首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1.?Icaritin is a natural flavonoid with anti-osteoporosis activity. This study aimed to characterize icaritin glucuronidation by pooled human liver microsomes (HLM) and pooled human intestine microsomes (HIM), and to determine the contribution of individual UDP-glucuronosyltrans-ferase (UGT) enzyme to icaritin glucuronidation.

2.?Glucuronidation rates were determined by incubating icaritin with uridine diphosphate glucuronic acid (UDPGA)-supplemented microsomes. Kinetic parameters were derived by appropriate model fitting. Relative activity factors and activity correlation analysis were performed to identify main UGT isoforms.

3.?UGT1A3, 1A7, 1A8, 1A9 and 2B7 were mainly responsible for catalyzing the formation of two glucuronides (G1 and G2). Icaritin 3-O-glucuronidation (G1) was significantly correlated with Chenodeoxycholic acid (CDCA) glucuronidation (r?=?0.787, p?=?0.002), propofol glucuronidation (r?=?0.661, p?=?0.019) and Zidovudine (AZT) glucuronidation (r?=?0.805, p?=?0.002). Similarly, icaritin 7-O-glucuronidation (G2) was also correlated with CDCA glucuronidation (r?=?0.640, p?=?0.025), propofol glucuronidation (r?=?0.592, p?=?0.043) and AZT glucuronidation (r?=?0.661, p?=?0.019). In addition, UGT1A3, 1A9 and 2B7 contributed 37.5, 33.8 and 21.3% for G1 in pooled HLM, respectively. Also, UGT1A3, 1A9 and 2B7 contributed 34.3, 20.0 and 8.6% for G2 in pooled HLM, respectively.

4.?Icaritin was subjected to significant glucuronidation, wherein UGT1A3, 1A7, 1A8, 1A9 and 2B7 were main contributing enzymes.  相似文献   

2.
1.?Belinostat is a histone deacetylase inhibitor that has been approved for the treatment of peripheral T-cell lymphoma. This study aimed to identify the UDP-glucuronosyltransferase (UGT) enzymes responsible for belinostat glucuronidation through kinetic determination using recombinant enzymes with determined enzyme concentrations.

2.?The rate of glucuronidation was determined by incubation of belinostat with enzyme preparations. Kinetic parameters such as Km and Vmax were derived by fitting an appropriate model to the glucuronidation data. The role of active UGT enzymes to belinostat metabolism was evaluated using inhibition experiments and activity correlation analyses.

3.?Human liver microsomes generated a glucuronide metabolite (i.e. belinostat glucuronide) from belinostat. The glucuronide structure was confirmed by high-resolution mass spectrometry as well as the fragmentation pattern. Of 12 test UGT enzymes, only four (UGT1A1, 1A3, 2B4, and 2B7) showed metabolic activities toward belinostat. UGT1A1 was the most active enzyme, followed by UGT2B7, 1A3, and 2B4. Kinetic profiles for UGT1A1, 1A3, 2B4, and 2B7 were well described by Michaelis–Menten, Michaelis–Menten, Hill equation, and substrate inhibition equation, respectively.

4.?Glucuronidation of belinostat was markedly inhibited by emodin and apigenin (two potent inhibitors of UGT1A1), and by quinidine and diclofenac sodium (two selective inhibitors of UGT2B7). Belinostat glucuronidation was found to be significantly correlated with β-estradiol 3-O-glucuronidation and zidovudine glucuronidation.

5.?It was concluded that in addition to UGT1A1, UGT2B7 was also an important contributor to belinostat glucuronidation.  相似文献   

3.
Abstract

1.?Aprepitant, an oral antiemetic, commonly used in the prevention of chemotherapy-induced nausea and vomiting, is primarily metabolized by CYP3A4. Aprepitant glucuronidation has yet to be evaluated in humans. The contribution of human UDP-glucuronosyltransferase (UGT) isoforms to the metabolism of aprepitant was investigated by performing kinetic studies, inhibition studies and correlation analyses. In addition, aprepitant was evaluated as an inhibitor of UGTs.

2.?Glucuronidation of aprepitant was catalyzed by UGT1A4 (82%), UGT1A3 (12%) and UGT1A8 (6%) and Kms were 161.6?±?15.6, 69.4?±?1.9 and 197.1?±?28.2?µM, respectively. Aprepitant glucuronidation was significantly correlated with both UGT1A4 substrates anastrazole and imipramine (rs?=?0.77, p?<?0.0001 for both substrates; n?=?44), and with the UGT1A3 substrate thyroxine (rs?=?0.58, p?<?0.0001; n?=?44).

3.?We found aprepitant to be a moderate inhibitor of UGT2B7 with a Ki of ~10?µM for 4-MU, morphine and zidovudine. Our results suggest that aprepitant can alter clearance of drugs primarily eliminated by UGT2B7. Given the likelihood for first-pass metabolism by intestinal UGT2B7, this is of particular concern for oral aprepitant co-administered with oral substrates of UGT2B7, such as zidovudine and morphine.  相似文献   

4.
1.?Bisphenol-A is a ubiquitous environmental contaminant that is primarily metabolized by glucuronidation and associated with various human diseases including breast cancer. Here we identified UDP-glucuronosyltransferases (UGTs) and genetic polymorphisms responsible for interindividual variability in bisphenol-A glucuronidation in human liver and breast.

2.?Hepatic UGTs showing the highest bisphenol-A glucuronidation activity included UGT2B15 and UGT1A9. Relative activity factor normalization indicated that UGT2B15 contributes?>80% of activity at bisphenol-A concentrations under 5?μM, while UGT1A9 contributes up to 50% of activity at higher concentrations.

3.?Bisphenol-A glucuronidation by liver microsomes (46 donors) ranged from 0.25 to 4.3 nmoles/min/mg protein. Two-fold higher glucuronidation (p?=?0.018) was observed in UGT1A9 *22/*22 livers compared with *1/*1 and *1/*22 livers. However, no associations were observed for UGT2B15*2 or UGT1A1*28 genotypes.

4.?Bisphenol-A glucuronidation by breast microsomes (15 donors) ranged from <0.2 to 56 fmoles/min/mg protein. Breast mRNA expression of UGTs capable of glucuronidating bisphenol-A was highest for UGT1A1, followed by UGT2B4, UGT1A9, UGT1A10, UGT2B7 and UGT2B15. Bisphenol-A glucuronidation was over 10-fold lower in breast tissues with the UGT1A1*28 allele compared with tissues without this allele (p?=?0.006).

5.?UGT2B15 and UGT1A9 contribute to glucuronidation variability in liver, while UGT1A1 is important in breast.  相似文献   

5.
1.?Raloxifene is an antiestrogen that has been marketed for the treatment of osteoporosis, and is metabolized into 6- and 4′-glucuronides by UDP-glucuronosyltransferase (UGT) enzymes. In this study, the in vitro glucuronidation of raloxifene in humans and monkeys was examined using liver and intestinal microsomes and recombinant UGT enzymes (UGT1A1, UGT1A8 and UGT1A9).

2.?Although the Km and CLint values for the 6-glucuronidation of liver and intestinal microsomes were similar between humans and monkeys, and species differences in Vmax values (liver microsomes, humans?>?monkeys; intestinal microsomes, humans?<?monkeys) were observed, no significant differences were noted in the Km or S50, Vmax and CLint or CLmax values for the 4′-glucuronidation of liver and intestinal microsomes between humans and monkeys.

3.?The activities of 6-glucuronidation in recombinant UGT enzymes were UGT1A1?>?UGT1A8?>UGT1A9 for humans, and UGT1A8?>?UGT1A1?>?UGT1A9 for monkeys. The activities of 4′-glucuronidation were UGT1A8?>?UGT1A1?>?UGT1A9 in humans and monkeys.

4.?These results demonstrated that the profiles for the hepatic and intestinal glucuronidation of raloxifene by microsomes were moderately different between humans and monkeys.  相似文献   

6.
Abstract

1.?UDP-glucuronosyltransferases (UGTs) are versatile and important conjugation enzymes in the metabolism of drugs and other xenobiotics.

2.?We have developed a convenient quantitative multi-well plate assay to measure the glucuronidation rate of 7-hydroxy-4-trifluoromethylcoumarin (HFC) for several UGTs.

3.?We have used this method to screen 11 recombinant human UGTs for HFC glucuronidation activity and studied the reaction kinetics with the most active enzymes. We have also examined the HFC glucuronidation activity of liver microsomes from human, pig, rabbit and rat.

4.?At a substrate concentration of 20?µM, the most active HFC glucuronidation catalysts were UGT1A10 followed by UGT1A6 >UGT1A7 >UGT2A1, whereas at 300?µM UGT1A6 was about 10 times better catalyst than the other recombinant UGTs. The activities of UGTs 1A3, 1A8, 1A9, 2B4 and 2B7 were low, whereas UGT1A1 and UGT2B17 exhibited no HFC glucuronidation activity. UGT1A6 exhibited a significantly higher Vmax and Km values toward both HFC and UDP-glucuronic acid than the other UGTs.

5.?Human, pig and rabbit, but not rat liver microsomes, catalyzed HFC glucuronidation at high rates.

6.?This new method is particularly suitable for fast activity screenings of UGTs 1A6, 1A7, 1A10 and 2A1 and HFC glucuronidation activity determination from various samples.  相似文献   

7.
Macelignan is a natural phenolic compound that possesses many types of health benefits such as antiinflammation. This study aimed to characterize the metabolism of macelignan via the glucuronidation pathway and to identify the main UGT enzymes involved in macelignan glucuronidation. The rates of glucuronidation were determined by incubating macelignan with UDPGA‐supplemented microsomes. Kinetic parameters were derived by fitting an appropriate model to the data. Reaction phenotyping, the relative activity factor (RAF) approach and activity correlation analysis were employed to identify the main UGT enzymes contributing to the hepatic metabolism of macelignan. Glucuronidation of macelignan in pooled human liver microsomes (pHLM) was rather efficient with a high CLint (the intrinsic clearance) value of 13.90 ml/min/mg. All UGT enzymes, except UGT1A4, 1A6 and 2B10, showed metabolic activities toward macelignan. UGT1A1 and 2B7 were the enzymes with the highest activities; the CLint values were 4.92 and 2.13 ml/min/mg, respectively. Further, macelignan glucuronidation was significantly correlated with 3‐O‐glucuronidation of β‐estradiol (r = 0.69; p < 0.01) and glucuronidation of zidovudine (r = 0.60; p < 0.05) in a bank of individual HLMs (n = 14). Based on the RAF approach, UGT1A1 and 2B7, respectively, contributed 55.40% and 32.20% of macelignan glucuronidation in pHLM. In conclusion, macelignan was efficiently metabolized via the glucuronidation pathway. It was also shown that UGT1A1 and 2B7 were probably the main contributors to the hepatic glucuronidation of macelignan. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Abstract

1.?Leonurine is a potent component of herbal medicine Herba leonuri. The detail information on leonurine metabolism in human has not been revealed so far.

2.?Two primary metabolites, leonurine O-glucuronide and demethylated leonurine, were observed and identified in pooled human liver microsomes (HLMs) and O-glucuronide is the predominant one.

3.?Among 12 recombinant human UDP-glucuronosyltransferases (UGTs), UGT1A1, UGT1A8, UGT1A9, and UGT1A10 showed catalyzing activity toward leonurine glucuronidation. The intrinsic clearance (CLint) of UGT1A1 was approximately 15-to 20-fold higher than that of UGT1A8, UGT1A9, and UGT1A10, respectively. Both chemical inhibition study and correlation study demonstrated that leonurine glucuronidation activities in HLMs had significant relationship with UGT1A1 activities.

4.?Leonurine glucuronide was the major metabolite in human liver microsomes. UGT1A1 was principal enzyme that responsible for leonurine glucuronidation in human liver and intestine microsomes.  相似文献   

9.
1.?Xanthotoxol is a furanocoumarin that possesses many pharmacological activities and in this study its in vitro glucuronidation was studied.

2.?Xanthotoxol can be rapidly metabolized to a mono-glucuronide in both human intestine microsomes (HIM) and human liver microsomes (HLM); the structure of the metabolite was confirmed by NMR spectroscopy.

3.?Reaction phenotyping with 12 commercial recombinant human UGTs, as well as with the Helsinki laboratory UGT1A10 that carry a C-terminal His-tag (UGT1A10-H), revealed that UGT1A10-H catalyzes xanthotoxol glucuronidation at the highest rate, followed by UGT1A8. The other enzymes, namely UGT1A3, UGT1A1, UGT1A6, UGT1A10 (commercial), and UGT2B7 displayed moderate-to-low reaction rates.

4.?In kinetic analyses, HIM exhibited much higher affinity for xanthotoxol, along with high Vmax and mild substrate inhibition, whereas the kinetics in HLM was biphasic. UGT1A1 (high Km value), UGT1A10-H (low Km value), and UGT1A8 exhibited mild substrate inhibition.

5.?Considering the above findings and the current knowledge on UGTs expression in HIM, it is likely that UGT1A10 is mainly responsible for xanthotoxol glucuronidation in the human small intestine, with some contribution from UGT1A1. In the liver, this reaction is mainly catalyzed by UGT1A1 and UGT2B7.

6.?Glucuronidation appears to be the major metabolic pathway of xanthotoxol in human.  相似文献   

10.
Objective We characterized the kinetics of indomethacin glucuronidation by recombinant UDP-glucuronosyltransferase (UGT) isozymes and human liver microsomes (HLM) and identified the human UGT isozymes involved. Methods Indomethacin glucuronidation was investigated using HLM and recombinant human UGT isozymes. Human UGTs involved in indomethacin glucuronidation were assessed in kinetic studies, chemical inhibition studies, and correlation studies. Results Among the UGT isozymes investigated, UGT1A1, 1A3, 1A9, and 2B7 showed glucuronidation activity for indomethacin, with UGT1A9 possessing the highest activity, followed by UGT2B7. Glucuronidation of indomethacin by recombinant UGT1A9 and 2B7 showed substrate inhibition kinetics with K m values of 35 and 32 μM, respectively. The glucuronidation of indomethacin was significantly correlated with morphine 3OH-glucuronidation (r = 0.69, p < 0.05) and 3′-azido-3′-deoxythymidine glucuronidation (r = 0.82, p < 0.05), a reaction mainly catalyzed by UGT2B7. Propofol inhibited indomethacin glucuronidation in HLM with an IC50 value of 248 μM, which is between the IC50 value in recombinant UGT1A9 (106 μM) and UGT2B7 (> 400 μM). Conclusions These findings suggest that UGT2B7 plays a predominant role in indomethacin glucuronidation in the human liver and that UGT1A9 is partially involved.  相似文献   

11.
1.?In the present study, we aimed to characterize the glucuronidation of six curcumin analogs (i.e. RAO-3, RAO-8, RAO-9, RAO-18, RAO-19, and RAO-23) derived from galangal using human liver microsomes (HLM) and twelve expressed UGT enzymes.

2.?Formation of glucuronide was confirmed using high-resolution mass spectrometry. Single glucuronide metabolite was generated from each of six curcumin analogs. The fragmentation patterns were analyzed and were found to differ significantly between alcoholic and phenolic glucuronides.

3.?All six curcumin analogs except one (RAO-23) underwent significant glucuronidation in HLM and expressed UGT enzymes. In general, the methoxy group (close to the phenolic hydroxyl group) enhanced the glucuronidation liability of the curcumin analogs.

4.?UGT1A9 and UGT2B7 were primarily responsible for the glucuronidation of two alcoholic analogs (RAO-3 and RAO-18). By contrast, UGT1A9 and four UGT2Bs (UGT2B4, 2B7, 2B15 and 2B17) played important roles in conjugating three phenolic analogs (RAO-8, RAO-9, and RAO-19). Interestingly, the conjugated double bonds system (in the aliphatic chain) was crucial to the substrate selectivity of gastrointestinal UGTs (i.e. UGT1A7, 1A8 and 1A10).

5.?In conclusion, glucuronidation of six curcumin analogs from galangal were structure- and isoform-specific. The knowledge should be useful in identifying a curcumin analog with improved metabolic property.  相似文献   

12.
  1. Alpinetin is a natural flavonoid showing a variety of pharmacological effects such as anti-inflammatory, anti-tumor and hypolipidemic activities. Here, we aim to determine the roles of UDP-glucuronosyltransferases (UGTs) and breast cancer resistance protein (BCRP) in disposition of alpinetin.

  2. Glucuronidation potential of alpinetin was evaluated using pooled human liver microsomes (pHLM), pooled human intestine microsomes (pHIM) and expressed UGT enzymes supplemented with the cofactor UDPGA. Activity correlation analyses with a bank of individual HLMs were performed to identify the main contributing UGT isozymes in hepatic glucuronidation of alpinetin. The effect of BCRP on alpinetin disposition was assessed using HeLa cells overexpressing UGT1A1 (HeLa1A1) cells.

  3. Alpinetin underwent extensive glucuronidation in pHLM and pHIM, generating one glucuronide metabolite. Of 12 test UGT enzymes, UGT1A3 was the most active one toward alpinetin with an intrinsic clearance (CLint?=?Vmax/Km) value of 66.5?μl/min/nmol, followed by UGT1A1 (CLint?=?48.6?μl/min/nmol), UGT1A9 (CLint?=?21.0?μl/min/nmol), UGT2B15 (CLint?=?16.7?μl/min/nmol) and UGT1A10 (CLint?=?1.60?μl/min/nmol). Glucuronidation of alpinetin was significantly correlated with glucuronidation of estradiol (an activity marker of UGT1A1), chenodeoxycholic acid (an activity marker of UGT1A3), propofol (an activity marker of UGT1A9) and 5-hydroxyrofecoxib (an activity marker of UGT2B15), confirming the important roles of UGT1A1, UGT1A3, UGT1A9 and UGT2B15 in alpinetin glucuronidation. Inhibition of BCRP by its specific inhibitor Ko143 significantly reduced excretion of alpinetin glucuronide, leading to a significant decrease in cellular glucuronidation of alpinetin.

  4. Our data suggest UGTs and BCRP as two important determinants of alpinetin pharmacokinetics.

  相似文献   

13.
  1. It was hypothesized that cis-resveratrol glucuronidation contributes to a greater extent to in-vitro disposition of total resveratrol than previously assumed. To this end, the kinetic data for cis-resveratrol glucuronidation are reported.

  2. Glucuronidation assays were conducted in human liver and intestinal microsomes and in uridine diphosphate-glucuronosyltransferases (UGTs) UGT1A1, UGT1A6, UGT1A9, and UGT1A10. Kinetic parameters were estimated for the major cis-resveratrol-3-O-glucuronide (cis-R3G). Substrate inhibition was observed with apparent Vmax, Km and Ki of 6.1?±?0.3/27.2?±?1.2 nmol min?1 mg?1, 415?±?48.1/989.9?±?92.8 and 789.6?±?76.3/1012?±?55.9?μM in human intestinal microsomes (HIMs) and UGT1A6, respectively (estimate?±?standard error (SE)). Biphasic kinetics were observed in human liver microsomes (HLMs), while sigmoidal kinetics were seen in UGT1A9 (Vmax?=?11.92?±?0.2 nmol min?1 mg?1; Km?=?360?μM; n?=?1.27?±?0.07). The 4′-O-glucuronide (cis-R4′G) exhibited atypical kinetics in HLM, HIM, UGT1A1, and UGT1A10. UGT1A9 catalysed cis-R4′G formation at high substrate concentrations (Vmax?=?0.33?±?0.015 nmol min?1 mg?1; Km?=?537.8?±?67.8?μM).

  3. In conclusion, although the rates of formation of cis-R3G in HLM and UGT1A9 were higher than those for trans-R3G, the contribution to total resveratrol disposition could not be determined fully due to atypical kinetics observed.

  相似文献   

14.
1.?In vitro metabolic studies with etodolac were performed. S- and R-etodolac were converted to the acylglucuronide and hydroxylated metabolites by UDP-glucuronosyltransferase (UGT) and cytochrome P450 in microsomes. However, the stereoselectivities of UGT and P450 for the isomers were opposite. S-etodolac was glucuronidated preferentially than R-etodolac by UGT. In contrast, R-etodolac was hydroxylated preferentially than S-etodolac by P450.

2.?Of several human P450 enzymes, CYP2C9 had the greatest activity for hydroxylation of R-etodolac. Sulfaphenazole, an inhibitor of CYP2C9, and anti-CYP2C9 antibody inhibited the hydroxylation of R-etodolac in human liver microsomes. CYP2C9 therefore contributes to the stereoselective hydroxylation of R-etodolac.

3.?Of several human UGT enzymes, UGT1A9 had the greatest activity for glucuronidation of S-etodolac. Propofol and thyroxine, inhibitors of UGT1A9, inhibited the glucuronidation of S-etodolac in human liver microsomes. Therefore, UGT1A9 is mainly responsible for the stereoselective glucuronidation of S-etodolac.

4.?Because S-etodolac was metabolized more rapidly than R-etodolac in human cryopreserved hepatocytes, the stereoselectivities of UGT1A9 for etodolac substantially influenced the overall metabolism of S- and R-etodolac in man.  相似文献   

15.
Abstract

1.?UDP-glucuronosyltransferase 1A6 (UGT1A6) plays important roles in the glucuronidation of numerous drugs, environmental pollutants, and endogenous substances. Minipigs have been used as experimental animals in pharmacological and toxicological studies because many of their physiological characteristics are similar to those of humans. The aim of the present study was to examine similarities and differences in the enzymatic properties of UGT1A6 between humans and minipigs.

2.?Minipig UGT1A6 (mpUGT1A6) cDNA was cloned by the RACE method, and the corresponding proteins were expressed in insect cells. The enzymatic function of mpUGT1A6 was analyzed by the kinetics of serotonin glucuronidation.

3.?Amino acid homology between human UGT1A6 (hUGT1A6) and mpUGT1A6 was 79.9%. The kinetics of serotonin glucuronidation by recombinant hUGT1A6 and mpUGT1A6 enzymes fit the Michaelis–Menten equation. The Km, Vmax, and CLint values of hUGT1A6 were 10.5?mM, 4.04?nmol/min/mg protein, and 0.39?µL/min/mg protein, respectively. The Km value of mpUGT1A6 was similar to that of hUGT1A6, whereas the Vmax and CLint values of mpUGT1A6 were approximately 2-fold higher than those of hUGT1A6.

4.?These results suggest that the enzymatic properties of UGT1A6 enzymes are moderately different between humans and minipigs.  相似文献   

16.
  1. This study aimed to characterize the glucuronidation pathway of licochalcone A (LCA) in human liver microsomes (HLM).

  2. HLM incubation systems were employed to catalyze the formation of LCA glucuronide. The glucuronidation activity of commercially recombinant UDP-glucuronosyltransferase (UGT) isoforms toward LCA was screened. Kinetic analysis was used to identify the UGT isoforms involved in the glucuronidation of LCA in HLM.

  3. LCA could be metabolized to two monoglucuronides in HLM, including a major monoglucuronide, namely, 4-O-glucuronide, and a minor monoglucuronide, namely, 4′-O-glucuronide. Species-dependent differences were observed among the glucuronidation profiles of LCA in liver microsomes from different species. UGT1A1, UGT1A3, UGT1A7, UGT1A8, UGT1A9, UGT1A10 and UGT2B7 participated in the formation of 4-O-glucuronide, with UGT1A9 exhibiting the highest catalytic activity in this biotransformation. Only UGT1A1 and UGT1A3 were involved in the formation of 4′-O-glucuronide, exhibiting similar reaction rates. Kinetic analysis demonstrated that UGT1A9 was the major contributor to LCA-4-O-glucuronidation, while UGT1A1 played important roles in the formation of both LCA-4-O- and 4′-O-glucuronide.

  4. UGT1A9 was the major contributor to the formation of LCA-4-O-glucuronide, while UGT1A1 played important roles in both LCA-4-O- and 4′-O-glucuronidation.

  相似文献   

17.
1. Almokalant, a class III antiarrythmic drug, is metabolized to form isomeric glucuronides identified in human urine. Synthesis of the total glucuronide was studied in human liver and kidney microsomes. Recombinant UDP-glucuronosyltransferases (UGTs) were screened for activity and kinetic analysis was performed to identify the isoform(s) responsible for the formation of almokalant glucuronide in man.

2. From a panel of recombinant isoforms used, both UGT1A9 and 2B7 catalysed the glucuronidation of almokalant. The Km values in both instances were similar with 1.06?mM for the 1A9 and 0.97?mM for the 2B7. Vmax for 1A9 was fourfold higher than that measured for UGT2B7, 92 compared with 21?pmol?min?1?mg?1, respectively, but UGT1A9 was expressed at approximately twofold higher level than the UGT2B7 in the recombinant cell lines. Therefore, the contribution of UGT2B7 to almokalant glucuronidation could be as significant as that of UGT1A9 in man.

3. Liver and kidney microsomes displayed similar Km values to the cloned expressed UGTs, with the liver and kidney microsomes at 1.68 and 1.06?mM almost identical to the 1A9.

4. The results suggest a significant role for UGT1A9 and 2B7 in the catalysis of almokalant glucuronidation.  相似文献   

18.
1.?Ursolic acid (UA) and oleanolic acid (OA) may have important activity relevant to health and disease prevention. Thus, we studied the activity of UA and OA on UDP-glucuronosyltransferases (UGTs) and used trifluoperazine as a probe substrate to test UGT1A4 activity. Recombinant UGT-catalyzed 4-methylumbelliferone (4-MU) glucuronidation was used as a probe reaction for other UGT isoforms.

2.?UA and OA inhibited UGT1A3 and UGT1A4 activity but did not inhibit other tested UGT isoforms.

3.?UA-mediated inhibition of UGT1A3 catalyzed 4-MU-β-d-glucuronidation was via competitive inhibition (IC50 0.391?±?0.013?μM; Ki 0.185?±?0.015?μM). UA also competitively inhibited UGT1A4-mediated trifluoperazine-N-glucuronidation (IC50 2.651?±?0.201?μM; Ki 1.334?±?0.146?μM).

4.?OA offered mixed inhibition of UGT1A3-mediated 4-MU-β-d-glucuronidation (IC50 0.336?±?0.013?μM; Ki 0.176?±?0.007?μM) and competitively inhibited UGT1A4-mediated trifluoperazine-N-glucuronidation (IC50 5.468?±?0.697?μM; Ki 6.298?±?0.891?μM).

5.?Co-administering OA or UA with drugs or products that are substrates of UGT1A3 or UGT1A4 may produce drug-mediated side effects.  相似文献   

19.
Wu B  Zhang S  Hu M 《Molecular pharmaceutics》2011,8(6):2379-2389
Identifying uridine 5'-diphospho-(UDP)-glucuronosyltransferase (UGT)-selective probes (substrates that are primarily glucuronidated by a single isoform) is complicated by the enzymes' large overlapping substrate specificity. Here, regioselective glucuronidation of two flavonoids, 3,3',4'-trihydroxyflavone (3,3',4'-THF) and 3,6,4'-trihydroxyflavone (3,6,4'-THF), is used to probe the activity of hepatic UGT1A1. The glucuronidation kinetics of 3,3',4'-THF and 3,6,4'-THF was determined using 12 recombinant human UGT isoforms and pooled human liver microsomes (pHLM). The individual contribution of main UGT isoforms to the metabolism of the two flavonoids in pHLM was estimated using the relative activity factor approach. UGT1A1 activity correlation analyses using flavonoids-4'-O-glucuronidation vs β-estradiol-3-glucuronidation (a well-recognized marker for UGT1A1) or vs SN-38 glucuronidation were performed using a bank of HLMs (n = 12) including three UGT1A1-genotyped HLMs (i.e., UGT1A1*1*1, UGT1A1*1*28, and UGT1A1*28*28). The results showed that UGT1A1 and 1A9, followed by 1A7, were the main isoforms for glucuronidating the two flavonoids, where UGT1A1 accounted for 92 ± 7% and 91 ± 10% of 4'-O-glucuronidation of 3,3',4'-THF and 3,6,4'-THF, respectively, and UGT1A9 accounted for most of the 3-O-glucuronidation. Highly significant correlations (R(2) > 0.944, p < 0.0001) between the rates of flavonoids 4'-O-glucuronidation and that of estradiol-3-glucuronidation or SN-38 glucuronidation were observed across 12 HLMs. In conclusion, UGT1A1-mediated 4'-O-glucuronidation of 3,3',4'-THF and 3,6,4'-THF was highly correlated with the glucuronidation of estradiol (3-OH) and SN-38. This study demonstrated for the first time that regioselective glucuronidation of flavonoids can be applied to probe hepatic UGT1A1 activity in vitro.  相似文献   

20.
  1. This study compared the hepatic glucuronidation of Picroside II in different species and characterized the glucuronidation activities of human intestinal microsomes (HIMs) and recombinant human UDP-glucuronosyltransferases (UGTs) for Picroside II.

  2. The rank order of hepatic microsomal glucuronidation activity of Picroside II was rat > mouse > human > dog. The intrinsic clearance of Picroside II hepatic glucuronidation in rat, mouse and dog was about 10.6-, 6.0- and 2.3-fold of that in human, respectively.

  3. Among the 12 recombinant human UGTs, UGT1A7, UGT1A8, UGT1A9 and UGT1A10 catalyzed the glucuronidation. UGT1A10, which are expressed in extrahepatic tissues, showed the highest activity of Picroside II glucuronidation (Km?=?45.1 μM, Vmax?=?831.9 pmol/min/mg protein). UGT1A9 played a primary role in glucuronidation in human liver microsomes (HLM; Km?=?81.3 μM, Vmax?=?242.2 pmol/min/mg protein). In addition, both mycophenolic acid (substrate of UGT1A9) and emodin (substrate of UGT1A8 and UGT1A10) could inhibit the glucuronidation of Picroside II with the half maximal inhibitory concentration (IC50) values of 173.6 and 76.2 μM, respectively.

  4. Enzyme kinetics was also performed in HIMs. The Km value of Picroside II glucuronidation was close to that in recombinant human UGT1A10 (Km?=?58.6 μM, Vmax?=?721.4 pmol/min/mg protein). The intrinsic clearance was 5.4-fold of HLMs. Intestinal UGT enzymes play an important role in Picroside II glucuronidation in human.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号