首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

Objective

Hypoxia‐inducible factor 2α (HIF‐2α) (encoded by Epas1) causes osteoarthritic (OA) cartilage destruction by regulating the expression of catabolic factor genes. We undertook this study to explore the role of interleukin‐6 (IL‐6) in HIF‐2α–mediated OA cartilage destruction in mice.

Methods

The expression of HIF‐2α, IL‐6, and catabolic factors was determined at the messenger RNA and protein levels in primary culture mouse chondrocytes, human OA cartilage, and mouse experimental OA cartilage. Experimental OA in wild‐type, HIF‐2α–knockdown (Epas1+/−), and Il6–/– mice was caused by intraarticular injection of Epas1 adenovirus or destabilization of the medial meniscus. The role of IL‐6 was determined by treating with recombinant IL‐6 protein or by injecting HIF‐2α adenovirus (AdEpas1) intraarticularly in mice with or without IL‐6–neutralizing antibody.

Results

We found that Il6 is a direct target gene of HIF‐2α in articular chondrocytes. Both Epas1 and Il6 were up‐regulated in human and mouse OA cartilage, whereas HIF‐2α knockdown in mice led to inhibition of both Il6 expression and cartilage destruction. Treatment with IL‐6 enhanced Mmp3 and Mmp13 expression; conversely, Il6 knockdown inhibited HIF‐2α–induced up‐regulation of Mmp3 and Mmp13. Injection of IL‐6 protein into mouse knee joints triggered OA cartilage destruction, whereas IL‐6 neutralization led to blocking of HIF‐2α–induced cartilage destruction with concomitant modulation of Mmp3 and Mmp13 expression. Moreover, Il6 knockout resulted in inhibition of AdEpas1‐induced and destabilization of the medial meniscus–induced cartilage destruction as well as inhibition of Mmp3 and Mmp13 expression.

Conclusion

Our findings indicate that IL‐6 acts as a crucial mediator of HIF‐2α–induced experimental OA cartilage destruction in mice via regulation of Mmp3 and Mmp13 levels.
  相似文献   

2.
3.

Objective

The pathogenesis of rheumatoid arthritis is often linked to bacterial infections. The present study was undertaken to develop a mouse model of chronic destructive arthritis induced by repeated intraarticular (IA) exposure to bacterial cell wall fragments and to investigate the cytokine dependence of this model.

Methods

Mice that were deficient in various cytokines were injected IA with cell wall fragments of Streptococcus pyogenes on days 0, 7, 14, and 21. The development of chronic destructive arthritis was compared between groups of mice lacking different cytokines, to assess which cytokines were crucial for development of chronic destructive arthritis.

Results

Repeated exposure of a joint to S pyogenes cell wall fragments resulted in the development of chronic destructive arthritis. In mice deficient in recombination‐activating gene 2, streptococcal cell wall (SCW)–directed T cell reactivity was found and chronic arthritis did not develop, implicating T cells in the generation of chronic SCW‐induced arthritis. Interleukin‐17 (IL‐17) receptor–deficient mice showed a reduction of joint destruction in the chronic stage, implicating a detrimental role of the recently discovered IL‐17–producing T helper cells (Th17 cells). IL‐23 expression was apparent during the late stages of arthritis. Joint swelling was no longer dependent on tumor necrosis factor α (TNFα) after the last flare, and pronounced cartilage damage was found after 28 days in TNFα‐deficient mice. In contrast, IL‐1β–deficient mice were fully protected against joint swelling and cartilage and bone destruction during the late stages of disease.

Conclusion

These findings indicate that the TNFα dependence of arthritis is lost during the erosive stage, when Th17 cells become crucial. IL‐1β dependence remains strong, consistent with its pivotal role in the generation of Th17 cells.
  相似文献   

4.
5.

Objective

Cell–matrix interactions regulate chondrocyte differentiation and survival. The α1β1 integrin is a major collagen receptor that is expressed on chondrocytes. Mice with targeted inactivation of the integrin α1 gene (α1‐KO mice) provide a model that can be used to address the role of cell–matrix interactions in cartilage homeostasis and osteoarthritis (OA) pathogenesis.

Methods

Knee joints from α1‐KO and wild‐type (WT) BALB/c mice were harvested at ages 4–15 months. Knee joint sections were examined for inflammation, cartilage degradation, and loss of glycosaminoglycans (by Safranin O staining). Immunohistochemistry was performed to detect the distribution of α1 integrin, matrix metalloproteinases (MMPs), and chondrocyte apoptosis.

Results

In WT mice, the α1 integrin subunit was detected in hypertrophic chondrocytes in the growth plate and in a subpopulation of cells in the deep zone of articular cartilage. There was a marked increase in α1‐positive chondrocytes in the superficial and upper mid‐zones in OA‐affected areas in joints from old WT mice. The α1‐KO mice showed more severe cartilage degradation, glycosaminoglycan depletion, and synovial hyperplasia as compared with the WT mice. MMP‐2 and MMP‐3 expression was increased in the OA‐affected areas. In cartilage from α1‐KO mice, the cellularity was reduced and the frequency of apoptotic cells was increased. These results suggest that the α1 integrin subunit is involved in the early remodeling process in OA cartilage.

Conclusion

Deficiency in the α1 integrin subunit is associated with an earlier deregulation of cartilage homeostasis and an accelerated, aging‐dependent development of OA.
  相似文献   

6.

Objective

To study the potency of 2 peroxisome proliferator–activated receptor γ (PPARγ) agonists, 15‐deoxy‐Δ12,14‐prostaglandin J2 (15‐deoxy‐PGJ2) and rosiglitazone, to modulate the expression of interleukin‐1 receptor antagonist (IL‐1Ra) in rat synovial fibroblasts.

Methods

Levels of messenger RNA for IL‐1Ra and PPAR isotypes (α, β/δ, γ) were assessed by real‐time polymerase chain reaction in rat synovial fibroblasts exposed to 10 ng/ml of IL‐1β. PPAR levels were assessed by Western blotting and secreted IL‐1Ra levels by immunoassay. The potency of PPARγ agonists and the PPARβ/δ agonist GW‐501516 on IL‐1Ra levels was tested in the range of 1–10 μM and at 100 pM, respectively. The contribution of PPARγ to the effects of rosiglitazone on IL‐1Ra secretion was examined either by its overexpression or by inhibition using wild‐type or dominant‐negative constructs and the antagonist GW‐9662 (10 μM), respectively. The dominant‐negative strategy was also performed to investigate the possible contribution of PPARβ/δ and NF‐κB activation.

Results

IL‐1β–induced IL‐1Ra production was increased by 10 μM rosiglitazone but was reduced dose‐dependently by 15‐deoxy‐PGJ2. Both agonists lowered IL‐1β secretion, but rosiglitazone alone reduced the imbalance of IL‐1β/IL‐1Ra toward basal levels. Enhancement of IL‐1β–induced IL‐1Ra production by rosiglitazone was not affected by PPARγ overexpression or by its inhibition with dominant‐negative PPARγ or GW‐9662. Inhibition of NF‐κB was also ineffective against rosiglitazone but abolished the stimulating effect of IL‐1β on IL‐1Ra. All PPAR isotypes were expressed constitutively in rat synoviocytes, but PPARγ decreased dramatically upon IL‐1β exposure, whereas PPARβ/δ remained stable. Dominant‐negative PPARβ/δ abolished the enhancement of IL‐1Ra by rosiglitazone, whereas GW‐501516 reproduced the effect of rosiglitazone on IL‐1Ra secretion.

Conclusion

Rosiglitazone stimulates IL‐1Ra production by a PPARβ/δ mechanism in activated rat synovial fibroblasts, further contributing to its potential antiarthritic properties and opening new perspectives for the modulation of inflammatory genes by specific PPAR agonists in articular cells.
  相似文献   

7.

Objective

In a sibpair study of osteoarthritis (OA) patients, we investigated whether, upon stimulation with lipopolysaccharide (LPS), variations in the innate ex vivo production of interleukin‐1β (IL‐1β), IL‐1 receptor antagonist (IL‐1Ra), IL‐10, and tumor necrosis factor α (TNFα) in whole‐blood assays contribute to the risk of OA.

Methods

Data from 305 patients with OA at multiple sites (hand, knee, hip, and spine), whose median age was 60 years (range 43–79 years), were compared with those from 137 controls. OA was defined in accordance with the American College of Rheumatology criteria. Whole‐blood samples were stimulated with LPS (10 ng/ml). In the supernatants, cytokines were measured by enzyme‐linked immunosorbent assay. Odds ratios (ORs) were used as measures of the relative risk of OA in relation to quartiles of IL‐1β, IL‐1Ra, TNFα, and IL‐10 production. The ORs were adjusted for sex and age, and 95% confidence intervals (95% CIs) were computed using robust standard errors to take into account the intrafamily effect.

Results

Subjects in the highest quartile of IL‐1β and IL‐1Ra had an increased risk of OA (OR 3.3, 95% CI 1.4–7.9 and OR 8.0, 95% CI 3.7–17.4, respectively), while subjects in the lowest quartile of IL‐10 had a 3‐fold increased risk of OA (OR 3.1, 95% CI 1.5–6.5). High innate ex vivo production of TNFα was not associated with an increased risk of OA.

Conclusion

Subjects with a high innate ex vivo production of IL‐1β and IL‐1Ra and low innate ex vivo production of IL‐10 have an increased risk of OA. These results suggest that a proportion of the genetic susceptibility to OA may be encoded for by variations in innate cytokine activity.
  相似文献   

8.

Objective

To investigate the mechanism of the inhibitory action of hyaluronan (HA) on interleukin‐1β (IL‐1β)‐stimulated production of matrix metalloproteinases (MMPs) in human articular cartilage.

Methods

IL‐1β was added to normal and osteoarthritic (OA) human articular cartilage in explant culture to stimulate MMP production. Articular cartilage was incubated or preincubated with a clinically used form of 800‐kd HA to assess its effect on IL‐1β‐induced MMPs. Levels of secreted MMPs 1, 3, and 13 in conditioned media were detected by immunoblotting; intracellular MMP synthesis in chondrocytes was evaluated by immunofluorescence microscopy. Penetration of HA into cartilage tissue and its binding to CD44 were analyzed by fluorescence microscopy using fluoresceinated HA. Blocking experiments with anti‐CD44 antibody were performed to investigate the mechanism of action of HA.

Results

Treatment and pretreatment with 800‐kd HA at 1 mg/ml resulted in significant suppression of IL‐1β‐stimulated production of MMPs 1, 3, and 13 in normal and OA cartilage explant culture. Fluorescence histocytochemistry revealed that HA penetrated cartilage tissue and localized in the pericellular matrix around chondrocytes. HA‐binding blocking experiments using anti‐CD44 antibody demonstrated that the association of HA with chondrocytes was mediated by CD44. Preincubation with anti‐CD44 antibody, which suppressed IL‐1β‐stimulated MMPs, reversed the inhibitory effect of HA on MMP production that was induced by IL‐1β in normal and OA cartilage.

Conclusion

This study demonstrates that HA effectively inhibits IL‐1β‐stimulated production of MMP‐1, MMP‐3, and MMP‐13, which supports the clinical use of HA in the treatment of OA. The action of HA on IL‐1β may involve direct interaction between HA and CD44 on chondrocytes.
  相似文献   

9.

Objective

Significant variation in interleukin‐1β (IL‐1β) protein secretion between subjects has been observed when using a lipopolysaccharide (LPS)/ATP–mediated ex vivo blood stimulation assay. To explore the potential relationships between genetic polymorphisms in the IL1B cytokine gene and cellular responses to inflammatory stimuli such as LPS, we investigated the hypothesis that polymorphisms within the promoter and exon 5 of the IL1B gene contribute to the observed differences in IL‐1β protein secretion.

Methods

The IL1B gene polymorphisms C−511T, T−31C, and C3954T were tested for association with LPS‐induced secretion of IL‐1β protein as measured by an ex vivo blood stimulation assay. Samples from 2 independent study populations (n = 31 and n = 25) were available for use in the ex vivo assay after consent was obtained to analyze the DNA.

Results

A specific haplotype, composed of the T allele at −511 and the C allele at −31, was significantly associated with a 2–3‐fold increase in LPS‐induced IL‐1β protein secretion. This association was observed in both of the independent study populations (P = 0.0084 and P = 0.0017).

Conclusion

These data suggest that polymorphisms within the promoter region of the IL1B gene contribute to observed differences in LPS‐induced IL‐1β protein secretion.
  相似文献   

10.
11.
12.

Objective

Interleukin‐1β (IL‐1β) and tumor necrosis factor α (TNFα) stimulate chondrocyte matrix catabolic responses, thereby compromising cartilage homeostasis in osteoarthritis (OA). AMP‐activated protein kinase (AMPK), which regulates energy homeostasis and cellular metabolism, also exerts antiinflammatory effects in multiple tissues. This study was undertaken to test the hypothesis that AMPK activity limits chondrocyte matrix catabolic responses to IL‐1β and TNFα.

Methods

Expression of AMPK subunits was examined, and AMPKα activity was ascertained by the phosphorylation status of AMPKα Thr172 in human knee articular chondrocytes and cartilage by Western blotting and immunohistochemistry, respectively. Procatabolic responses to IL‐1β and TNFα, such as release of glycosaminoglycan, nitric oxide, and matrix metalloproteinases 3 and 13 were determined by dimethylmethylene blue assay, Griess reaction, and Western blotting, respectively, in cartilage explants and chondrocytes with and without knockdown of AMPKα by small interfering RNA.

Results

Normal human knee articular chondrocytes expressed AMPKα1, α2, β1, β2, and γ1 subunits. AMPK activity was constitutively present in normal articular chondrocytes and cartilage, but decreased in OA articular chondrocytes and cartilage and in normal chondrocytes treated with IL‐1β and TNFα. Knockdown of AMPKα resulted in enhanced catabolic responses to IL‐1β and TNFα in chondrocytes. Moreover, AMPK activators suppressed cartilage/chondrocyte procatabolic responses to IL‐1β and TNFα and the capacity of TNFα and CXCL8 (IL‐8) to induce type X collagen expression.

Conclusion

Our findings indicate that AMPK activity is reduced in OA cartilage and in chondrocytes following treatment with IL‐1β or TNFα. AMPK activators attenuate dephosphorylation of AMPKα and procatabolic responses in chondrocytes induced by these cytokines. These observations suggest that maintenance of AMPK activity supports cartilage homeostasis by protecting cartilage matrix from inflammation‐induced degradation.
  相似文献   

13.

Objective

Mevalonate kinase deficiency (MKD) is an autosomal‐recessive disorder characterized by recurring episodes of inflammation. MK catalyzes the phosphorylation of mevalonic acid, which is an early step in isoprenoid biosynthesis. The goal of our study was to determine whether a temporary shortage of certain isoprenoid end products and/or the accumulation of mevalonic acid is the cause of interleukin‐1β (IL‐1β) secretion in MKD.

Methods

We studied the effect of the addition of intermediate metabolites and inhibitors of the isoprenoid biosynthesis pathway on IL‐1β secretion by peripheral blood mononuclear cells (PBMCs) of patients with MKD and healthy controls.

Results

Inhibition of enzymes involved in geranylgeranyl pyrophosphate (GGPP) synthesis or geranylgeranylation of proteins led to a marked increase of lipopolysaccharide‐stimulated IL‐1β secretion in PBMCs of control subjects. Furthermore, the increased IL‐1β secretion by PBMCs of patients with MKD was reversed by supplementation with GGPP as well as with mevalonic acid. IL‐1β secretion was increased only when control PBMCs were incubated with excessive amounts of mevalonic acid. Finally, a reduction in IL‐1β secretion by MKD PBMCs was also observed when sterol biosynthesis was inhibited, favoring nonsterol isoprenoid biosynthesis.

Conclusion

Our results indicate that a shortage of geranylgeranylated proteins, rather than an excess of mevalonate, is likely to cause increased IL‐1β secretion by PBMCs of patients with MKD.
  相似文献   

14.

Objective

We reported previously that the orphan nuclear receptor, estrogen receptor–related receptor α (ERRα), is expressed in articular chondrocytes and is dysregulated in a mouse model of inflammatory arthritis. The aim of this study, therefore, was to determine whether ERRα is also dysregulated in patients with osteoarthritis (OA).

Methods

ERRα messenger RNA (mRNA) and protein were quantified in normal and OA cartilage samples and in OA chondrocytes in vitro, with and without short‐term treatment with a variety of OA‐associated factors and signaling pathway agonists and inhibitors.

Results

ERRα expression was lower in OA than in normal articular cartilage. Interleukin‐1β (IL‐1β) markedly up‐regulated ERRα expression in OA chondrocytes in vitro, and agonist or inhibitor treatment indicated that the up‐regulation was dependent on cyclooxygenase 2 (COX‐2; NS398), prostaglandin E2, cAMP (8‐bromo‐cAMP), and protein kinase A (PKA; KT5720). Treatment with the ERRα inverse agonist XCT790 decreased the expression of SOX9 and the up‐regulation of ERRα by IL‐1β, suggesting autoregulation of ERRα in the IL‐1β pathway. Matrix metalloproteinase 13 (MMP‐13) expression was also decreased by treatment with XCT790 plus IL‐1β versus IL‐1β alone, and the down‐regulation of MMP‐13 mRNA and protein observed with XCT790 alone suggests that the up‐regulation of MMP‐13 by IL‐1β is ERRα‐dependent.

Conclusion

We report the first evidence that ERRα expression is regulated by IL‐1β in COX‐2–, cAMP‐, and PKA‐dependent pathways in OA chondrocytes. We confirmed that SOX9 is an ERRα target gene in human, as in rodent, chondrocytes and identified MMP‐13 as a potential new target gene, which suggests that ERRα may both respond to the healing signal and contribute to extracellular degradation in OA cartilage.
  相似文献   

15.

Objective

To evaluate the in vivo therapeutic effect of pioglitazone, a peroxisome proliferator–activated receptor γ (PPARγ) agonist, on the development of lesions in a guinea pig model of osteoarthritis (OA), and to determine the influence of pioglitazone on the synthesis of matrix metalloproteinase 13 (MMP‐13) and interleukin‐1β (IL‐1β) in articular cartilage.

Methods

The OA model was created by partial medial meniscectomy of the right knee joint. The guinea pigs were divided into 4 treatment groups: unoperated animals that received no treatment (normal), operated animals (OA guinea pigs) that received placebo, OA guinea pigs that received oral pioglitazone at 2 mg/kg/day, and OA guinea pigs that received oral pioglitazone at 20 mg/kg/day. The animals began receiving medication 1 day after surgery and were killed 4 weeks later. Macroscopic and histologic analyses were performed on the cartilage. The levels of MMP‐13 and IL‐1β in OA cartilage chondrocytes were evaluated by immunohistochemistry.

Results

OA guinea pigs treated with the highest dosages of pioglitazone showed a significant decrease, compared with the OA placebo group, in the surface area (size) and grade (depth) of cartilage macroscopic lesions on the tibial plateaus. The histologic severity of cartilage lesions was also reduced. A significantly higher percentage of chondrocytes in the middle and deep layers stained positive for MMP‐13 and IL‐1β in cartilage from placebo‐treated OA guinea pigs compared with normal controls. Guinea pigs treated with the highest dosage of pioglitazone demonstrated a significant reduction in the levels of both MMP‐13 and IL‐1β in OA cartilage.

Conclusion

This is the first in vivo study demonstrating that a PPARγ agonist, pioglitazone, could reduce the severity of experimental OA. This effect was associated with a reduction in the levels of MMP‐13 and IL‐1β, which are known to play an important role in the pathophysiology of OA lesions.
  相似文献   

16.

Objective

In osteoarthritis (OA), a combination of biochemical and biomechanical factors may damage both menisci and articular cartilage. Nitric oxide (NO) and prostaglandin E2 (PGE2) have been implicated as mediators of inflammation in OA. The goals of this study were to determine if menisci from patients with OA produce NO and PGE2, and if the proinflammatory cytokines interleukin‐1β (IL‐1β), tumor necrosis factor α (TNFα), and IL‐17 augment NO and PGE2 production by these tissues.

Methods

Menisci were obtained from 17 patients (age 47–75 years) undergoing total knee replacement for OA. Tissue explants were cultured alone or with IL‐1β, IL‐17, or TNFα, and the release of NO and PGE2 from the tissue as well as the presence of type 2 nitric oxide synthase (NOS2) and cyclooxygenase 2 (COX‐2) antigens were measured.

Results

All menisci constitutively produced NO, and significant increases in NO production were observed in the presence of IL‐1β, TNFα, or IL‐17 (P < 0.05). The combination of IL‐17 and TNFα significantly increased NO production compared with either cytokine alone. Basal and cytokine‐stimulated NO synthesis was inhibited by the NOS inhibitors NG‐monomethyl‐L ‐arginine or N‐3‐aminoethylbenzylacetamidine (1400W). IL‐1β significantly increased PGE2production. The combination of IL‐1β and TNFα had an additive effect on PGE2 production, while addition of IL‐17 to TNFα or IL‐1β synergistically enhanced PGE2 production. Inhibition of NO production by 1400W significantly increased IL‐1β–stimulated PGE2 production, and inhibition of PGE2 production by the COX‐2 inhibitor N‐[2‐(cyclohexyloxy)‐4‐nitrophenyl]‐methanesulfonamide significantly increased IL‐17–stimulated NO production.

Conclusion

Menisci from humans with OA spontaneously produced NO and PGE2 in a manner that was synergistically or additively augmented by cytokines. NO and PGE2 exhibited reciprocal regulatory effects on one another, suggesting that pharmaceutical agents designed to inhibit NOS2 or COX‐2 production may in fact be influencing both pathways.
  相似文献   

17.
18.

Objective

MicroRNA (miRNA) are a class of noncoding small RNAs that act as negative regulators of gene expression. MiRNA exhibit tissue‐specific expression patterns, and changes in their expression may contribute to pathogenesis. The objectives of this study were to identify miRNA expressed in articular chondrocytes, to determine changes in osteoarthritic (OA) cartilage, and to address the function of miRNA‐140 (miR‐140).

Methods

To identify miRNA specifically expressed in chondrocytes, we performed gene expression profiling using miRNA microarrays and quantitative polymerase chain reaction with human articular chondrocytes compared with human mesenchymal stem cells (MSCs). The expression pattern of miR‐140 was monitored during chondrogenic differentiation of human MSCs in pellet cultures and in human articular cartilage from normal and OA knee joints. We tested the effects of interleukin‐1β (IL‐1β) on miR‐140 expression. Double‐stranded miR‐140 (ds–miR‐140) was transfected into chondrocytes to analyze changes in the expression of genes associated with OA.

Results

Microarray analysis showed that miR‐140 had the largest difference in expression between chondrocytes and MSCs. During chondrogenesis, miR‐140 expression in MSC cultures increased in parallel with the expression of SOX9 and COL2A1. Normal human articular cartilage expressed miR‐140, and this expression was significantly reduced in OA tissue. In vitro treatment of chondrocytes with IL‐1β suppressed miR‐140 expression. Transfection of chondrocytes with ds–miR‐140 down‐regulated IL‐1β–induced ADAMTS5 expression and rescued the IL‐1β–dependent repression of AGGRECAN gene expression.

Conclusion

This study shows that miR‐140 has a chondrocyte differentiation–related expression pattern. The reduction in miR‐140 expression in OA cartilage and in response to IL‐1β may contribute to the abnormal gene expression pattern characteristic of OA.
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号