FH), who remain at high risk for the development or progression of premature coronary heart disease (CHD). For these patients additional measures such as surgery and low-density lipoprotein (LDL) apheresis have to be considered. The objective of this multicenter trial, which included 30 clinical centers (28 in Germany and one each in Scotland and Luxembourg), was to determine if repeated LDL apheresis using the Liposorber LA-15 system (Kaneka Corporation, Osaka, Japan) could lead to an additional acute and time averaged lowering of total cholesterol (TC) and LDL-cholesterol (LDL-C) in severely hypercholesterolemic patients whose cholesterol levels could not be controlled by appropriate diet and maximum drug therapy. A total of 6,798 treatments were performed on 120 patients, including 8 with homozygous FH, 75 with heterozygous FH, and 37 with unclassified FH or other hyperlipidemias from 1988 through 1994. The mean TC and mean LDL-C levels at baseline were 410.0 mg/dl and 333.9 mg/dl, respectively. LDL apheresis was performed once a week or at least once every 2 weeks in all patients. During treatment with the Liposorber system the mean acute percentage reduction was 52.6% for TC and 63.1% for LDL-C. Very low density lipoprotein cholesterol (VLDL-C) and triglycerides (TG) were also substantially reduced to 60.6% and 47.5%, respectively. Fibrinogen, a potential risk factor for CHD, was reduced by 26.2%. In contrast, the mean acute reduction of high density lipoprotein (HDL) was only 3.4%. During the course of the treatment, the time averaged levels of TC and LDL-C were reduced by approximately 39% and 50%, respectively, compared to baseline levels. The adverse events (AEs) were those generally associated with extracorporeal treatments. The most common AE was hypotension, with 69 episodes corresponding to 1% of all treatments reported in 44 of the 120 patients treated. All other kinds of AEs occurred in less than 0.2% of the treatments. The treatment with the Liposorber LA-15 system was overall well tolerated. It should be noted, however, that a more severe type of hypotensive reaction associated with flush, bradycardia, and dyspnea was reported in patients taking concomitant angiotensin converting enzyme (ACE) inhibitor medication. Except for such anaphylactoid-like reactions associated with the intake of ACE inhibitors, the Liposorber LA-15 system represents a safe and effective therapeutic option for patients suffering from severe hypercholesterolemia that could not be adequately controlled by diet and maximum drug therapy.  相似文献   

13.
LDL apheresis is an extracorporal modality to lower the concentration of atherogenic lipoproteins, e.g., LDL cholesterol. We compared two recently introduced whole-blood LDL apheresis systems inpatients with hypercholesterolemia in a randomized cross-over trial with respect to their effects on lipoproteins as well as on other cardiovascular risk markers. Six patients (4 women, 2 men, median age 62.5 years, median BMI 25.9 kg/m(2)) on regular LDL apheresis were randomly assigned to receive six weekly treatments with either DALI (Fresenius) or Liposorber D (Kaneka). After 6 weeks, the patients were switched to the other device (again six weekly treatments). Blood was drawn before and immediately after LDL apheresis at three time points (last regular apheresis before the study; after six treatments with DALI and after six treatments with Liposorber D). LDL cholesterol concentration before the sixth apheresis (DALI 129 mg/dL, Liposorber D 132 mg/dL) as well as LDL cholesterol reduction during the sixth apheresis (DALI 68.3% and Liposorber D 68.4%) were similar with the two systems. CRP and fibrinogen concentrations were lower but interleukin-6, myeloperoxidase, and resistin concentrations were higher after the last Liposorber treatment compared with DALI (P < 0.05, respectively). No differences were observed concerning adiponectin, ghrelin, and PYY levels. In conclusion, both devices were highly effective in eliminating atherogenic lipoproteins. CRP and fibrinogen were better eliminated with Liposorber D. However, following Liposorber D, interleukin-6 levels were higher than after DALI possibly indicating an increased inflammatory activation.  相似文献   

14.
It has been reported that serum lipoprotein(a) (Lp[a]) levels in patients with restenosis after percutaneous transluminal coronary angioplasty (PTCA) were significantly higher than in patients without restenosis. In this study, we evaluated the preventive effect of LDL apheresis on restenosis after PTCA in patients with hypercholesterolemia. For 10 patients who had shown a serum cholesterol level of more than 220 mg/dl despite treatment with antihypercholesterolemic drugs, LDL apheresis was conducted every 2 weeks after a successful PTCA until restenosis could be checked. In 4 patients, LDL apheresis was conducted for 2 years. LDL apheresis significantly reduced serum cholesterol from 248 +/- 22 mg/dl to 135 +/- 26 mg/dl and Lp(a) from 42 +/- 34 mg/dl to 21 +/- 16 mg/dl. The average degree of stenosis in the 11 lesions undergoing PTCA was 92 +/- 6% before PTCA, 35 +/- 10% immediately after PTCA, and 38 +/- 19% at 3 to 4 months after PTCA. Restenosis was observed in only 1 lesion. In 4 patients who received LDL apheresis for 2 years, restenosis did not occur in any of the 4 lesions treated. We concluded that LDL apheresis was an efficacious therapy to prevent restenosis after PTCA in patients with hypercholesterolemia.  相似文献   

15.
Elevated lipoprotein(a) (Lp[a]) is a causal genetic risk factor for cardiovascular disease. To determine if current evidence supports both screening and treatment for elevated Lp(a) in high-risk patients, an English-language search of PubMed and MEDLINE was conducted. In population studies, there is a continuous association between Lp(a) concentrations and cardiovascular risk, with synergistic effects when low-density lipoprotein (LDL) is also elevated. Candidates for Lp(a) screening include patients with a personal or family history of premature cardiovascular disease, familial hypercholesterolemia, recurrent cardiovascular events, or inadequate LDL cholesterol (LDL-C) responses to statins. Given the comparative strength of clinical evidence, reducing LDL-C to the lowest attainable value with a high-potency statin should be the primary focus of lipid-modifying therapies. If the Lp(a) level is 30 mg/dL or higher in a patient who has the aforementioned characteristics plus residual LDL-C elevations (≥70-100 mg/dL) despite maximum-potency statins or combination statin therapy, the clinician may consider adding niacin (up to 2 g/d). If, after these interventions, the patient has progressive coronary heart disease (CHD) or LDL-C levels of 160-200 mg/dL or higher, LDL apheresis should be contemplated. Although Lp(a) is a major causal risk factor for CHD, no currently available controlled studies have suggested that lowering it through either pharmacotherapy or LDL apheresis specifically and significantly reduces coronary risk. Further research is needed to (1) optimize management in order to reduce CHD risk associated with elevated Lp(a) and (2) determine what other intermediate- or high-risk groups might benefit from Lp(a) screening.  相似文献   

16.
We present a 59-year-old woman with severe diabetic scleredema (DS) associated with heterozygous familial hypercholesterolemia (FH). She had been treated with drugs to lower blood glucose, with insulin for diabetes mellitus (DM), and with low-density lipoprotein (LDL) apheresis therapy monthly or every 2 weeks in addition to drugs to lower serum lipids for FH. However, her scleredema had not improved. After we had tried weekly LDL apheresis therapy for a period of 3 years to treat her hyperlipidemia, the levels of her serum lipids were reduced to normal ranges, and scleredema in her nape improved. We also demonstrated the histopathological improvement in dermis of her cervical skin. We conclude that weekly LDL apheresis therapy is effective for diabetic scleredema that is resistant to conventional treatments.  相似文献   

17.
The laboratory results of five periods of different treatment regimens were compared in a 19-year-old girl with homozygous familial hypercholesterolemia (FH): weekly low-density lipoprotein (LDL) apheresis sessions with dextran sulfate columns (LA 15, Kaneka Corporation, Osaka, Japan) without statin administration; weekly LDL apheresis with polyacrylate columns (DALI, Fresenius Adsorber Technology, Bad Homburg, Germany) without statin; LDL apheresis as in Period 2 with 40 mg atorvastatin daily; LDL apheresis as in Period 2 with 80 mg atorvastatin daily; and fortnightly LDL apheresis sessions with polyacrilate and administration of 80 mg atorvastatin daily. The five treatments were given in the above order, and each lasted at least 2 months. To compare the effectiveness of the different methods, the blood levels of total cholesterol, LDL-cholesterol and high-density lipoprotein (HDL)-cholesterol were measured before each session, and the percentage decreases in the blood levels of total cholesterol and LDL-cholesterol were recorded during sessions in Periods 1 and 2. In Periods 1 and 2, the biological effectiveness of LDL apheresis was comparable. Atorvastatin (40 mg daily) improved the blood levels of total cholesterol and LDL-cholesterol, but lowered HDL-cholesterol values. Increasing the daily dose of atorvastatin from 40 mg to 80 mg did not significantly improve LDL-cholesterol levels. When the time between two sessions was longer (Period 5), the total cholesterol and LDL-cholesterol values worsened and were comparable to those of Period 2 during which there was no atorvastatin treatment. In this case of homozygous FH, weekly sessions of LDL apheresis in association with atorvastatin at dose of 40 mg per day gave the best results.  相似文献   

18.
Extracorporeal procedures for selective removal of low-density lipoproteins have become a promising new approach for treatment of severe familial hypercholesterolemia. We tested efficacy and safety of a new LDL apheresis system by using two dextran sulfate cellulose adsorbents (Liposorber LA 15TM from Kanegafuchi) under the control of an automatic column-regenerating unit for continuous alternate adsorption and desorption. Plasma was taken from a continuous-flow blood cell separator (model IBM/Cobe 2997) allowing an extracorporeal circuit from one cubital vein to another. A 57-year-old male with drug-resistant heterozygous familial hypercholesterolemia accompanied by moderate hypertriglyceridemia and severe coronary artery disease has been treated every 2 weeks for 3 months so far. Treatment of 4-5 liters of plasma resulted in a mean decrease of total cholesterol from 355 to 111 mg/dl (9.20 to 2.88 mmol/l), of LDL cholesterol from 272 to 49 mg/dl (7.05 to 1.53 mmol/l), and of apolipoprotein B from 175 to 44 mg/dl. HDL cholesterol, apolipoprotein A-I, and other plasma proteins did not substantially change apart from hemodilution. No side effects were seen. This new technique of LDL apheresis represents a very effective and safe method for treatment of drug-resistant familial hypercholesterolemia without or with concomitant hypertriglyceridemia.  相似文献   

19.
Apheresis technology for prevention and regression of atherosclerosis.   总被引:5,自引:0,他引:5  
Familial hypercholesterolemia (FH) is a congenital disorder of cholesterol metabolism, which is due to a deficiency in low-density lipoprotein (LDL) receptors. The homozygous form of FH is especially liable to coronary artery disease (CAD) in youth because of the very high LDL-cholesterol levels. It is resistant to drug therapy, and LDL-apheresis is the only practical way of treatment for these patients. Some patients with heterozygous FH also have high LDL-cholesterol levels that cannot be brought down into the optimum range by any combination drug therapy. We have treated or are treating 10 homozygous and 28 heterozygous FH patients in our hospital or in affiliated hospitals expert in blood purification. Among the 10 homozygous patients, 2 died of myocardial infarction. Only one young female patient is still free of symptoms, and the other patients have been suffering from regurgitation through the aortic valve although they have not experienced myocardial infarction. Rapid rebound of LDL-cholesterol after each apheresis treatment limits the period during which LDL-cholesterol is in the optimum range. The use of atorvastatin at a high dose (40 mg/day) was attempted to suppress this rebound. In contrast with good results in receptor-defective-type patients, receptor-negative-type patients did not show a response in LDL-cholesterol levels to the statin therapy although there was a slight increase in high-density lipoprotein (HDL)-cholesterol with a decrease in very-low-density lipoprotein-triglyceride and -cholesterol. Follow-up study of the patients with heterozygous FH revealed that LDL-apheresis was effective in lengthening the life expectancy of the patients with pre-existing CAD, especially those who had received intervention coronary artery bypass grafting (CABG) or percutaneous transluminal coronary angioplasty (PTCA). It was also shown that the use of probucol in combination with LDL-apheresis was effective in reducing coronary events as shown by the necessity of CABG or PTCA. Clinical data on the effect of LDL-apheresis, recently reported from some other institutions in Japan, will also be reviewed.  相似文献   

20.
Objective : Familial hypercholesterolemia (FH) can be due to mutations in LDLR, PCSK9, and APOB. In phenotypically defined patients, a subset remains unresponsive to lipid‐lowering therapies and requires low density‐lipoprotein (LDL) apheresis treatment. In this pilot study, we examined the genotype/phenotype relationship in patients with dyslipidemia undergoing routine LDL apheresis. Design : LDLR, APOB, and PCKS9 were analyzed for disease‐causing mutations in seven patients undergoing routine LDL apheresis. Plasma and serum specimens were collected pre‐ and post‐apheresis and analyzed for lipid concentrations, Lp(a) cholesterol, and lipoprotein particle concentrations (via NMR). Results : We found that four patients harbored LDLR mutations and of these, three presented with xanthomas. While similar reductions in LDL‐cholesterol (LDL‐C), apolipoprotein B, and LDL particles (LDL‐P) were observed following apheresis in all patients, lipid profile analysis revealed the LDLR mutation‐positive cohort had a more pro‐atherogenic profile (higher LDL‐C, apolipoprotein B, LDL‐P, and small LDL‐P) pre‐apheresis. Conclusion : Our data show that not all clinically diagnosed FH patients who require routine apheresis have genetically defined disease. In our small cohort, those with LDLR mutations had a more proatherogenic phenotype than those without identifiable mutations. This pilot cohort suggests that patients receiving the maximum lipid lowering therapy could be further stratified, based on genetic make‐up, to optimize treatment. J. Clin. Apheresis 29:256–265, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号