首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
2.
The Ca(2+)-calmodulin stimulated AC1 and Ca(2+)-insensitive AC2 are major isoforms of adenylyl cyclase, playing an important role in synaptic plasticity in the mammalian brain. We studied the pattern of expression of AC1 and AC2 genes in the hippocampus of C57BL/6 mice. We found that there were differences in their patterns of distribution in the dentate gyrus. AC1 messenger RNA was detected both in the dentate granule cell bodies and the corresponding molecular field whereas AC2 messenger RNA was preferentially distributed in the dentate granule cell layer, suggesting that AC1 and AC2 messenger RNA are differentially regulated in the dentate gyrus. In order to examine the regulation of AC1 and AC2 expression in response to synaptic deafferentation and reinnervation, the distribution patterns of the two AC messenger RNA in the hippocampal fields and the parietal cortex were analysed 2, 5, 9 and 30 days following an unilateral entorhinal cortex lesion. Interestingly, we found significantly reduced levels of AC1 hybridization signal following the lesion whereas the level of AC2 messenger RNA remained unaffected in all lesioned groups. The changes in AC1 messenger RNA were transient, with a maximal reduction at five days postlesion, and were restricted to the granule cell bodies and stratum moleculare of the deafferented dentate gyrus. No significant change in AC1 messenger RNA levels was detected in other hippocampal fields nor for any other postlesion times studied.These findings suggest that, at least in the dentate gyrus, messenger RNA for AC1 and AC2 might be differentially compartmentalized in cell bodies and dendritic fields. The activity-dependent regulation of AC1 messenger RNA levels by afferent synapses may provide an elegant mechanism for achieving a selective local regulation of AC1 protein, close to its site of action.  相似文献   

3.
The extracellular matrix protein reelin plays an important role in neuronal pattern formation and axonal collateralization during the development of the central nervous system. With the concept that reelin might also be important for axonal growth in the injured nervous system we investigated whether reelin is re-expressed in areas of collateral sprouting after brain injury. The expression of reelin messenger RNA was studied in the denervated fascia dentata of adult rats one, four, seven and 14 days following entorhinal cortex lesion. In adult control animals, in situ hybridization histochemistry with digoxigenin-labeled reelin riboprobes revealed reelin messenger RNA expression in neurons located in the outer molecular layer and beneath the granule cell layer of the dentate gyrus. After entorhinal cortex lesion, this expression pattern did not change during the whole post-lesional time period investigated despite a strong glial activation and reactive sprouting in the outer molecular layer of the dentate gyrus as visualized by immunohistochemistry for glial fibrillary acidic protein and acetylcholinesterase histochemistry, respectively. The expression of reelin messenger RNA was also unaffected by entorhinal cortex lesion in the dentate gyrus of young animals (postnatal day seven), where an even stronger sprouting response occurs.  相似文献   

4.
The trkB gene encodes a tyrosine kinase receptor which is an essential component of the high-affinity cell surface receptor for the neurotrophin brain-derived neurotrophic factor. In this report we have used quantitative in situ hybridization to study the expression of trkB messenger RNA in the rat hippocampus following stimulation of afferents in the entorhinal cortex. A bilateral three-fold increase of trkB messenger RNA levels in the hippocampus was seen 4 h after quisqualate injection into the left entorhinal cortex. The increase was confined to the granule layer of the dentate gyrus. A small increase, however, was also seen bilaterally in the pyramidal cell layer. The increases in all hippocampal areas were completely prevented by pretreatment of the animals with systemic injection of diazepam but not with scopolamine. We suggest that glutamate release from cortical afferents to the hippocampus has the capacity to increase neuronal expression of trkB messenger RNA within the hippocampus. The results from the present study extend the interpretation of our previous evidence of cortical transynaptic activation of brain-derived neurotrophic factor messenger RNA and indicate the presence of a concomitant activation of trkB messenger RNA expression in the hippocampus.  相似文献   

5.
Bye N  Zieba M  Wreford NG  Nichols NR 《Neuroscience》2001,105(4):853-862
Up-regulation of endogenous neurotrophic factors may protect against apoptosis during ageing. Recent studies showed that the expression of several neurotrophic factors increased with age in specific regions of the rat brain. Previously, we showed that removal of trophic adrenal steroids by adrenalectomy induced apoptosis in the dentate gyrus of adult rats, which was accompanied by increased expression of transforming growth factor-beta1 (TGF-beta1) messenger RNA. In this study, we compared the relative densities of apoptotic cells in the dentate gyrus with TGF-beta1 messenger RNA expression in virgin male Fischer 344 rats ranging from 2 to 26 months of age across three treatment groups: adrenalectomy, adrenalectomy with corticosterone replacement, or sham operation. Seven days after adrenalectomy an increase in the density of apoptotic cells was observed in rats of all age groups compared with sham-operated and corticosterone-treated groups. By in situ hybridisation, the glial messenger RNAs, TGF-beta1 and glial fibrillary acidic protein as a marker of ageing, increased following adrenalectomy in the dentate gyrus in rats of all ages compared with control groups. Interestingly, within adrenalectomy groups, both the number and density of apoptotic cells decreased significantly by 6-8 months with a further decrease at 24-26 months of age. Furthermore, the amount of apoptosis corresponded to changes in TGF-beta1 expression, notably in: (i) adrenalectomised rats showing a significant inverse correlation and (ii) 24-26-month-old rats with the lowest induced apoptosis showing increased expression at the time of adrenalectomy.These studies show that resistance to adrenalectomy-induced apoptosis in the dentate gyrus is associated with increases in TGF-beta1 messenger RNA expression. Furthermore, the endogenous up-regulation of neurotrophic factors, such as the increase in TGF-beta1 expression in the oldest rats, suggests that the aged brain may have compensatory mechanisms, which protect against apoptosis.  相似文献   

6.
The effect of prolonged benzodiazepine administration on GABA(A) receptor subunit (alpha1-6, beta1-3, gamma2) messenger RNAs was investigated in the rat hippocampus and cortex, among other brain areas. Rats were orally administered flurazepam for one week, a protocol which results in benzodiazepine anticonvulsant tolerance in vivo, and in the hippocampus in vitro, in the absence of behavioral signs of withdrawal. Autoradiographs of brain sections, hybridized with [35S]oligoprobes in situ, were examined immediately (day 0) or two days after drug treatment, when rats were tolerant, or seven days after treatment, when tolerance had reversed, and were compared to sections from pair-handled, vehicle-treated controls. Alpha1 subunit messenger RNA level was significantly decreased in CA1 pyramidal cells and dentate granule cells at day 0, an effect which persisted only in CA1 neurons. Decreased "alpha1-specific" silver grain density over a subclass of interneurons at the pyramidal cell border suggested concomitant regulation of interneuron GABA(A) receptors. A reduction in beta3 subunit messenger RNA levels was more widespread among hippocampal cell groups (CA1, CA2, CA3 and dentate gyrus), immediately and two days after treatment, and was also detected in the frontal and parieto-occipital cortices. Changes in beta2 subunit messenger RNA levels in CA1, CA3 and dentate gyrus cells two days after ending flurazepam treatment suggested a concomitant up-regulation of beta2 messenger RNA. There was a trend toward an increased level of alpha5, beta3 and gamma2 subunit messenger RNAs in CA1, CA3 and dentate gyrus cells, which was significant for the beta3 and gamma2 subunit messenger RNAs in the frontal cortex seven days after ending flurazepam treatment. There were no flurazepam treatment-induced changes in any other GABA(A) receptor subunit messenger RNAs. The messenger RNA levels of three (alpha1, beta2 and beta3) of nine GABA(A) receptor subunits were discretely regulated as a function of time after ending one-week flurazepam treatment related to the presence of anticonvulsant tolerance, but not dependence. The findings suggested that a localized switch in the subunit composition of GABA(A) receptor subtypes involving these specific subunits may represent a minimal requirement for the changes in GABA(A) receptor-mediated function recorded previously at hippocampal CA1 GABAergic synapses, associated with benzodiazepine anticonvulsant tolerance.  相似文献   

7.
G-protein-activated inward rectifier potassium channels are coupled to a number of neurotransmitter receptors, including some monoamine receptors. In the present study we have investigated the effect of electroconvulsive shock on gene expression of the G-protein-activated inward rectifier potassium channel subunits G-protein-coupled inward rectifier K+-channel (GIRK1) and GIRK2 in the rat brain using in situ hybridization and immunocytochemistry. Acute electroconvulsive shock (a single shock) increased GIRK2 expression while causing a transient reduction of the messenger RNA abundance of GIRK1 in granule cells of the dentate gyrus. Chronic electroconvulsive shock (five shocks over 10 days) caused a larger increase in GIRK2 messenger RNA abundance, which was accompanied by an increase in GIRK2 immunoreactivity in the molecular layer of the dentate gyrus. Unlike for acute electroconvulsive shock, GIRK1 messenger RNA abundance in the dentate gyrus was significantly increased after chronic electroconvulsive shock. No significant alterations in GIRK1 and GIRK2 messenger RNA abundance were detected in the other brain regions studied, including the CA1 and CA3 subfields of the hippocampus, the frontal-parietal cortex and piriform cortex. The neuroanatomically specific changes in expression of the potassium channel subunits may directly influence neuronal excitability as well as the functions of G-protein-coupled neurotransmitter receptors.  相似文献   

8.
Immunohistochemical and Western blotting techniques were employed to examine the alterations in immunostaining of the gamma-amino butyric acid (GABA) receptor subunits gamma 1/3 and 2 within the hippocampus of the rat brain at 1, 3, 7, 14, and 30 days after a unilateral perforant pathway lesion. At 1, 3, and 7 days post-lesion, we observed a remarkable decrease in gamma 1/3 neuropil staining in the deafferented zone (i.e., the outer molecular layer of the dentate gyrus ipsilateral to the lesion), although at 3 and 7 days post-lesion, staining intensity was considerably recovered. At 14 days post-lesion, the gamma 1/3 immunostaining was indistinguishable from that of controls and it appeared yet more robust at 30 days post-lesion. We also observed a slight decrease in gamma 2 neuropil staining until 7 days post-lesion, and an increase in gamma 2 staining at 30 days post-lesion. Western blot analysis demonstrated data that was relatively consistent with our immunohistochemical observations, although gamma 3 was hardly detectable. Our study suggests that gamma subunits of the GABA(A) receptor in the dentate gyrus display a plastic response to the deafferentation of the perforant pathway.  相似文献   

9.
Synapse replacement after brain injury has been widely documented by anatomical studies in various parts of both the developing and adult nervous system. However, the molecular events that define the specificity of the empirically derived rules of reactive synaptogenesis in different regions of the adult brain remain unclear. In this study we examined the differential regulation of the lesion-induced response of the two growth-associated proteins, superior cervical ganglia-10 and growth-associated protein-43, after unilateral cortex ablation, and determined a hierarchical order for the lesion response from remaining afferent projection neurons originating from the contralateral cortex, ipsilateral thalamus and substantia nigra. We report that in response to unilateral cortex ablation both messenger RNA, by northern blot, and protein, by estern blot, for superior cervical ganglia-10 but not growth-associated protein-43 was increased in the homologous area of the contralateral cortex but not the ipsilateral thalamus or substantia nigra. In addition, the specificity of the superior cervical ganglia-10 response, assessed by combined in situ hybridization and retrograde FluoroGold labeling of striatal afferent neurons, found that superior cervical ganglia-10 messenger RNA was increased prominently in layer V pyramidal neurons of the contralateral corticostriatal pathway but was unchanged in afferent projection neurons from the thalamus and substantia nigra. Furthermore, the increase in both superior cervical ganglia-10 messenger RNA and protein seen at three days postlesion in contralateral corticostriatal neurons coincides in time with the initiation of neurite outgrowth in the deafferented striatum by contralateral corticostriatal axons described in our previous ultrastructural study. However, if cortical input to the striatum was removed bilaterally the lesion-induced response for superior cervical ganglia-10 messenger RNA shifted secondarily to thalamostriatal neurons in the ipsilateral thalamus.

These data provide evidence that superior cervical ganglia-10 and growth-associated protein-43 are differentially regulated in neurons of the contralateral corticostriatal pathway in response to unilateral cortex ablation and suggests that superior cervical ganglia-10 plays a role in the regulation of neurite outgrowth in the adult striatum after brain injury. However, the specific role that superior cervical ganglia-10 may play in reactive synaptogenesis remains unclear. In addition, our data suggest that a hierarchical order exists for the reinnervation of deafferented striatal neurons after unilateral cortex ablation with preference given to homologous axons from the contralateral cortex.  相似文献   


10.
11.
In situ hybridization techniques were used to analyse the spatiotemporal pattern of brain-derived neurotrophic factor messenger RNA elevation associated with kainic acid-induced seizure activity in the rat. Pronounced increases in hippocampal brain-derived neurotrophic factor messenger RNA levels were observed as early as 30 min following the onset of behavioral seizures. The greatest increase (10-fold) occurred in the dentate granule cell layer, while pyramidal layers CA1, CA3, and CA4 exhibited increases of two- to six-fold. Peak elevation of brain-derived neurotrophic factor messenger RNA in CA1 hippocampal region was evident at 4 h in CA3, and in the dentate granule layer at 30 min postseizure. Elevations persisted in the dentate and hilar regions to four days, while the increases in CA1 and CA3 returned to control levels by 16 h following seizure. Significant increases in brain-derived neurotrophic factor messenger RNA were also observed in the superficial layers of cortex (II and III) and in the piriform cortex which reached peak elevations by 8 h. No detectable changes were observed in the dorsomedial thalamus. Although histologically defined pyramidal and granule cell layers displayed relatively uniform increases in brain-derived neurotrophic factor messenger RNA in response to kainate, a closer examination of the labeling patterns using emulsion autoradiography revealed discrete areas of high grain densities overlapping uniform, moderate hybridization densities in the dentate granule cell layer and CA3, suggesting that the capacity to upregulate brain-derived neurotrophic factor messenger RNA in these regions may differ among individual neurons. In conclusion, our studies revealed that brain-derived neurotrophic factor messenger RNA induction in response to systemic kainate administration differs in hippocampal and cortical areas, in magnitude, time of onset and duration. The observed temperospatial pattern does not correspond in a simple way to increases in metabolic or electrical activity associated with seizures or neuronal vulnerability coincident with the seizures.  相似文献   

12.
The production and release of the corticosteroids, namely the glucocorticoids and the mineralocorticoids, are regulated by various stimuli, including stress. Previous studies from our laboratory have shown that chronic exposure to stress or to stress levels of glucocorticoids produces atrophy of the apical dendrites of CA3 pyramidal neurons in the hippocampus. This stress-induced dendritic remodeling is blocked by the anti-epileptic drug phenytoin, which suppresses glutamate release, and also by N-methyl-D-aspartate receptor antagonists. These results suggest an interaction between glucocorticoids and excitatory amino acids in the development of stress-induced atrophy of CA3 pyramidal neurons. Since nitric oxide is proposed to play an important role in mediating both the physiological and pathophysiological actions of excitatory amino acids, we examined the regulation of neuronal nitric oxide synthase messenger RNA expression by corticosterone and phenytoin in the rat hippocampus. The expression of neuronal nitric oxide synthase messenger RNA in hippocampal pyramidal neurons and granule neurons of the dentate gyrus was unaffected by 21-day administration of corticosterone (40 mg/kg), phenytoin (40 mg/kg) or the combination of corticosterone and phenytoin. However, in hippocampal interneurons, corticosterone/ phenytoin co-administration led to a significant reduction in neuronal nitric oxide synthase messenger RNA levels when compared with vehicle controls. These results suggest that, during exposure to stress levels of corticosterone, phenytoin inhibits glucocorticoid-induced atrophy of CA3 pyramidal neurons by reducing neuronal nitric oxide synthase expression in hippocampal interneurons. Moreover, these results may provide another example of synaptic plasticity in the hippocampus mediated by nitric oxide synthase.  相似文献   

13.
1. Extracellular and intracellular recordings in rat hippocampal slices were used to compare the synaptic responses to perforant path stimulation of granule cells of the dentate gyrus, spiny "mossy" cells of the hilus, and area CA3c pyramidal cells of hippocampus. Specifically, we asked whether aspects of the local circuitry could explain the relative vulnerability of spiny hilar neurons to various insults to the hippocampus. 2. Spiny hilar cells demonstrated a surprising lack of inhibition after perforant path activation, despite robust paired-pulse inhibition and inhibitory postsynaptic potentials (IPSPs) in adjacent granule cells and area CA3c pyramidal cells in response to the same stimulus in the same slice. However, when the slice was perfused with excitatory amino acid antagonists [6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX), or CNQX with 2-amino-5-phosphonovaleric acid (APV)], IPSPs could be observed in spiny hilar cells in response to perforant path stimulation. 3. The IPSPs evoked in spiny hilar cells in the presence of CNQX were similar in their reversal potentials and bicuculline sensitivity to IPSPs recorded in dentate granule cells or hippocampal pyramidal cells in the absence of CNQX. 4. These results demonstrate that, at least in slices, perforant path stimulation of spiny hilar cells is primarily excitatory and, when excitation is blocked, underlying inhibition can be revealed. This contrasts to the situation for dentate and hippocampal principal cells, which are ordinarily dominated by inhibition, and only when inhibition is compromised can the full extent of excitation be appreciated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Enriched environment significantly enhances postischemic functional outcome. We have tested the hypothesis that housing in enriched environment stimulates gene expression for brain-derived neurotrophic factor. After ligation of the middle cerebral artery in male spontaneously hypertensive rats, they were housed in individual cages for 30h, then housed either in standard cages or in an enriched environment. The rats were killed two to 30days after the ischemic event. Cryostat coronal sections through the dorsal hippocampus (Bregma -3.3) were processed for in situ hybridization using a rat-brain-derived neurotrophic factor messenger RNA antisense oligonucleotide probe. Postischemic gene expression was significantly higher in standard rats than in enriched rats in contralateral and peri-infarct cortex and in most parts of the hippocampus two, three and 12days after the ischemic event, with a trend for higher-than-baseline levels in standard rats and lower-than-baseline levels in enriched rats. At 20 and 30days the values for both groups were below baseline levels.Contrary to our hypothesis, gene expression in rats postoperatively housed in enriched environment was significantly lower than in standard rats at a time when other studies have reported hyperexcitability in the ipsilateral and contralateral cortex. Should the low messenger RNA levels correspond to low protein synthesis, this might indicate that dampening of the early postischemic hyperexcitability may be beneficial. Low levels in both groups at 20 and 30days may correspond to loss of callosal connections in the opposite hemisphere and to horizontal cortical connections in the lesioned hemisphere.  相似文献   

15.
In order to identify some of the molecular mechanisms that occur after a central nervous system trauma, the immediate early gene encoded proteins c-Fos, c-Jun and Jun B were analysed by immunocytochemistry following unilateral entorhinal cortex lesion (controls, 30 min, 2, 5, 12 and 24 h, two, six, 10 and 14 days, four weeks and six months postlesion). In the dentate gyrus, c-Fos was induced in some supragranular neurons (30 min), massively expressed in granule cells ipsilaterally to the lesion (2 h), expressed in hilar neurons (5 h and two days) and was absent at all later stages. A basal expression of c-Jun was found in dentate granule cells of controls, which was strongly increased on the lesion side (2 h) and on the side contralateral to the lesion (12 h). c-Jun expression returned to control levels by 24 h. Jun B was induced in granule cells ipsilateral to the lesion within 2 h and was back to control levels by 5 h. In the lateral septal area, c-Fos and c-Jun were induced 30 min postlesion and decreased rapidly thereafter. In the cerebral cortex, a widespread induction of c-Fos and c-Jun occurred within 30 min after entorhinal cortex lesion and this up-regulation lasted until two days postlesion. These data indicate that electrolytic lesion of the entorhinal cortex leads to a rapid and widespread induction of c-Fos, c-Jun and Jun B. Within the denervated fascia dentata, some of these changes may be linked to the reorganization processes following the lesion. Alternatively, the alterations in immediate early gene expression reported here may be due to changes in synaptic activity or postlesional seizures which occur in this lesioning paradigm.  相似文献   

16.
17.
Increasing evidence suggests that Angiotensin II, classically known from its many effects regulating salt and water homeostasis, is also involved in brain development and cognitive functions through activation of AT1 Angiotensin II receptors. The recently cloned gerbil AT1 receptor is expressed in brain areas controlling hydro-mineral homeostasis, and particularly highly expressed in limbic areas such as the hippocampal formation. We quantified the gerbil AT1 receptor messenger RNA expression and receptor binding by quantitative in situ hybridization and receptor autoradiography, respectively, in the hippocampal formation and cerebral cortex of gerbils during postnatal development. The receptor messenger RNA and binding were present from birth and showed a gradual and sustained increase through postnatal maturation in the CA1 and CA2 regions of the hippocampus and in the dentate gyrus. Conversely, in the CA3 region, no binding was detected while receptor messenger RNA peaked at 15 days after birth and disappeared in the adult. The highest receptor messenger RNA expression and binding were found in the septomedial portions of the CA1 region and at septal levels of the CA2 region. We detected the highest receptor messenger RNA expression at postnatal day one in the frontolateral pole of the cerebral hemispheres. In these areas, and in the frontoparietal and insular cortex, receptor messenger RNA dramatically decreased during postnatal life. Similarly, we found receptor messenger RNA expression in the cingulate, retrosplenial, perirhinal and infralimbic cortex with higher values during the first two weeks of development and decreased expression in the adult. However, receptor binding in the cerebral cortex, did not decrease during postnatal life. The differential profile of receptor messenger RNA expression and binding in the gerbil cortex and hippocampus during postnatal maturation suggest a role for AT1 receptors in the development and function of the corticohippocampal system.  相似文献   

18.
Chi SI  Wang CK  Chen JJ  Chau LY  Lin TN 《Neuroscience》2000,100(3):475-484
Iron may catalyse the production of reactive oxygen species during post-ischemic reoxygenation and subsequently lead to brain damage. Ferritin, an iron sequestering and storage protein, can also be a source of iron after ischemic insult. However, its role in ischemia-reperfusion has not been carefully investigated. In the present study, we examined the temporal and spatial induction profiles of both H- and L-ferritin messenger RNA and protein in a well-defined focal cerebral ischemia model. Results of northern blot analysis showed a delayed and prolonged induction of both H- and L-ferritin messenger RNA in the ischemic cortex of rats subjected to 60min ischemic insult. A significant induction of both H- and L-ferritin messenger RNA was observed at 12h and remained elevated for up to 336h after the onset of reperfusion. At the peak level, quantitative analysis of the blot indicated a 2.5-fold and a six-fold increase in H- and L-ferritin messenger RNA, respectively, compared with the sham-operated controls. No apparent change in the levels of either messenger RNA was observed in the contralateral side. Results of in situ hybridization studies revealed constitutive expression of both H- and L-ferritin messenger RNA throughout the brain in sham-operated animals, in particular the hippocampus and the piriform cortex. Nevertheless, the signal intensity of H-ferritin messenger RNA was much higher than that of L-ferritin messenger RNA. Seventy-two hours after 60min ischemia, marked expression of H-ferritin messenger RNA was observed in the area surrounding the middle cerebral artery irrigated cortex, the medial part of the caudoputamen and in the subfield of the CA1 hippocampal region of the ipsilateral hemisphere. Similarly, a large induction of L-ferritin messenger RNA was also noted in several areas, including the middle cerebral artery irrigated cortex, the lateral part of the caudoputamen and the stratum pyramidale of the CA1 hippocampal region, which were totally different from areas where H-ferritin messenger RNA was found. At 336h after ischemia, increased expression of H-ferritin messenger RNA was observed in the peri-necrosis and ipsilateral thalamus regions, while L-ferritin messenger RNA was noted exclusively at the edge within the necrosis. Results of immunohistochemical study further revealed that ferritin immunoreactivity was present in the same areas where increased ferritin messenger RNA was found. Sixty-minute ischemia also led to iron deposition in discrete areas. Iron deposition was highly associated with the induction of ferritin, particularly in the macrophage- and microglia-positive areas where cell death or tissue necrosis was noted.In summary, our initial findings indicate that ischemic insult leads to induction of both H- and L-ferritin messenger RNA. In the present study, although the temporal induction profiles were similar, the major expression areas for these two genes were totally different. Ferritin immunoreactivity was observed in the same areas where increased ferritin messenger RNA was found. Ischemia also resulted in iron deposition, which highly associated with the ferritin immunoreactivity. The exact regulatory mechanism and pathological significance for the differential expression of H- and L-ferritin genes following ischemia/reperfusion remain to be clarified.  相似文献   

19.
Kindling is an animal model of human temporal lobe epilepsy in which excitability in limbic structures is permanently enhanced by repeated stimulations. Kindling also increases the expression of nerve growth factor, brain-derived neurotrophic factor, and brain-derived neurotrophic factor receptor messenger RNAs in both the hippocampus and cerebral cortex and causes structural changes in the hippocampus including hilar hypertrophy. We have recently shown that intraventricular nerve growth factor infusion enhances the development of kindling, whereas blocking nerve growth factor activity retards amygdaloid kindling. Furthermore, we have shown that nerve growth factor protects against kindling-induced hilar hypertrophy. The physiological role of brain-derived neurotrophic factor in kindling is not as clear. Acute injection of brain-derived neurotrophic factor increases neuronal excitability and causes seizures, whereas chronic brain-derived neurotrophic factor infusion in rats slows hippocampal kindling. In agreement with the latter, we show here that intrahilar brain-derived neurotrophic factor infusion delays amygdala and perforant path kindling. In addition, we show that brain-derived neurotrophic factor, unlike nerve growth factor, does not protect against kindling-induced increases in hilar area. To test the hypothesis that brain-derived neurotrophic factor suppresses kindling by increasing inhibition above normal levels, we performed paired-pulse measures in the perforant path-dentate gyrus pathway. Brain-derived neurotrophic factor infused into the hippocampus had no effect on the stimulus intensity function (input/output curves); there was also no significant effect on paired-pulse inhibition. We then kindled the perforant path 10 days after the end of brain-derived neurotrophic factor treatment. Once again, kindling was retarded, showing that the brain-derived neurotrophic factor effect is long-lasting. These results indicate that prolonged in vivo infusion of brain-derived neurotrophic factor reduces, rather than increases, excitability without increasing inhibitory neuron function, at least as assessed by paired-pulse protocols. This effect may be mediated by long-lasting effects on brain-derived neurotrophic factor receptor regulation.  相似文献   

20.
Changes in the levels of enkephalin and substance P messenger RNA expression were examined in the striatum following dopamine depletion resulting from unilateral injection of 6-hydroxydopamine into the substantia nigra. In response to striatal dopamine depletion, the levels of enkephalin messenger RNA were elevated, whereas substance P messenger RNA was decreased within all regions of the striatum. Examination of the striatal peptide messenger RNAs between one and 21 days after the injection of 6-hydroxydopamine revealed a temporal dissociation between changes in enkephalin and substance P messenger RNAs. Within one day of the 6-hydroxydopamine injection, substance P messenger RNA was significantly decreased by 30% at all levels of the striatum. This decrease was maintained for up to 21 days after the lesion. In contrast, striatal enkephalin messenger RNA was not significantly elevated until three days following the injection of 6-hydroxydopamine, after which there was a gradual increase up to 21 days. In order to correlate alterations in peptide messenger RNA expression with 6-hydroxydopamine-induced changes in striatal dopamine innervation, tissue punches from the striatum were examined for dopamine content at one, two, three and seven days after the lesion. One day after the lesion, striatal dopamine levels were significantly increased by 47%. In contrast, within two days tissue dopamine content was reduced by 77% compared to control levels. A further decrease of 90% or more was observed at three and seven days after the lesion.

Taken together, these data demonstrate a temporal dissociation between changes in enkephalin and substance P messenger RNA levels following 6-hydroxydopamine-induced striatal dopamine depletions. This temporal dissociation may reflect a differential response of enkephalin and substance P messenger RNAs to alterations in dopamine release and subsequent receptor activation.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号