首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Administration of aflatoxin B1 to rats (2 mg/kg intraperitoneally) caused significant increase in the activities of γ‐glutamyl transpeptidase, 5′‐nucleotidase, acid phosphatase, acid ribonuclease as well as content of lipid peroxides in liver after six weeks. However, the activities of succinate dehydrogenase, glucose‐6‐phosphatase, catalase, superoxide dismutase, glutathione‐S‐transferase, glutathione peroxidase and glutathione reductase in liver were decreased. The levels of glycogen and reduced glutathione were also decreased. There were significant elevations in the levels of serum transaminases, phosphatases (acid and alkaline), dehydrogenases (sorbitol, lactate and glutamate) and bilirubin following aflatoxin B1 administration. Picroliv (25 mg/kg/day orally for six weeks), an iridoid glycoside isolated from the roots and rhizomes of Picrorhiza kurroa, significantly prevented the biochemical changes induced by aflatoxin B1.  相似文献   

2.
Single doses of aflatoxin B1 (2 mg/kg, i.p.) caused significant increases in the activities of tau-glutamyl transpeptidase, 5'-nucleotidase, acid phosphatase and acid ribonuclease, and decreases in the activities of succinate dehydrogenase and glucose-6-phosphatase in liver, after 8 weeks. The level of lipid peroxides, DNA, RNA, and cholesterol increased while glycogen decreased. It also increased the serum level of transaminases, sorbitol dehydrogenase, glutamate dehydrogenase, lactate dehydrogenase, acid phosphatase, alkaline phosphatase, and bilirubin. Oral administration of picroliv (25 mg/kg/day for 15 days), a standardised iridoid glycoside fraction of Picrorhiza kurroa, 6 weeks after aflatoxin B1 toxication, significantly prevented the biochemical changes induced in liver and serum of aflatoxin B1 treated rats. The hepatocurative effect of picroliv and silymarin, a plant based standard hepatoprotective are comparable.  相似文献   

3.
Five kinds of allylthiopyridazine derivatives were synthesized and their chemoprotective activities examined in rats exposed to aflatoxin B1-toxicant. Rats were pretreated with five allylthiopyridazine derivatives at daily oral doses of 50 mg/kg for 10 consecutive days, and during this period with one or three repeated doses of the potent hepatotoxin, aflatoxin B1. The hepatoprotective effects of the allylthiopyridazine derivatives against aflatoxin B1 (1 mg/kg, three times at intervals of 3 days, i.p., or at 3 mg/kg, once at final days, i.p.) administration were showed the significantly normal as compared with control in body and liver weights. Aspartate aminotransferase and alanine aminotransferase levels were markedly elevated after aflatoxin B1 administration, and pretreatment with allylthiopyridazine derivatives, before aflatoxin B1 administration, resulted in decreased levels of these enzymes. In addition, the allylthiopyridazine derivatives, K6 (3-methoxy-), K8 (3-chloro-), K16 (3-ethoxy-) and K17 (3-n-propoxy), induced elevated hepatic GSH levels. Four kinds of allylthiopyridazine derivatives investigated were effective against aflatoxin B1-induced hepatotoxicity.  相似文献   

4.
The antioxidant effect of pterostilbene on streptozotocin-nicotinamide-induced diabetic rats has been assessed. The activity of superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase and reduced glutathione was significantly decreased in liver and kidney of diabetic animals when compared with normal control. There were significant improvements in these activities after treatment with pterostilbene at a dose of 40 mg kg(-1) for six weeks. The increased levels of lipid peroxidation measured as thiobarbituric acid reactive substances (TBARS) in liver and kidney of diabetic rats were also normalized by treatment with pterostilbene. Chronic treatment of pterostilbene remarkably reduced the pathological changes observed in liver and kidney of diabetic rats. These results indicated the antioxidant property of pterostilbene.  相似文献   

5.
1. The effect of a contraceptive on aflatoxin B1 toxicity has been studied in female rats treated for 15 consecutive days with repeated doses of aflatoxin (0.40 mg/kg/day), norethindrone (0.60 mg/kg/day) and ethynylestradiol (0.012 mg/kg/day). 2. Increases occurred in hepatic microsomal cytochrome P-450 content (31%), and in the activities of epoxide hydrase (77%), UDP-glucuronyltransferase (67%) and gamma-glutamyltransferase (78%). 3. Aflatoxin alone caused a 22% increase in GSH S-epoxide transferase activity, whereas the contraceptive given alone or combined with aflatoxin increased the hepatic reduced glutathione. 4. The effect of aflatoxin plus contraceptive was not additive. 5. The effects caused by aflatoxin and the contraceptive were similar, and the contraceptive (depending on its progestogen/estrogen ratio), may modify aflatoxin toxicity by increasing the drug-metabolizing enzyme activities and the concentration of hepatic glutathione.  相似文献   

6.
In the present study, caspase-3 enzyme activity (apoptotic marker) and heat shock protein-70 (HSP70) expression in male rat liver after aflatoxin B1 (AFB1) treatment and the effect of melatonin (MEL) were investigated. Four groups of 20 rats each were used: controls, MEL-treated rats (MEL dose, 5 mg/kg body wt), AFB1-treated rats (50 microg/kg body wt) and MEL+AFB1-treated rats. After 8 weeks of daily treatment, biochemical assays in liver homogenates were done. The caspase-3 enzyme activity was measured using colorimetric method while the level of HSP70 expression was determined using dot blot analysis. In addition, the tissue levels of lipid peroxides (LPO), nitric oxide (NO), glutathione (GSH) and the enzyme activities of glutathione reductase (GR) and glutathione peroxidase (GSPx) were determined using colorimetric methods. The levels of caspase-3 activities and HSP70 level in AFB1 group were significantly higher than control group. Concomitantly, the levels of oxidative stress indices, LPO and NO, were significantly increased while the levels of antioxidants, GSH, GSPx and GR in AFB1 group were significantly decreased compared to their levels in controls. Caspase-3 activity was positively correlated with LPO while negatively correlated with GSH in rat livers treated with AFB1. The levels of caspase-3 activity, LPO, NO and HSP70 expression were significantly lower while the levels of GSH, GSPx and GR activities were significantly higher in MEL+AFB1 group than AFB1 group. In conclusion, higher levels of caspase-3 activity and HSP70 expression were associated with oxidative stress in rat liver treated with AFB1. The increased HSP70 expression in liver of AFB1 group may be due to a compensatory defense mechanism. MEL may effectively normalize the impaired antioxidants status, which consequently reduce both expression of HSP70 and apoptotic dysregulation in the liver. Thus, clinical application of MEL as therapy may benefit in cases of aflatoxicosis.  相似文献   

7.
Aflatoxin B1 is a potent hepatotoxic and hepatocarcinogenic mycotoxin. Lipid peroxidation and oxidative DNA damage are the principal manifestations of aflatoxin B1-induced toxicity that could be counteracted by antioxidants. Many plant constituents have been reported to prevent liver damage associated with lipid peroxidation. In this study, curcumin (polyphenolic antioxidant purified from turmeric) and resveratrol (polyphenol obtained from grapes) were evaluated for possible protection against liver injury induced by aflatoxin B1 in rats. Adult male Fischer rats were divided into six groups including untreated control, curcumin control (200 mg/kg BW), resveratrol control (10 mg/kg BW) and aflatoxin B1 (25 μg/kg BW). Other two groups were administered either curcumin or resveratrol along with aflatoxin B1. The study was carried out for 90 days. At the end of the experiment period, blood and tissue samples were collected from the animals before they were killed. Livers were collected for histopathologic studies and fixed in 10% buffered formalin solution. Serum was used for estimation of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and γ-glutamyl transferase (γ-GT) enzymes. The lipid peroxidation, reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) were estimated in liver homogenates. The results revealed that aflatoxin B1 administration caused liver damage as indicated by statistically significant (P < 0.05) increase in serum ALT, AST and γ-GT levels. In addition, there were general statistically significant reductions in the activities of GSH, SOD, CAT, GSH-Px, and an increase in lipid peroxidation in the liver of aflatoxin B1-treated group compared to the untreated control group. Curcumin showed a significant hepatoprotective activity by lowering the levels of serum marker enzymes, lipid peroxidation and elevating the levels of GSH, SOD, CAT and GSH-Px. However, resveratrol failed to protect from the aflatoxin B1-induced liver injury. These findings suggest that curcumin but not resveratrol has a hepatoprotective effect against aflatoxin B1-induced liver injury.  相似文献   

8.
This study examined the protective effects of magnesium chenoursodeoxycholic acid (Mg-CUD), a magnesium trihydrate salt of chenodeoxycholic acid (CDCA) and ursodeoxycholic acid (UDCA), against D-galactosamine (D-GalN)-induced liver injury. Hepatotoxicity was induced by intraperitoneal injection of D-GalN (700mg/kg) and Mg-CUD (15.625, 31.25 and 62.5mg/kg) was administered orally once a day for 2weeks and 6h after D-GalN injection. Significant increases in the level of serum alanine aminotransferase activity and lipid peroxidation were attenuated by Mg-CUD 24h after D-GalN treatment. Hepatic glutathione/oxidized glutathione ratio was decreased, and this decrease was attenuated by Mg-CUD. Mg-CUD attenuated the increase in the levels of serum tumor necrosis factor (TNF)-α and interleukin (IL)-6, while it augmented the increase in serum IL-10 level and heme oxygenase (HO)-1 protein expression. Mg-CUD attenuated increased levels of TNF-α, IL-6, and IL-1β mRNA expression. Increased levels of IL-10 and HO-1 mRNA expression were augmented by Mg-CUD. The increased nuclear level of nuclear factor-κB (NF-κB) and decreased cytosolic level of Inhibitory κB-α protein were attenuated by Mg-CUD. Nuclear phosphorylated c-Jun (p-c-Jun) level showed a significant increase and this increase was attenuated by Mg-CUD. Our results suggest that Mg-CUD ameliorates D-GalN-induced acute hepatitis and that this protection is likely due to its anti-oxidative and anti-inflammatory activities, and inhibition of NF-κB nuclear translocation and nuclear p-c-Jun expression.  相似文献   

9.
The protective efficacy of diallyl tetrasulfide (DTS) from garlic on liver injury induced by cadmium (Cd) was investigated. In this study, Cd (3 mg/kg body weight) was administered subcutaneously for 3 weeks to induce toxicity. DTS was administered orally (10, 20 and 40 mg/kg body weight) for 3 weeks with subcutaneous (sc) injection of Cd. Cd-induced liver damage was evidenced from increased activities of serum hepatic enzymes, namely aspartate transaminase, alanine transaminase, alkaline phosphatase and lactate dehydrogenase, with significant elevation of lipid peroxidation indices (thiobarbituric acid reactive substances and hydroperoxides) and protein carbonyl groups in the liver. Rats subjected to Cd toxicity also showed a decline in the levels of total thiols, reduced glutathione (GSH), vitamin C and vitamin E, accompanied by an increased accumulation of Cd, and significantly decreased activities of superoxide dismutase, catalase (CAT), glutathione peroxidase, glutathione-S-transferase (GST), glutathione reductase, and glucose-6-phosphate dehydrogenase in the liver. Administration of DTS at 40 mg/kg body weight significantly normalised the activities of hepatic marker enzymes, compared to other doses of DTS (10 and 20 mg/kg body weight). In addition, DTS (40 mg/kg body weight) significantly reduced the accumulation of Cd and the level of lipid peroxidation, and restored the level of antioxidant defense in the liver. Histological studies also showed that administration of DTS to Cd-treated rats resulted in a marked improvement of hepatocytes morphology with mild portal inflammation. Our results suggest that DTS might play a vital role in protecting Cd-induced oxidative damage in the liver.  相似文献   

10.
1. The deactivation of aflatoxin B1 by glutathione (GSH) has been investigated in rat. Binding of metabolites of aflatoxin B1 to [3H]glutathione in vitro with rat liver microsomes is insignificant. Incubation with rat liver 10 000 g supernatant results in increased binding. Under identical conditions, benzo(a)pyrene metabolites are bound to [3H]glutathione much more than is aflatoxin B1. 2. Pre-treatment of rats with aflatoxin 1 (2 mg/kg) caused depletion in GSH of rat liver with a minimum at 6 h but returning to above normal at 24 h. GSH S-transferase activity was marginally increased at 6 h also and returned to normal at 24 h. 3. Kidney GSH was not significantly decreased, but kidney GSH S-transferase activity showed a sudden increase in 6 h, returning to almost normal at 24 h. 4. Pre-treatment with benzo(a)pyrene (2 mg/kg) caused greater depletion of hepatic GSH than occurred with aflatoxin B1 but did not show any effect on kidney GSH. 5. Hepatic and kidney GSH S-transferase in benzo(a)pyrene-treated rats showed greatest activity at 2 h followed by a gradual fall through 24 h. 6. GSH was therefore a less efficient nucleophile for aflatoxin B1 metabolites than for benzo(a)pyrene metabolites.  相似文献   

11.
Jafari M 《Toxicology》2007,231(1):30-39
This study investigates the dose- and time-dependent effects of sulfur mustard (SM) on antioxidant system and lipid peroxidation in liver and brain of rats. For this purpose, male Wistar rats were randomly divided into eight groups and treated as follows: group 1 as control and groups 2-8 as experimental groups that received SM (1-80 mg/kg) through intraperitoneal injection. Rats were killed after 2, 7 and 14 days of exposure. SM dose-dependently decreased body weight. Superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST) activities in liver were significantly increased at SM doses lower than 10 mg/kg after 2 and 7 days of exposure. However, the recovery of these parameters was observed after 14 days. At these concentrations, no significant change in glutathione (GSH) and malondialdehyde (MDA) levels were observed. At doses higher than 10 mg/kg, SM significantly decreased SOD, CAT, glutathione peroxidase (GPX), and GST activities in liver and brain and decreased glutathione reductase (GR) activity in liver, which was associated with a depletion of GSH and increased MDA level. Present data indicate that the effect of SM is dose- and time-dependent and at higher doses (>10 mg/kg) induces an oxidative stress response by depleting the antioxidant defense systems and increasing lipid peroxidation in liver and brain of rats.  相似文献   

12.
Intra-gastric administration of brotizolam (0.1-200 mg/kg) daily for three days to rats resulted in no significant changes in the hepatic and intestinal cytochrome P-450-dependent or P-448-dependent mixed-function oxidases, or in the hepatic flavoprotein dimethylaniline N-oxidase. Liver microsomes from mouse, rat and man metabolized brotizolam by hydroxylation of the diazepine ring and of the methyl group at rates which were greater for mouse greater than rat greater than man. Brotizolam and its metabolites generated by rat-liver microsomes in vitro were not mutagenic in the Ames' test. Brotizolam, at 200 mg/kg per day for two to six weeks, depleted liver glutathione concentration and markedly increased liver gamma-glutamyl transpeptidase, glutathione reductase and glutathione transferase activities. Similar changes were not seen at the lower dose of 0.3 mg/kg. The observed increases in glutathione metabolism and the decreased tissue concentration of glutathione are indicative of high levels of glutathione conjugation, and provide a possible explanation for the equivocal increase in tumorigenicity seen in rats receiving brotizolam at high dosage.  相似文献   

13.
In this study, the effect of combination of vitamin C (ascorbic acid), vitamin E (alpha -tocopherol), and selenium (sodium selenate) on ethanol-induced liver and intestine injury in rats was investigated. The ethanol-induced injury was produced by the administration of 1 ml of absolute ethanol to each rats. Animals received vitamin C (250 mg/kg), vitamin E (250 mg/kg), and sodium selenate (Se) (0.5 mg/kg) for 3 days; 1 h after the final antioxidant administration, they were sacrificed. Lipid peroxidation and glutathione levels, catalase (CAT), lactate dehydrogenase (LDH), superoxide dismutase (SOD), and glutathione peroxidase (GP(x)) activities were determined in liver and intestine tissues. Myeloperoxidase (MPO), aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), gamma-glutamyltransferase (GGT) were determined in liver tissue. Also, CAT activity, urea, creatinine, uric acid, and total lipid levels were determined in serum samples. In the ethanol group, serum urea, creatinine, uric acid, and total lipid levels; liver and intestine LDH; liver MPO, AST, ALP, ALT, and GGT activities; and liver and intestine LPO levels increased, whereas serum CAT activity, liver and intestine GSH levels, and CAT, SOD, and GP(x) activities decreased. On the other hand, treatment with vitamin C, vitamin E, and Se reversed these effects. As a result of these findings, we can say that the combination of vitamin C, vitamin E, and selenium has a protective effect on ethanol-induced changes in lipid peroxidation, glutathione levels, and antioxidant enzyme activities in liver and intestine tissues, and in some serum parameters of rats.  相似文献   

14.
双环醇对大鼠黄曲霉毒素B1代谢和肝毒性的影响   总被引:9,自引:0,他引:9  
目的:研究抗肝炎新药双环醇对大鼠黄曲霉毒素B_1(AFB_1)代谢和肝毒性的影响.方法:大鼠灌胃双环醇300 mg·kg~(-1)·d~(-1),连服三日后腹腔注射黄曲霉毒素B_1 1.5 mg·kg~(-1).给黄曲霉毒素B_1 16小时后观察双环醇对黄曲霉毒素B_1引起肝损伤的防护作用以及对体外代谢的影响.结果:双环醇(300 mg·kg~(-1)·d~(-1),连服三日)可明显降低黄曲霉毒素B_1引起的大鼠血清转氨酶和肝脏MDA的升高,增加低毒代谢产物AFQ_1的生成.双环醇还可增加大鼠肝脏细胞色素P450总量和胞浆谷胱甘肽含量,诱导P450 CYP2B1介导的7-戊氧基香豆素脱烃酶和谷胱甘肽疏基转移酶的活性.此外,双环醇对P450 CYP3A介导的红霉素脱甲基酶和 P450 CYP1A介导的7-乙氧基香豆素脱烃酶也有诱导作用.结论:双环醇可通过增加大鼠肝脏对AFB_1代谢的解毒功能起到肝保护作用.  相似文献   

15.
Yousef MI 《Toxicology》2004,199(1):47-57
For a long time, aluminium (Al) has been considered an indifferent element from a toxicological point of view. In recent years, however, Al has been implicated in the pathogenesis of several clinical disorders, such as dialysis dementia, the fulminant neurological disorder that can develop in patients on renal dialysis. Therefore, the present experiment was carried out to determine the effectiveness of l-ascorbic acid (AA) in alleviating the toxicity of aluminium chloride (AlCl3) on certain hemato-biochemical parameters, lipid peroxidation and enzyme activities of male New Zealand white rabbits. Six rabbits per group were assigned to 1 of 4 treatment groups: 0mg AA and 0mg AlCl3/kg body weight (BW) (control); 40 mg AA/kg BW; 34 mg AlCl3/kg BW (1/25 LD50); 34 mg AlCl3 plus 40 mg AA/kg BW. Rabbits were orally administered their respective doses every other day for 16 weeks. Evaluations were made for lipid peroxidation, enzyme activities and hemato-biochemical parameters. Results obtained showed that AlCl3 significantly (P<0.05) induced free radicals and decreased the activity of glutathione S-transferase (GST) and the levels of sulfhydryl groups (SH groups) in rabbit plasma, liver, brain, testes and kidney. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (AlP), acid phosphatase (AcP), and phosphorylase activities were significantly decreased in liver and testes due to AlCl3 administration. While, plasma, liver, testes and brain lactate dehydrogenase (LDH) activities were significantly increased. Contrariwise, the activity of acetylcholinesterase (AChE) was significantly decreased in brain and plasma. Aluminium treatment caused a significant decrease in plasma total lipids (TL), blood haemoglobin (Hb), total erythrocytic count (TEC) and packed cell volume (PCV), and increased total leukocyte count (TLC) and the concentrations of glucose, urea, creatinine, bilirubin and cholesterol. Ascorbic acid alone significantly decreased the levels of free radicals, TL, cholesterol, glucose and creatinine, and increased the activity of GST, SH groups, Hb, TEC and PCV. While, the rest of the tested parameters were not affected. Also, the present study showed that ascorbic acid can be effective in the protection of aluminium-induced toxicity.  相似文献   

16.
To investigate the biochemical mechanism of the previously reported protective effect of dietary selenium against aflatoxin toxicity, the hepatic metabolism of aflatoxin B1 in turkey poults was examined at various dietary selenium concentrations. Diets were supplemented with 0.2, 2.0 or 4.0 ppm selenium (as sodium selenite) and 500 ng aflatoxin B1/g diet in an 18-day trial. Free and conjugated aflatoxin and metabolites were quantified using high-performance liquid chromatography. The proportion of liver aflatoxins in conjugated forms increased and the ratio of free aflatoxin B1/M1 decreased with increasing dietary selenium concentrations. These in vivo results provide evidence of selenium-induced enhancement of aflatoxin detoxification processes. In a similar experiment using 2.0 ppm selenium and 750 ng aflatoxin B1/g diet, the concentration of hepatic reduced glutathione, cytochrome P-450 and the activity of enzymes involved in the metabolism of aflatoxin B1 and glutathione were determined. Although the selenium supplement increased glutathione peroxidase activity, dietary selenium had no effect on reduced glutathione or cytochrome P-450 concentrations or on the activities of glutathione transferase E, glucuronyl transferase and cytochrome c reductase. These data indicate that the protective action of selenium is not mediated by an increase in glutathione availability for aflatoxin conjugation or by effects on the activities of these enzymes as measured in vitro.  相似文献   

17.
Ethanol metabolism induces generation of excessive amount of reactive oxygen species (ROS) which results in immune dysfunction. We examined the efficacy of silymarin on ethanol-induced oxidative stress, immunomodulatory activity, and vascular function in mice blood. Effectiveness of silymarin was compared with potent antioxidant ascorbic acid. In the present study, 8- to 10-week-old male BALB/c mice (20–30 g) were divided into the four groups of six each. One group were fed with ethanol (1.6 g/kg body weight), while second group were fed with ethanol (1.6 g/kg body weight) and silybin (250 mg/kg body weight), and the third group were exposed to ethanol (250 mg/kg body weight) and ascorbic acid (250 mg/kg body weight) per day for 12 weeks. The control group was fed with isocaloric glucose solution instead of ethanol. Ethanol exposure significantly increased thiobarbituric acid reactive substance (TBARS) and nitrite levels besides glutathione-S-transferase (GST) activity, and significantly decreased reduced glutathione (GSH) content and the activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), and glutathione peroxidase (GPx) in whole blood hemolyzate, while silymarin treatment significantly normalized these altered parameters. Silymarin significantly prevented ethanol-induced, elevated activities of interleukin (IL)-10, tumor necrosis factor (TNF)-α, γ interferon (IFN-γ), vascular endothelial growth factor (VEGF)-A, and transforming growth factor (TGF)-β1, as well as decreased IL-4 activity in mice blood. These results were comparable with the activity of ascorbic acid.  相似文献   

18.
Ethanol metabolism induces generation of excessive amount of reactive oxygen species (ROS) which results in immune dysfunction. We examined the efficacy of silymarin on ethanol-induced oxidative stress, immunomodulatory activity, and vascular function in mice blood. Effectiveness of silymarin was compared with potent antioxidant ascorbic acid. In the present study, 8- to 10-week-old male BALB/c mice (20-30 g) were divided into the four groups of six each. One group were fed with ethanol (1.6 g/kg body weight), while second group were fed with ethanol (1.6 g/kg body weight) and silybin (250 mg/kg body weight), and the third group were exposed to ethanol (250 mg/kg body weight) and ascorbic acid (250 mg/kg body weight) per day for 12 weeks. The control group was fed with isocaloric glucose solution instead of ethanol. Ethanol exposure significantly increased thiobarbituric acid reactive substance (TBARS) and nitrite levels besides glutathione-S-transferase (GST) activity, and significantly decreased reduced glutathione (GSH) content and the activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), and glutathione peroxidase (GPx) in whole blood hemolyzate, while silymarin treatment significantly normalized these altered parameters. Silymarin significantly prevented ethanol-induced, elevated activities of interleukin (IL)-10, tumor necrosis factor (TNF)-α, γ interferon (IFN-γ), vascular endothelial growth factor (VEGF)-A, and transforming growth factor (TGF)-β1, as well as decreased IL-4 activity in mice blood. These results were comparable with the activity of ascorbic acid.  相似文献   

19.
Consequences of subchronic exposure to aflatoxin B1 (AFB1) on liver monooxygenase and transferase enzymes were compared in control pigs and pigs given 385, 867 or 1,807 microg AFB1/kg of feed for 4 weeks. Animals exposed to the highest dose of toxin developed clinical signs of aflatoxicosis, like liver fibrosis, hepatic dysfunction and decreased weight gain. This group had significantly lower levels of liver cytochrome P450, ethoxyresorufin O-deethylase (EROD) activity, testosterone metabolism, P450 1A and P450 3A protein expression. By comparison, mild degenerative hepatic changes, no hepatic dysfunction but a similar pattern of liver P450 enzymes activity without changes in P450 3A expression were observed in pigs exposed to 867 microg AFB1/kg of feed. Benzphetamine and aminopyrine N-demethylase activities were increased in pigs exposed to 867 or 1,807microg AFB1/kg of feed. Pigs exposed to 385 microg AFB1/kg of feed had low levels of EROD activity and all other biotransformation and clinical parameters remained at control levels. Aniline hydroxylase activity, P450 2C protein expression, UDP-glucuronosyl and glutathione S-transferase activities were unaffected at all doses of AFB1. In conclusion, P450 1A and P450 3A appear to be specific targets of AFB1 even if pig did not display clinical sign of liver toxicosis.  相似文献   

20.
alpha-Tocopherol (40 mg/rat/day) was administered, orally, to doxorubicin treated rats (2 mg/kg, twice weekly, for 4 weeks) singly and also in combination with ascorbic acid (1 g/100 ml/day) in drinking water. The vitamin therapy was carried out for a period of 1 month. The microsomal lipid peroxide levels in liver and heart were found to be increased in doxorubicin treated rats. alpha-tocopherol and ascorbic acid treatment decreased the lipid peroxide level and also NADPH-dependent lipid peroxidation. A significant depletion of glutathione in liver and heart of doxorubicin treated animals was found to be ameliorated by vitamin therapy. Ascorbic acid was found to maintain the level of microsomal alpha-tocopherol. The activities of the detoxifying enzymes like catalase, superoxide dismutase and glutathione peroxidase were suppressed in doxorubicin treated rats and vitamins coadministration maintained the levels of these enzymes. Ascorbic acid was found to potentiate the antioxidant nature of alpha-tocopherol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号