首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The human NKG2D killer lectin-like receptor (KLR) is coupled by the DAP10 adapter to phosphoinositide 3-kinase (PI3 K) and specifically interacts with different stress-inducible molecules (i.e. MICA, MICB, ULBP) displayed by some tumour and virus-infected cells. This KLR is commonly expressed by human NK cells as well as TCRgammadelta(+) and TCRalphabeta(+)CD8(+) T lymphocytes, but it has been also detected in CD4(+) T cells from rheumatoid arthritis and cancer patients. In the present study, we analysed NKG2D expression in human cytomegalovirus (HCMV)-specific CD4(+) T lymphocytes. In vitro stimulation of peripheral blood mononuclear cells (PBMC) from healthy seropositive individuals with HCMV promoted variable expansion of CD4(+)NKG2D(+) T lymphocytes that coexpressed perforin. NKG2D was detected in CD28(-) and CD28(dull )subsets and was not systematically associated with the expression of other NK cell receptors (i.e. KIR, CD94/NKG2 and ILT2). Engagement of NKG2D with specific mAb synergized with TCR-dependent activation of CD4(+) T cells, triggering proliferation and cytokine production (i.e. IFN-gamma and TNF-alpha). Altogether, the data support the notion that NKG2D functions as a prototypic costimulatory receptor in a subset of HCMV-specific CD4(+) T lymphocytes and thus may have a role in the response against infected HLA class II(+) cells displaying NKG2D ligands.  相似文献   

2.
The HLA-E class Ib molecule constitutes a major ligand for the lectin-like CD94/NKG2 natural killer (NK) cell receptors. Specific HLA class I leader sequence-derived nonapeptides bind to endogenous HLA-E molecules in the HLA-defective cell line 721.221, inducing HLA-E surface expression, and promote CD94/NKG2A-mediated recognition. We compared the ability of NK clones which expressed either inhibitory or activating CD94/NKG2 receptors to recognize HLA-E molecules on the surface of 721.221 cells loaded with a panel of synthetic nonamers derived from the leader sequences of most HLA class I molecules. Our results support the notion that the primary structure of the HLA-E-bound peptides influences CD94/NKG2-mediated recognition, beyond their ability to stabilize surface HLA-E. Further, CD94/NKG2A+ NK clones appeared more sensitive to the interaction with most HLA-E-peptide complexes than did effector cells expressing the activating CD94/NKG2C receptor. However, a significant exception to this pattern was HLA-E loaded with the HLA-G-derived nonamer. This complex triggered cytotoxicity very efficiently over a wide range of peptide concentrations, suggesting that the HLA-E/G-nonamer complex interacts with the CD94/NKG2 triggering receptor with a significantly higher affinity. These results raise the possibility that CD94/NKG2-mediated recognition of HLA-E expressed on extravillous cytotrophoblasts plays an important role in maternal-fetal cellular interactions.  相似文献   

3.
The CD94/NKG2C heterodimer constitutes an activating receptor involved in NK cell-mediated recognition of the class lb molecule HLA-E. It transduces the triggering signal through an ITAM-bearing molecule, DAP12/KARAP, coupled non-covalently to the receptor. Here we show that specific engagement of the receptor complex expressed on the surface of an NK clone induced the phosphorylation of mitogen-activated protein kinase (MAPK). By the use of the MEK inhibitor PD098059 we demonstrate that the MAPK pathway participates in the CD94-dependent TNF-alpha production and cytotoxicity. Moreover, we transferred the activating function by transfection of the heterologous RBL cell line with CD94/NKG2-C/DAP12. In this system, cross-linking of the receptor induced calcium mobilization, serotonin release and phosphorylation of MAPK.  相似文献   

4.
The role of CD94/NKG2 in innate and adaptive immunity   总被引:7,自引:0,他引:7  
CD94/NKG2 is a heterodimer expressed on natural killer (NK) and a small subset of T cells. This receptor varies in function as an inhibitor or activator depending on which isoform of NKG2 is expressed. The ligand for CD94/NKG2 is HLA-E in human and its homolog, Qa1 in mouse, which are both nonclassical class I molecules that bind leader peptides from other class I molecules. Although <5% of CD8 T cells express the receptor in a naïve mouse, its expression is upregulated upon specific recognition of antigen. Similar to NK cells, most CD8 T cells that express high levels of CD94 co-express NKG2A, the inhibitory isoform. The engagement of this receptor can lead to a blocking of cytotoxicity. However, these receptors have also been implicated in the cell survival of both NK and CD8T cells. The level of CD94 expression is inversely correlated with the level of apoptosis in culture. Thus, CD94/NKG2 receptors may regulate effector functions and cell survival of NK cells and CD8 T cells, thereby playing a crucial role in the innate and adaptive immune response to a pathogen.  相似文献   

5.
A subset of CD8(+) T cells express the natural killer cell receptors CD94:NKG2A or CD94:NKG2C. We found that although many CD8(+) T cells transcribe CD94 and NKG2C, expression of a functional CD94:NKG2C receptor is restricted to highly differentiated effector cells. CD94:NKG2A is expressed by a different subset consisting of CCR7(+) memory cells and CCR7(-) effector cells. Since NKG2A can only be induced on naive CD8(+) T cells while CD94(-) memory cells are refractory, it is likely that commitment to the CD94:NKG2A(+) subset occurs during the first encounter with antigen. CCR7(+)CD94:NKG2A(+) T cells recirculate through lymph nodes where upon activation, they produce large quantities of IFN-gamma. These cells occur as a separate CD94:NKG2A(+) T cell lineage with a distinct TCR repertoire that differs from that of the other CD8(+)CD94(-) T cells activated in situ.  相似文献   

6.
It has been recently demonstrated that the CD94/NKG2-A killer inhibitory receptor (KIR) specifically recognizes the HLA-E class Ib molecule. Moreover, the apparent CD94-mediated specific recognition of different HLA class Ia allotypes, transfected into the HLA-defective cell line 721.221, indeed depends on their selective ability to concomitantly stabilize the surface expression of endogenous HLA-E molecules, which confer protection against CD94/NKG2-A+ effector cells. In the present study, we show that a selective engagement of the CD94/NKG2-A inhibitory receptor with a specific monoclonal antibody (mAb) (Z199) was sufficient to induce tyrosine phosphorylation of the NKG2-A subunit and SHP-1 recruitment. These early biochemical events, commonly related to negative signaling pathways, were also detected upon the specific interaction of NK cells with an HLA-E+ 721.221 transfectant (.221-AEH), and were prevented by pre-incubation of .221-AEH with an anti-HLA class I mAb. Furthermore, mAb cross-linking of the CD94/NKG2-A receptor, segregated from other NK-associated molecules by transfection into a rat basophilic leukemia cell line (RBL-2H3), promoted tyrosine phosphorylation of NKG2-A and co-precipitation of SHP-1, together with an inhibition of secretory events triggered via FcϵRI. Remarkably, interaction of CD94/NKG2-A+ RBL cells with the HLA-E+ .221-AEH transfectant specifically induced a detectable association of SHP-1 with NKG2-A, constituting a more formal evidence for the receptor-HLA class I interaction.  相似文献   

7.
We compared in an inducible expression system the individual effect of US2, US6 and US11 human cytomegalovirus (HCMV) proteins on HLA-E and HLA class Ia surface expression, assessing in parallel their influence on target susceptibility to NK cell clones. To this end, the RPMI 8866 B lymphoma cell line (HLA-A2, HLA-A3, HLA-B7, HLA-Cw7, HLA-E(R), HLA-E(G)) was stably cotransfected with the ecdysone receptor, together with the US sequences under the control of an ecdysone-inducible promoter. Biosynthesis of viral proteins was turned on by incubating transfectants with Ponasterone A. US6 down-regulated expression of all class I molecules, hampering target resistance to NK cell clones controlled by the CD94/NKG2A, KIR2DL2 and/or CD85j (ILT2 or LIR-1) inhibitory receptors. By contrast, US11 reduced the surface levels of class Ia molecules but preserved HLA-E; this rendered US11(+) cells sensitive to NK clones under the control of KIR2DL2 and/or CD85j, while their resistance to CD94/NKG2A(+)KIR2DL2(-) effector cells was maintained. US2 preserved as well HLA-E expression but selectively targeted class Ia molecules; in fact, HLA-A and HLA-C allotypes were down-modulated whereas HLA-B7 remained unaltered. US2(+) targets became sensitive to KIR2DL2(+) cells but remained resistant to CD94/NKG2A(+)CD85j(+) NK clones. The differential effects of US proteins on HLA class Ia and HLA-E likely reflect the evolutionary adaptation of HCMV to counteract NK-mediated surveillance.  相似文献   

8.
Human T cell receptor-mediated recognition of HLA-E   总被引:6,自引:0,他引:6  
The HLA-E class Ib molecule presents hydrophobic peptides derived from the leader sequences of other class I molecules, constituting the ligands for CD94/NKG2 lectin-like receptors. Along the course of our studies on human CD94+ T cells, we characterized an alpha beta CD8+CD94/NKG2C+ CTL clone (K14). In cytolytic assays against the murine TAP-deficient RMA-S cells transfected with human beta2 microglobulin and HLA-E (RMA-S/HLA-E), loaded with different synthetic peptides, K14 displayed a pattern of specific recognition distinct to that observed in CD94/NKG2C+ NK clones tested in parallel. RMA-S/HLA-E cells loaded with some but not all HLA class I leader sequence peptides were efficiently recognized by K14 but not by CD94/NKG2C clones, andvice versa. Remarkably, K14 also reacted with HLA-E loaded with a peptide derived from the BZLF-1 Epstein-Barr virus protein. Anti-CD94 mAb did not prevent K14 cytotoxicity against RMA-S/HLA-E cells, whereas incubation with anti-clonotypic mAb specific for the K14 TCR markedly inhibited lysis. Soluble HLA-E tetramers refolded with different peptides (i.e. VMAPRTVLL, VMAPRTLIL, VMAPRTLFL) specifically stained K14 cells. HLA-E tetramer binding was minimally reduced by pretreatment with anti-CD94 mAb alone, but was completely prevented in combination with anti-clonotypic mAb. Altogether, the data unequivocally imply the generation of human T cells potentially recognizing through the alpha beta TCR HLA-E molecules that bind to class I- and virus-derived peptides.  相似文献   

9.
CD69 represents a functional triggering molecule on activated NK and T cells, capable of inducing cytotoxic activity and costimulating cytokine production. It belongs to the C-lectin type superfamily, and its gene maps in the NK gene complex, close to other genes coding for NK receptors. CD94 / NKG2-A complex is the inhibitory receptor for the non classical MHC class I molecule HLA-E on human NK cells. To investigate CD69-initiated signal transduction pathways, and to evaluate CD94 / NKG2-A interference on CD69 triggering ability, we have generated transfectants expressing both receptors in the RBL cell line. Here we report that CD69 engagement leads to the activation of extracellular signal-regulated kinase (ERK) enzymes belonging to the MAPK family, and that this event is required for CD69-mediated cell degranulation. Moreover, we show that the co-engagement of CD94 / NKG2-A inhibitory receptor effectively suppresses both CD69-triggered cell degranulation in RBL transfectants, through the inhibition of ERK activation, and CD69-induced cytotoxicity in human NK cells. Thus, here we provide new information on the molecular mechanisms initiated by CD69 activation receptor, and show that CD69-initiated signaling pathways and functional activity are negatively regulated by CD94 / NKG2-A inhibitory complex.  相似文献   

10.
Non-classical MHC class I molecule HLA-E is the ligand for CD94/NKG2 NK cell receptors. Surface expression of HLA-E requires binding of specific HLA class I leader sequences. The uterine mucosa in early pregnancy (decidua) is infiltrated by large numbers of NK cells, which are closely associated with placental trophoblast cells. In this study we demonstrate that trophoblast cells express HLA-E on their cell surface in addition to the previously reported expression of HLA-G and HLA-C. Furthermore, we show that the vast majority of decidual NK cells bind to HLA-E tetrameric complexes and this binding is inhibited by mAb to CD94. Thus, recognition of fetal HLA-E by decidual NK cells may play a key role in regulation of placentation. The functional consequences of decidual NK cell interaction were investigated in cytotoxicity assays using polyclonal decidual NK cells. The overall effect of CD94/NKG2 interaction with HLA-E is inhibition of cytotoxicity by decidual NK cells. However, since decidual NK cells are unable to kill trophoblast even in the presence of mAb to MHC class I molecules and NK cell receptors, HLA-E interaction with CD94/NKG2 receptors may regulate other functions besides cytolysis during implantation.  相似文献   

11.
The cognate NK-DC interaction in inflamed tissues results in NK cell activation and acquisition of cytotoxicity against immature DC (iDC). This may represent a mechanism of DC selection required for the control of downstream adaptive immune responses. Here we show that killing of monocyte-derived iDC is confined to the NK cell subset that expresses CD94/NKG2A, but not killer Ig-like receptors (KIR). Consistent with these data, the expression of HLA-E (i.e. the cellular ligand of CD94/NKG2A) was down-regulated in iDC. On the other hand, HLA-B and HLA-C down-regulation in iDC was not sufficient to induce cytotoxicity in NK cells expressing KIR3DL1 or KIR2DL. Remarkably, CD94/NKG2A(+)KIR(-) NK cells were heterogeneous in their ability to kill iDC and an inverse correlation existed between their CD94/NKG2A surface density and the magnitude of their cytolytic activity. It is conceivable that the reduced CD94/NKG2A surface density enables these cells to efficiently sense the decrease of HLA-E surface expression in iDC. Finally, most NK cells that lysed iDC did not kill mature DC that express higher amounts of HLA class I molecules (including HLA-E)as compared with iDC. However, a small NK cell subset was capable of killing not only iDC but also mature DC.  相似文献   

12.
13.
In this paper we describe the clinical and molecular features of a new case (GOR) of homozygous human TAP2 deficiency, analysing the phenotype and function of NK cells. The patient presented from infancy with recurrent sinopulmonary infections; a selective IgG2 deficiency, negative antibody response to polysaccharide vaccination and low level of cell surface expression of HLA class I antigens were found. The sequence of TAP2 gene identified a single mutation, a C to T substitution changing the CGA arg codon at amino acid 220 into TGA stop codon in exon 3. By using MoAbs for KIRs, CD94, CD94/NKG2A and ILT2 we observed, in agreement with others, that the latter two receptors were overexpressed on TAP2-deficient NK cells. The inhibitory CD94/NKG2A and triggering CD94/NKG2C NK receptors, specific for HLA-E, appeared to be functional in a limited number of NK clones that could be expanded in vitro. Expression of HLA-E was virtually undetectable in GOR B-LCL and very faint in PBMC, further supporting that interactions of class I leader sequence nonamers with HLA-E in the ER depend on a functional TAP complex.  相似文献   

14.
The CD94/NKG2 complex is expressed on T and NK lymphocytes. CD94 molecules covalently associate to activating or inhibitory NKG2 molecules, and their expression finely tunes cell responses. Human γδ T cells express several NKRs. Expression of these receptors is confined to the cytolytic Vδ2 subset, which coexpresses the FcγRIII CD16 and CD45RA and has been defined as Vγ9Vδ2 T(EMRA) cells. We show that the CD94/NKG2C complex, associated with KARAP/DAP12, is fully functional in γδ T cells, as determined by measuring IFN-γ production, T cell proliferation, and cytolytic activity by γδ lymphocytes. In contrast, NKG2A expression was found on all γδ T cell memory subsets, suggesting a crucial role of the inhibitory signal provided by this receptor on γδ T cell responses. Moreover, we found Vγ9Vδ2 T(EMRA), NK, and CD8+ αβ T cells coexpressing NKG2A and NKG2C receptors. Functional experiments showed that the inhibitory signal mediated by the NKG2A receptor prevails when double-positive cells are activated. Finally, NKG2A expression on γδ LDGL correlates with asymptomatic pathology, even in the presence of NKG2C coexpression, whereas in symptomatic patients affected by severe disease, the inhibitory NKG2A receptor is absent, and a variety of activatory NKRs was found. We propose that the silent behavior of γδ cells in LDGL patients is a result of effective inhibitory HLA class I receptors.  相似文献   

15.
16.
Previous studies on NK recognition of HLA-G1 employed as targets 721.221 transfectants (.221-G1) that unknowingly co-expressed the HLA-E molecule, subsequently found to be a major ligand for the CD94/NKG2 receptors. In the present study we re-evaluated the relative role played by CD94/NKG2 and ILT2(LIR1) molecules in recognition of HLA-G1 by NK clones. We employed as targets .221-G1 cells and a surface HLA-E-negative transfectant, .221-G1(Eneg), generated by site-directed mutagenesis of the HLA-G1 leader sequence. The antagonistic effects of receptor- (i.e. CD94/NKG2A, ILT2) and ligand-specific mAb (i.e. HLA-G, HLA-E) were assessed. In addition, binding of an ILT2-Ig fusion protein to the .221-AEH, expressing only HLA-E, and the .221-G1(Eneg) transfectants was analyzed. Our data demonstrate that NK recognition of cells expressing HLA-G1 involves at least two non-overlapping receptor-ligand systems: the CD94/NKG2 interaction with HLA-E, and the engagement of the ILT2(LIR1) receptor by HLA-G1 molecules.  相似文献   

17.
NK cell tolerance is maintained by the interaction of killer inhibitory receptors with self MHC class I gene products. A subset of T cells also express killer inhibitory receptors, but the functional significance of this is unclear. Here we demonstrate that the expression of the C-lectin-like killer inhibitory receptor CD94 / NKG2 on T cells depends on the state of differentiation during the immune response to solid tumors. To this end we identified clonally expanded T cells which were present both in the sentinel lymph node of primary melanoma, as well as in the tumor itself. In situ characterization of such T cell clonotypes revealed that within the early stages of T cell activation, i. e. priming in the lymph node, T cells did not express CD94 / NKG2 whereas the same T cell clones expressed high levels of CD94 / NKG2 having reached the effector state at the tumor site. Moreover, while the phenotype of these T cell clones was CD28high in the lymph node only CD28low or CD28- T cells were found within the tumor. Double staining for CD94 and CD28 conformed that CD94 / NKG2-expressing cells were preferentially CD28-. Thus, T cells may down-regulate CD28 and up-regulate NK receptors as consequence of prolonged activation for cytolytic effector function. It is likely that NK receptors are involved in peripheral regulatory mechanisms avoiding overwhelming immune responses and immunopathology, particularly in situations of long-lasting immune activation.  相似文献   

18.
Natural killer (NK) cells are essential for healthy aging. NK cell activation is controlled by MHC class I-specific CD94/NKG2 receptors and killer immunoglobulin-like receptors (KIR). To assess NK cytotoxic function in isolation from MHC receptor engagement, we measured the ability of purified NK cells to kill mouse P815 target cells in the presence of anti-CD16 mAb. CD16-mediated cytotoxicity did not change with age, indicating that NK activation and cytotoxic granule release remained functional. We then investigated MHC class I receptor expression on NK cells. There was an age related decrease in CD94 and NKG2A expression and a reciprocal age related increase in KIR expression. NKG2A expression also declined with age on CD56(+) T cells. CD94/NKG2A receptor function was proportional to expression, indicating that NK cell inhibitory signaling pathways were intact. NKG2A and KIR expression were complementary, suggesting that CD94/NKG2A function could substitute for inhibitory KIR function during polyclonal NK cell development in both young and elderly adults. The distinct roles of CD94/NKG2A and KIR receptors suggest that shifting MHC class I receptor expression patterns reflect age related changes in NK cell and CD56(+) T cell turnover and function in vivo.  相似文献   

19.
The human non-classical MHC class I molecule HLA-E is a ligand for both an inhibitory NK cell receptor (CD94/NKG2A) and an activating receptor (CD94/NKG2C). To identify HLA-E surface recognized by both receptors, especially to determine if both receptors recognize the same epitope, we made a series of individually Ala-substituted HLA-E proteins and analyzed their binding to CD94/NKG2A orCD94/NKG2C. Eight HLA-E mutations that significantly impaired HLA-E binding to CD94/NKG2A are all found in the top of alpha1/alpha2 domain of HLA-E. These results suggest that CD94/NKG2A binds a HLA-E surface equivalent to a NKG2D binding site on MICA. Of the eight mutations that impaired HLA-E binding to CD94/NKG2A, six significantly impaired HLA-E binding to CD94/NKG2C suggesting that CD94/NKG2C also binds a similar surface of HLA-E. Unexpectedly, the two HLA-E mutations (D69A and H155A) selectively abrogated HLA-E binding to CD94/NKG2A, not largely affected CD94/NKG2C. These results indicate that a mostly shared, but partly distinct set of HLA-E residues is discriminated by the two receptors.  相似文献   

20.
The KIR and CD94/NKG2 families of molecules in the rhesus monkey   总被引:1,自引:0,他引:1  
Summary: Natural killer (NK) cells and a subset of T cells express families of receptors that are capable of detecting major histocompatibility complex (MHC) class I expression on the surface of cells. Molecules of the killer cell immunoglobulin-like receptor (KIR) family bind directly to MHC class I, while those of the CD94/NKG2 family recognize MHC class I signal sequences bound to HLA-E. Both the KIR and CD94/NKG2 families are composed of activating and inhibitory molecules that serve to regulate the function of NK cells as a result of their MHC class I recognition. Here we review the recently described KIR and CD94/NKG2 family members in the rhesus monkey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号