首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
1.Sodium tanshinone IIA sulfonate (STS) is a water-soluble derivative of tanshinone IIA, a famous Chinese medicine used for many years to treat cardiovascular disorders. However, the role of cytochrome P450 (CYP) enzymes in the metabolism of STS was unclear. In this study, we screened the main CYPs for the metabolism of STS and studied their interactions in vitro.

2.Seven CYPs were screened for the metabolism of STS by human liver microsomes (HLMs) or recombinant CYP isoforms. To determine the potential of STS to affect CYP-mediated phase I metabolism in humans, phenacetin (CYP1A2), coumarin (CYP2A6), tolbutamide (CYP2C9), metoprolol (CYP2D6), chlorzoxazone (CYP2E1), S-Mephenytoin (CYP2C19), and midazolam (CYP3A4) were used as the respective probe substrates. Enzyme kinetic studies were performed to investigate the mode of inhibition of the enzyme–substrate interactions.

3.STS inhibited the activity of CYP3A4 in a dose-dependent manner in the HLMs and CYP3A4 isoform. Other CYP isoforms, including CYP1A2, CYP2A6, CYP2C9, CYP2D6, CYP2E1, and CYP2C19, showed minimal or no effect on the metabolism of STS.

4.The results suggested that STS primarily inhibits the activities of CYP3A4 in vitro, and STS has the potential to perpetrate drug–drug interactions with other CYP3A4 substrates.  相似文献   

2.
Abstract

1.?Imatinib is metabolized to N-desmethyl imatinib by CYPs 3A4 and 2C8. The effect of CYP2C8*3 genotype on N-desmethyl imatinib formation was unknown.

2.?We examined imatinib N-demethylation in human liver microsomes (HLMs) genotyped for CYP2C8*3, in CYP2C8*3/*3 pooled HLMs and in recombinant CYP2C8 and CYP3A4 enzymes. Effects of CYP-selective inhibitors on N-demethylation were also determined.

3.?A single-enzyme Michaelis–Menten model with autoinhibition best fitted CYP2C8*1/*1 HLM (n?=?5) and recombinant CYP2C8 kinetic data (median?±?SD Ki?=?139?±?61?µM and 149?µM, respectively). Recombinant CYP3A4 showed two-site enzyme kinetics with no autoinhibition. Three of four CYP2C8*1/*3 HLMs showed single-enzyme kinetics with no autoinhibition. Binding affinity was higher in CYP2C8*1/*3 than CYP2C8*1/*1 HLM (median?±?SD Km?=?6?±?2 versus 11?±?2?µM, P=0.04). CYP2C8*3/*3 (pooled HLM) also showed high binding affinity (Km?=?4?µM) and single-enzyme weak autoinhibition (Ki?=?449?µM) kinetics. CYP2C8 inhibitors reduced HLM N-demethylation by 47–75%, compared to 0–30% for CYP3A4 inhibitors.

4.?In conclusion, CYP2C8*3 is a gain-of-function polymorphism for imatinib N-demethylation, which appears to be mainly mediated by CYP2C8 and not CYP3A4 in vitro in HLM.  相似文献   

3.
1.?The accumulation of fusidic acid (FA) after multiple doses of FA has been reported on in previous studies but the related mechanisms have not been clarified fully. In the present study, we explain the mechanisms related to the mechanism-based inactivation of CYP2D6 and CYP3A4.

2.?The irreversible inhibitory effects of FA on CYP2D6 and CYP3A4 were examined via a series of experiments, including: (a) time-, concentration- and NADPH-dependent inactivation, (b) substrate protection in enzyme inactivation and (c) partition ratio with recombinant human CYP enzymes. Metoprolol α-hydroxylation and midazolam 1′-hydroxylation were used as marker reactions for CYP2D6 and CYP3A4 activities, and HPLC-MS/MS measurement was also utilised.

3.?FA caused to the time- and concentration-dependent inactivation of CYP2D6 and CYP3A4. About 55.8% of the activity of CYP2D6 and 75.8% of the activity of CYP3A4 were suppressed after incubation with 10?μM FA for 15?min. KI and kinact were found to be 2.87?μM and 0.033?min?1, respectively, for CYP2D6, while they were 1.95?μM and 0.029?min?1, respectively, for CYP3A4. Inhibition of CYP2D6 and CYP3A4 activity was found to require the presence of NADPH. Substrates of CYP2D6 and CYP3A4 showed that the enzymes were protected against the inactivation induced by FA. The estimated partition ratio for the inactivation was 7 for CYP2D6 and 12 for CYP3A4.

4.?FA is a potent mechanism-based inhibitor of CYP2D6 and CYP3A4, which may explain the accumulation of FA in vivo.  相似文献   

4.
1.?In vitro studies were conducted to evaluate potential inhibitory and inductive effects of the poly(ADP-ribose) polymerase (PARP) inhibitor, olaparib, on cytochrome P450 (CYP) enzymes. Inhibitory effects were determined in human liver microsomes (HLM); inductive effects were evaluated in cultured human hepatocytes.

2.?Olaparib did not inhibit CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2D6 or CYP2E1 and caused slight inhibition of CYP2C9, CYP2C19 and CYP3A4/5 in HLM up to a concentration of 100?μM. However, olaparib (17–500?μM) inhibited CYP3A4/5 with an IC50 of 119?μM. In time-dependent CYP inhibition assays, olaparib (10?μM) had no effect against CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP2E1 and a minor effect against CYP3A4/5. In a further study, olaparib (2–200?μM) functioned as a time-dependent inhibitor of CYP3A4/5 (KI, 72.2?μM and Kinact, 0.0675?min?1). Assessment of the CYP induction potential of olaparib (0.061–44?μM) showed minor concentration-related increases in CYP1A2 and more marked increases in CYP2B6 and CYP3A4 mRNA, compared with positive control activity; however, no significant change in CYP3A4/5 enzyme activity was observed.

3.?Clinically significant drug–drug interactions due to olaparib inhibition or induction of hepatic or intestinal CYP3A4/5 cannot be excluded. It is recommended that olaparib is given with caution with narrow therapeutic range or sensitive CYP3A substrates, and that prescribers are aware that olaparib may reduce exposure to substrates of CYP2B6.  相似文献   

5.
1.?4′-(p-Toluenesulfonylamide)-4-hydroxychalcone (TSAHC) is a synthetic sulfonylamino chalcone compound possessing anti-cancer properties. The aim of this study was to elucidate the metabolism of TSAHC in human liver microsomes (HLMs) and to characterize the cytochrome P450 (P450) enzymes that are involved in the metabolism of TSAHC.

2.?TSAHC was incubated with HLMs or recombinant P450 isoforms (rP450) in the presence of an nicotinamide adenine dinucleotide phosphate, reduced form (NADPH)-regenerating system. The metabolites were identified and analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). P450 isoforms, responsible for TSAHC metabolite formation, were characterized by chemical inhibition and correlation studies in HLMs and enzyme kinetic studies with a panel of rP450 isoforms.

3.?Two hydroxyl metabolites, that is M1 and M2, were produced from the human liver microsomal incubations (Km and Vmax values were 2.46?µM and 85.1?pmol/min/mg protein for M1 and 9.98?µM and 32.1?pmol/min/mg protein for M2, respectively). The specific P450 isoforms responsible for two hydroxy-TSAHC formations were identified using a combination of chemical inhibition, correlation analysis and metabolism by expressed recombinant P450 isoforms. The known P450 enzyme activities and the rate of TSAHC metabolite formation in the 15 HLMs showed that TSAHC metabolism is correlated with CYP2C and CYP3A activity. The P450 isoform-selective inhibition study in HLMs and the incubation study of cDNA-expressed enzymes also showed that two hydroxyl metabolites M1 and M2 biotransformed from TSAHC are mainly mediated by CYP2C and CYP3A, respectively. These findings suggest that CYP2C8, CYP2C9, CYP2C19, CYP3A4 and CYP3A5 isoforms are major enzymes contributing to TSAHC metabolism.  相似文献   

6.
Abstract

1.?Sophocarpine is a biologically active component isolated from the foxtail-like sophora herb and seed that is often orally administered for the treatment of cancer and chronic bronchial asthma. However, whether sophocarpine affects the activity of human liver cytochrome P450 (CYP) enzymes remains unclear.

2.?In this study, the inhibitory effects of sophocarpine on the eight human liver CYP isoforms (CYP1A2, 3A4, 2A6, 2E1, 2D6, 2C9, 2C19, and 2C8) were investigated in vitro using human liver microsomes (HLMs).

3.?The results indicate that sophocarpine could inhibit the activity of CYP3A4 and 2C9, with the IC50 values of 12.22 and 15.96?μM, respectively, but that other CYP isoforms were not affected. Enzyme kinetic studies showed that sophocarpine is not only a noncompetitive inhibitor of CYP3A4 but also a competitive inhibitor of CYP2C9, with Ki values of 6.74 and 9.19?μM, respectively. Also, sophocarpine is a time-dependent inhibitor of CYP3A4 with Kinact/KI value of 0.082/21.54?μM?1?min?1.

4.?The in vitro studies of sophocarpine with CYP isoforms suggested that sophocarpine has the potential to cause pharmacokinetic drug interactions with other co-administered drugs metabolized by CYP3A4 and 2C9. Further clinical studies are needed to evaluate the significance of this interaction.  相似文献   

7.
ContextPeucedanol is a major extract of Peucedanum japonicum Thunb. (Apiaceae) roots, which is a commonly used herb in paediatrics. Its interaction with cytochrome P450 enzymes (CYP450s) would lead to adverse effects or even failure of therapy.ObjectiveThe interaction between peucedanol and CYP450s was investigated.Materials and methodsPeucedanol (0, 2.5, 5, 10, 25, 50, and 100 μM) was incubated with eight human liver CYP isoforms (CYP1A2, 2A6, 3A4, 2C8, 2C9, 2C19, 2D6, and 2E1), in pooled human liver microsomes (HLMs) for 30 min with specific inhibitors as positive controls and untreated HLMs as negative controls. The enzyme kinetics and time-dependent study (0, 5, 10, 15, and 30 min) were performed to obtain corresponding parameters in vitro.ResultsPeucedanol significantly inhibited the activity of CYP1A2, 2D6, and 3A4 in a dose-dependent manner with IC50 values of 6.03, 13.57, and 7.58 μM, respectively. Peucedanol served as a non-competitive inhibitor of CYP3A4 with a Ki value of 4.07 μM and a competitive inhibitor of CYP1A2 and 2D6 with a Ki values of 3.39 and 6.77 μM, respectively. Moreover, the inhibition of CYP3A4 was time-dependent with the Ki/Kinact value of 5.44/0.046 min/μM.Discussion and conclusionsIn vitro inhibitory effect of peucedanol on the activity of CYP1A2, 2A6, and 3A4 was reported in this study. As these CYPs are involved in the metabolism of various drugs, these results implied potential drug-drug interactions between peucedanol and drugs metabolized by CYP1A2, 2D6, and 3A4, which needs further in vivo validation.  相似文献   

8.
1.?CYP2D6 is an important member of the cytochrome P450 (CYP450) enzyme superfamily, we recently identified 22 CYP2D6 alleles in the Han Chinese population. The aim of this study was to assess the catalytic activities of these allelic isoforms and their effects on the metabolism of venlafaxine in vitro.

2.?The wild-type and 24 CYP2D6 variants were expressed in insect cells, and each variant was characterized using venlafaxine as the substrate. Reactions were performed at 37?°C with 5–500?μM substrate (three variants was adjusted to 1000?μM) for 50?min. By using high-performance liquid chromatography to detect the products, the kinetic parameters Km, Vmax, and intrinsic clearance (Vmax/Km) of O-desmethylvenlafaxine were determined.

3.?Among the 22 CYP2D6 variants, the intrinsic clearance (Vmax/Km) values of all variants were significantly decreased (from 0.2% to 84.5%) compared with wild-type CYP2D6*1. In addition, the kinetic parameters of two CYP2D6 variants could not be detected because they have no detectable enzyme activity.

4.?The comprehensive in vitro assessment of CYP2D6 variants provides significant insights into allele-specific activity towards venlafaxine in vivo.  相似文献   

9.
Hyperoside, quercetin-3-O-galactoside, is a flavonoid isolated from Oenanthe javanica. In the present study, we investigated potential herb-drug inhibitory effects of hyperoside on nine cytochrome P450 (CYP) isoforms in pooled human liver microsomes (HLMs) and human recombinant cDNA expressed CYP using a cocktail probe assay. Hyperoside strongly inhibited CYP2D6-catalyzed dextromethorphan O-demethylation, with IC50 values of 1.2 and 0.81 μM after 0 and 15 min of preincubation, and a Ki value of 2.01 μM in HLMs, respectively. Hyperoside strongly decreased CYP2D6 activity dose-, but not time-, dependently in HLMs. In addition, the Lineweaver–Burk and Secondary plots for the inhibition of CYP2D6 in HLMs fitted a competitive inhibition mode. Furthermore, hyperoside decreased CYP2D6-catalyzed dextromethorphan O-demethylation activity of human recombinant cDNA-expressed CYP2D6, with an IC50 value of 3.87 μM. However, other CYPs were not inhibited significantly by hyperoside. In conclusion, our data demonstrate that hyperoside is a potent selective CYP2D6 inhibitor in HLMs, and suggest that hyperoside might cause herb-drug interactions when co-administrated with CYP2D substrates.  相似文献   

10.
Abstract

1. Metoclopramide is a widely used clinical drug in a variety of medical settings with rare acute dystonic events reported. The aim of this study was to assess a previous report of inactivation of CYP2D6 by metoclopramide, to determine the contribution of various CYPs to metoclopramide metabolism, and to identify the mono-oxygenated products of metoclopramide metabolism.

2. Metoclopramide interacted with CYP2D6 with Type I binding and a Ks value of 9.56?±?1.09?µM. CYP2D6 was the major metabolizer of metoclopramide and the two major products were N-deethylation of the diethyl amine and N-hydroxylation on the phenyl ring amine. CYPs 1A2, 2C9, 2C19, and 3A4 also metabolized metoclopramide.

3. While reversible inhibition of CYP2D6 was noted, CYP2D6 inactivation by metoclopramide was not observed under conditions of varying concentration or varying time using SupersomesTM or pooled human liver microsomes.

4. The major metabolites of metoclopramide were N-hydroxylation and N-deethylation formed most efficiently by CYP2D6 but also formed by all CYPs examined. Also, while metoclopramide is metabolized primarily by CYP2D6, it is not a mechanism-based inactivator of CYP2D6 in vitro.  相似文献   

11.
1.?The aim of this study was to investigate the inhibitory effect of morusin on Glucuronosyltransferase (UGT) isoforms and cytochrome P450 enzymes (CYP450s). We also investigated the metabolism of morusin in human, rat, dog, monkey, and minipig liver microsomes.

2.?100?μM of morusin exhibited strong inhibition on all UGTs and CYP450s. The half inhibition concentration (IC50) values for CYP3A4, CYP1A2, CYP2C9, CYP2E1, UGT1A6, UGT1A7, and UGT1A8 were 2.13, 1.27, 3.18, 9.28, 4.23, 0.98, and 3.00?μM, and the inhibition kinetic parameters (Ki) were 1.34, 1.16, 2.98, 6.23, 4.09, 0.62, and 2.11?μM, respectively.

3.?Metabolism of morusin exhibited significant species differences. The quantities of M1 from minipig, monkey, dog, and rat were 7.8, 11.9, 2.0, and 6.3-fold of human levels. The Km values in HLMs, RLMs, MLMs, DLMs, and PLMs were 7.84, 22.77, 14.32, 9.13, and 22.83?μM, and Vmax for these species were 0.09, 1.23, 1.43, 0.15, and 0.75?nmol/min/mg, respectively. CLint (intrinsic clearance) values (Vmax/Km) for morusin obeyed the following order: monkey?>?rat?>?minipig?>?dog?>?human. CLH (hepatic clearance) values for humans, dogs, and rats were calculated to be 8.28, 17.38, and 35.12?mL/min/kg body weight, respectively.

4.?This study provided vital information to understand the inhibitory potential and metabolic behavior of morusin among various species.  相似文献   

12.
1.?Case reports have shown that coadministration of fenofibric acid (FA) could increase bleeding risks of warfarin, but the mechanisms remained unknown. We therefore investigated the pharmacokinetic and pharmacodynamic interaction between warfarin and FA in rats.

2.?Rats received warfarin alone (2?mg/kg) or coadministered with FA (100?mg/kg). FA significantly increased the exposure to warfarin, and decreased that to 7-hydroxywarfarin in rats nearly by two-fold, meanwhile increased Cmax and prolonged t1/2 of warfarin. Anticoagulant activity significantly increased, with prothrombin time (PT) up to 199?±?33?s in coadministered group (approximately ten-fold compared with rats received warfarin alone). Incubation experiments illustrated FA inhibited CYP2C6 and CYP3A1/2 with the IC50 values of 6.98 and 16.14?μM, and inhibited the metabolism of warfarin (Ki value of 2.21?μM). Meanwhile, FA decreased the plasma protein binding of warfarin in vitro.

3.?Our data suggested that the altered pharmacokinetics and pharmacodynamics of warfarin in rats was primarily attributed to the inhibition of metabolism. Anticoagulant activity monitoring or warfarin dose lowering needs to be considered when patients are coadministered with FA.  相似文献   

13.
Celecoxib was characterized as a substrate of human cytochrome P450 (CYP) 2D6 in vitro. In recombinant CYP2D6, celecoxib hydroxylation showed atypical substrate inhibition kinetics with apparent Km, Ki, and Vmax of 67.2 μM, 12.6 μM, and 1.33 μM/min, respectively. In human liver microsomes (HLMs), a concentration-dependent inhibition of celecoxib hydroxylation by quinidine was observed after CYP2C9 and CYP3A4 were inhibited. In individual HLMs with variable CYP2D6 activities, a significant correlation was observed between celecoxib hydroxylation and CYP2D6-selective dextromethorphan O-demethylation when CYP2C9 and CYP3A4 activities were suppressed (r = 0.97, P < 0.0001). Molecular modeling showed two predominant docking modes of celecoxib with CYP2D6, resulting in either a substrate or an inhibitor. A second allosteric binding antechamber, which stabilized the inhibition mode, was revealed. Modeling results were consistent with the observed substrate inhibition kinetics. Using HLMs from individual donors, the relative contribution of CYP2D6 to celecoxib metabolism was found to be highly variable and dependent on CYP2C9 genotypes, ranging from no contribution in extensive metabolizers with CYP2C9*1*1 genotype to approximately 30% in slow metabolizers with allelic variants CYP2C9*1*3 and CYP2C9*3*3. These results demonstrate that celecoxib may become a potential victim of CYP2D6-associated drug-drug interactions, particularly in individuals with reduced CYP2C9 activity.  相似文献   

14.
Context: Friedelin is a triterpenoid with several biological activities. However, the affects of Friedelin on the activity of human liver cytochrome P450 (CYP) enzymes remains unclear.

Objective: This study investigates the inhibitory effects of Friedelin on the major human liver CYP isoforms (CYP3A4, 1A2, 2A6, 2E1, 2D6, 2C9, 2C19 and 2C8).

Materials and methods: First, the inhibitory effects of Friedelin (100?μM) on the eight human liver CYP isoforms were investigated in vitro using human liver microsomes (HLMs), and then enzyme inhibition, kinetic studies, and time-dependent inhibition studies were conducted to investigate the IC50, Ki and Kinact/KI values of Friedelin.

Results: The results indicate that Friedelin inhibited the activity of CYP3A4 and 2E1, with the IC50 values of 10.79 and 22.54?μM, respectively, but other CYP isoforms were not affected. Enzyme kinetic studies showed that Friedelin is not only a noncompetitive inhibitor of CYP3A4, but also a competitive inhibitor of CYP2E1, with Ki values of 6.16 and 18.02?μM, respectively. In addition, Friedelin is a time-dependent inhibitor of CYP3A4 with Kinact/Ki value of 4.84?nM/min.

Discussion and conclusion: The in vitro studies of Friedelin with CYP isoforms suggested that Friedelin has the potential to cause pharmacokinetic drug interactions with other co-administered drugs metabolized by CYP3A4 and 2E1. Further clinical studies are needed to evaluate the significance of this interaction.  相似文献   

15.
1.?The objective was to identify the major cytochrome P450 enzyme(s) involved in the metabolism of domperidone.

2.?Experiments were performed using human liver microsomes (HLMs), recombinant human cytochrome P450 enzymes, cytochrome P450 chemical inhibitors and monoclonal antibodies directed against cytochrome P450 enzymes.

3.?Four metabolites were identified from incubations performed with HLMs and excellent correlations were observed between the formation of domperidone hydroxylated metabolites (M1, M3 and M4), N-desalkylated domperidone metabolite (M2) and enzymatic markers of CYP3A4/5 (r2?=?0.9427, 0.951, 0.9497 and 0.8304, respectively).

4.?Ketoconazole (1?μM) decreased the formation rate of M1, M2, M3 and M4 by 83, 78, 75 and 88%, respectively, whereas the effect of other inhibitors (quinidine, furafylline and sulfaphenazole) was minimal. Important decreases in the formation rate of M1 (68%), M2 (64%) and M3 (54%) were observed with anti-CYP3A4 antibodies.

5.?Formation of M1, M2 and M3 in HLMs exhibited Michaelis–Menten kinetics (Km: 166, 248 and 36?μM, respectively). Similar Km values were observed for M1, M2 and M3 when incubations were performed with recombinant human CYP3A4 (Km: 107, 273 and 34?μM, respectively).

6.?The data suggest that CYP3As are the major enzymes involved in the metabolism of domperidone.  相似文献   

16.
1.?Curculigoside possesses numerous pharmacological activities, and however, little data available for the effects of curculigoside on the activity of human liver cytochrome P450 (CYP) enzymes.

2.?This study investigates the inhibitory effects of curculigoside on the main human liver CYP isoforms. In this study, the inhibitory effects of curculigoside on the eight human liver CYP isoforms 1A2, 2A6, 2E1, 2D6, 2C9, 2C19, 2C8, and 3A4 were investigated in human liver microsomes.

3.?The results indicated that curculigoside could inhibit the activity of CYP1A2, CYP2C8, and CYP3A4, with IC50 values of 15.26, 11.93, and 9.47?μM, respectively, but that other CYP isoforms were not affected. Enzyme kinetic studies showed that curculigoside was not only a noncompetitive inhibitor of CYP1A2, but also a competitive inhibitor of CYP2C8 and CYP3A4, with Ki values of 5.43, 3.54, and 3.35?μM, respectively. In addition, curculigoside is a time-dependent inhibitor for CYP1A2, with kinact/KI values of 0.056/6.15?μM?1?min?1.

4.?The in vitro studies of curculigoside with CYP isoforms suggest that curculigoside has the potential to cause pharmacokinetic drug interactions with other coadministered drugs metabolized by CYP1A2, CYP2C8, and CYP3A4. Further in vivo studies are needed in order to evaluate the significance of this interaction.  相似文献   

17.
Context: Dihydromyricetin (DHM) is the most abundant and active flavonoid component isolated from Ampelopsis grossedentata (Hand-Mazz) W.T. Wang (Vitaceae) and it possesses numerous pharmacological activities. However, whether DHM affects the activity of human liver cytochrome P450 (CYP) enzymes remains unclear.

Materials and methods: The inhibitory effects of DHM on eight human liver CYP isoforms (i.e., 1A2, 3A4, 2A6, 2E1, 2D6, 2C9, 2C19 and 2C8) were investigated in vitro using human liver microsomes (HLMs).

Results: The results showed that DHM could inhibit the activity of CYP3A4, CYP2E1 and CYP2D6, with IC50 values of 14.75, 25.74 and 22.69?μM, respectively, but that other CYP isoforms were not affected. Enzyme kinetic studies showed that DHM was not only a non-competitive inhibitor of CYP3A4 but also a competitive inhibitor of CYP2E1 and CYP2D6, with Ki values of 6.06, 9.24 and 10.52?μM, respectively. In addition, DHM is a time-dependent inhibitor for CYP3A4 with KI/Kinact value of 12.17/0.057?min?1?μM?1.

Discussion and conclusion: The in vitro studies of DHM with CYP isoforms indicate that DHM has the potential to cause pharmacokinetic drug interactions with other co-administered drugs metabolized by CYP3A4, CYP2E1 and CYP2D6. Further clinical studies are needed to evaluate the significance of this interaction.  相似文献   

18.
1.?Glycyrol is a coumarin derivative isolated from the roots of Glycyrrhiza uralensis called Gamcho in Korea and commonly used as a sweetener in oriental medicine. Glycyrol shows several biological activities, including anti-oxidative, anti-inflammatory, antibacterial, anti-angiogenic, and anti-allergenic properties. Although there have been studies on the biological effects of glycyrol, the inhibitory effects of glycyrol on cytochrome P450 (CYP) activities have not been investigated.

2.?We investigated the inhibitory effects of glycyrol on the activities of CYP isoforms using a cocktail of probe substrates in pooled human liver microsome (HLM) and human recombinant cDNA-expressed CYPs. Glycyrol strongly inhibited CYP1A-mediated phenacetin O-deethylation and CYP2C9-mediated diclofenac 4′-hydroxylation in HLMs, which were the result of competitive inhibition as revealed by a Dixon plot. In addition, glycyrol showed selective inhibition of CYP1A1- and CYP1A2-catalyzed phenacetin O-deethylase activity with a half-maximal inhibitory concentration of (IC50) 1.3 and 16.1?μM in human recombinant cDNA-expressed CYP1A1 and CYP1A2, respectively.

3.?Glycyrol decreased CYP2C9-catalyzed diclofenac 4′-hydroxylation activity with IC50 values of 0.67?μM in human recombinant cDNA-expressed CYP2C9. This is the first investigation of competitive inhibitory effects on CYP1A1 and CYP2C9 in HLMs.  相似文献   

19.
Cudratricusxanthone A (CTXA), isolated from the roots of Cudrania tricuspidata, exhibits several biological activities; however, metabolic biotransformation was not investigated. Therefore, metabolites of CTXA were investigated and the major metabolic enzymes engaged in human liver microsomes (HLMs) were characterized using liquid chromatography‐tandem mass spectrometry (LC‐MS/MS). CTXA was incubated with HLMs or human recombinant CYPs and UGTs, and analysed by an LC‐MS/MS equipped electrospray ionization (ESI) to qualify and quantify its metabolites. In total, eight metabolites were identified: M1–M4 were identified as mono‐hydroxylated metabolites during Phase I, and M5–M8 were identified as O‐glucuronidated metabolites during Phase II in HLMs. Moreover, these metabolite structures and a metabolic pathway were identified by elucidation of MSn fragments and formation by human recombinant enzymes. M1 was formed by CYP2D6, and M2–M4 were generated by CYP1A2 and CYP3A4. M5–M8 were mainly formed by UGT1A1, respectively. While investigating the biotransformation of CTXA, eight metabolites of CTXA were identified by CYPs and UGTs; these data will be valuable for understanding the in vivo metabolism of CTXA. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
1.?Gelsemium elegans Benth (Loganiaceae) is a toxic plant that can be used for committing suicide besides alleviating pains. Its anti-inflammatory and analgesic effect mainly come from its active ingredient, namely koumine. Koumine, an indole alkaloid, possesses widely pharmacological effects especially inhibition of neuropathic pain.

2.?This study aimed to investigate the metabolic profile of koumine using human liver microsomes (HLMs), selective chemical inhibitors and recombinant human CYP isoforms. Ultra-performance liquid chromatography-high-resolution mass spectrometry (UPLC-HRMS) was used to detect and identify metabolites.

3.?Four major metabolites of koumine were found after incubation with HLMs or individual CYP isoforms. The metabolic pathways of koumine included demethylation, dehydrogenation, oxidation and demethyl-dehydrogenation. Chemical inhibition study showed that the inhibitor of CYP3A4/3A5 significantly decreased (93%) the formation of koumine metabolites. Further, CYP3A4/3A5 was shown as the most efficient isoform in biotransformation of koumine, among a series of CYP isoforms tested.

4.?In conclusion, koumine was metabolized into four oxidative metabolites in HLMs. And CYP3A4/3A5 was probably the main contributor to the hepatic oxidative metabolism of koumine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号