首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sediment homogenization is a common practice in many contaminated sediment toxicity testing and chemical analysis protocols. A primary goal of sediment homogenization is to reduce inter-replicate variability. In this study, the geochemical effects of sediment homogenization were evaluated by measuring the concentration and distribution of polychlorinated biphenyls (PCBs) in environmentally contaminated marine sediment interstitial waters. Sediment homogenization, prior to isolation of interstitial waters, was found to significantly increase the concentration of PCBs in the dissolved and colloidal phases—generally by a factor of two. Long-term storage (i.e., several months) of sediments following mixing appeared to allow interstitial water distributions of PCBs to return to “normal,” although a storage artifact may also be present. This study indicates that homogenization results in significant changes in the concentration of PCBs in environmentally contaminated sediment interstitial waters. Consequences of these changes on inferences made based on toxicity tests or chemical analyses using homogenized sediments need to be considered and studied further. Received: 12 December 1996/Revised: 24 February 1997  相似文献   

2.
We evaluated the effectiveness of Ambersorb, a carbonaceous resin, in reducing bioavailability of polycyclic aromatic hydrocarbons (PAHs) in contaminated sediments collected from the field. In laboratory studies, sediment pore-water concentrations of eight unsubstituted PAHs were significantly decreased after resin addition. Reduced PAH concentrations in oligochaete tissues from a laboratory bioaccumulation test, along with increased survival/reproduction and reduced photo-enhanced toxicity and sediment avoidance, also resulted from sediment treatment with Ambersorb. Resin amendment also decreased pore-water PAH concentrations in field deployed sediments but did not improve benthic invertebrate colonization. Prediction of partitioning of PAHs between solid and aqueous phases in the test sediments was complicated by the presence of coal and soot. However, accurate predictions of bioavailability were achieved based on pore-water chemistry. Overall, these studies show that the addition of high affinity sorbents effectively reduces pore-water PAH concentrations and bioavailability and suggests that sorbent addition may serve as an option for in situ remediation of some contaminated sediments.  相似文献   

3.
Approaches for cleaning up contaminated sediments range from dredging to in situ treatment. In this study, we discuss the effects of amending reference and contaminated sediments with coal fly ash to reduce the bioavailability and toxicity of a field sediment contaminated with polycyclic aromatic hydrocarbons (PAHs). Six fly ashes and a coconut charcoal were evaluated in 7-d whole sediment toxicity tests with a marine amphipod (Ampelisca abdita) and mysid (Americamysis bahia). Fly ashes with high carbon content and the coconut charcoal showed proficiency at reducing toxicity. Some of the fly ashes demonstrated toxicity in the reference treatments. It is suspected that some of this toxicity is related to the presence of ammonia associated with fly ashes as a result of postoxidation treatment to reduce nitrous oxide emissions. Relatively simple methods exist to remove ammonia from fly ash before use, and fly ashes with low ammonia content are available. Fly ashes were also shown to effectively reduce overlying water concentrations of several PAHs. No evidence was seen of the release of the metals cadmium, copper, nickel, or lead from the fly ashes. A preliminary 28-d polychaete bioaccumulation study with one of the high-carbon fly ashes and a reference sediment was also performed. Although preliminary, no evidence was seen of adverse effects to worm growth or lipid content or of accumulation of PAHs or mercury from exposure to the fly ash. These data show fly ashes with high carbon content could represent viable remedial materials for reducing the bioavailability of organic contaminants in sediments.  相似文献   

4.
Waukegan Harbor in Illinois was designated as a Great Lakes Area of Concern due to high concentrations of sediment-associated polychlorinated biphenyls (PCBs). The objective of this study was to evaluate the toxicity of 20 sediment samples collected after remediation (primarily dredging) of Waukegan Harbor for PCBs. A 42-day whole sediment toxicity test with the amphipod Hyalella azteca (28-day sediment exposure followed by a 14-day reproductive phase) and sediment toxicity tests with Microtox(R) were conducted to evaluate sediments from Waukegan Harbor. Endpoints measured were survival, growth, and reproduction (amphipods) and luminescent light emission (bacteria). Survival of amphipods was significantly reduced in 6 of the 20 sediment samples relative to the control. Growth of amphipods (either length or weight) was significantly reduced relative to the control in all samples. However, reproduction of amphipods identified only two samples as toxic relative to the control. The Microtox basic test, conducted with organic extracts of sediments identified only one site as toxic. In contrast, the Microtox solid-phase test identified about 50% of the samples as toxic. A significant negative correlation was observed between reproduction and the concentration of three polynuclear aromatic hydrocarbons (PAHs) normalized to total organic carbon. Sediment chemistry and toxicity data were evaluated using sediment quality guidelines (consensus-based probable effect concentrations, PECs). Results of these analyses indicate that sediment samples from Waukegan Harbor were toxic to H. azteca contaminated at similar contaminant concentrations as sediment samples that were toxic to H. azteca from other areas of the United States. The relationship between PECs and the observed toxicity was not as strong for the Microtox test. The results of this study indicate that the first phase of sediment remediation in Waukegan Harbor successfully lowered concentrations of PCBs at the site. Though the sediments were generally not lethal, there were still sublethal effects of contaminants in sediments at this site observed on amphipods in long-term exposures (associated with elevated concentrations of metals, PCBs, and PAHs).  相似文献   

5.
This study was conducted to support a Natural Resource Damage Assessment and Restoration project associated with the Ashtabula River in Ohio. The objective of the study was to evaluate the chemistry and toxicity of 50 sediment samples obtained from five cores collected from the Ashtabula River (10 samples/core, with each 10-cm-diameter core collected to a total depth of about 150 cm). Effects of chemicals of potential concern (COPCs) measured in the sediment samples were evaluated by measuring whole-sediment chemistry and whole-sediment toxicity in the sediment samples (including polycyclic aromatic hydrocarbons [PAHs], polychlorinated biphenyls [PCBs], organochlorine pesticides, and metals). Effects on the amphipod Hyalella azteca at the end of a 28-day sediment toxicity test were determined by comparing survival or length of amphipods in individual sediment samples in the cores to the range of responses of amphipods exposed to selected reference sediments that were also collected from the cores. Mean survival or length of amphipods was below the lower limit of the reference envelope in 56% of the sediment samples. Concentrations of total PCBs alone in some samples or concentrations of total PAHs alone in other samples were likely high enough to have caused the reduced survival or length of amphipods (i.e., concentrations of PAHs or PCBs exceeded mechanistically based and empirically based sediment quality guidelines). While elevated concentrations of ammonia in pore water may have contributed to the reduced length of amphipods, it is unlikely that the reduced length was caused solely by elevated ammonia (i.e., concentrations of ammonia were not significantly correlated with the concentrations of PCBs or PAHs and concentrations of ammonia were elevated both in the reference sediments and in the test sediments). Results of this study show that PAHs, PCBs, and ammonia are the primary COPCs that are likely causing or substantially contributing to the toxicity to sediment-dwelling organisms. An erratum to this article can be found at  相似文献   

6.
Sediments act as sinks of suspended material from surface water. Dredging of regional waters and subsequent disposal of the sediment on soil may lead to contamination of the soil, in some cases resulting in exceedance of soil quality standards. Soil quality standards are based on total concentrations. Total levels, however, do not always give an indication of adverse effects in soil ecosystems. Instead, truly bioavailable concentrations should be used as indicators. In this study we aim to test a set of suited indicators. We carried out partition and accumulation assays with metals and polycyclic aromatic hydrocarbons (PAHs) in soils and mixtures of soil and sediment, as well as a limited number of toxicity bioassays. We also investigated the rate of disappearance of PAHs from mixtures of sediments and soils. The experiments confirm that total levels indeed are not indicative of truly occurring toxic effects: mixing of highly contaminated sediments with soil hardly gave rise to either additional accumulation of metals and PAHs or excess toxicity. This indicates that the bioavailability of the metals and PAHs present in the sediment is limited. This general finding is confirmed by the low rate of disappearance of PAHs from the mixtures. It is concluded that inclusion of the aspects of bioavailability, mixture toxicity, and degradation, in the way described in this report, will solve the major limitations of the current methodology of classification of contaminated sediments.  相似文献   

7.
Sediments in Sydney Harbour, Nova Scotia, are highly contaminated by polynuclear aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and heavy metals. Histopathologic and histochemical evaluations were made on the Baltic clam, Macoma balthica, exposed to 11 Sydney Harbour sediment samples. Histologic lesions in digestive gland (tubular dilation or atrophy, macrophage aggregates, tubular cell necrosis, and tissue inflammation) and gonads (macrophage aggregates, supporting cell, germ cell, and ovarian cell necroses) were frequently detected in clams exposed to the most contaminated sediments from the harbor. Clams exposed to these contaminated sediments also had the highest acid phosphatase activity. The average scores of tubular dilation or atrophy, ovarian cell necrosis, and the sums of mean digestive gland lesions correlated significantly with sediment PCBs, and the activities of acid phosphatase correlated significantly with sediment heavy metals, PAHs, and PCBs. Among the lesions, digestive gland tubular dilation or atrophy, tubular cell, germ cell, and ovarian cell necroses, and the activity of acid phosphatase are the best sublethal effect indicators in Macoma exposed to Sydney Harbour sediments. Key words: biomarkers, chronic biologic effects, clams, histology, histochemistry, Macoma balthica, marine sediment, polynuclear aromatic hydrocarbons, polychlorinated biphenyls.  相似文献   

8.
Contaminant levels in urban harbor sediments vary with contaminant emission levels, sedimentation rates, and sediment resuspension processes such as propeller wash. Levels of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) are decreasing in many urban harbors, as heavily contaminated sediments that accumulated during past decades are being buried by less-contaminated sediments. However, PAHs and PCBs remain a concern in areas where burial is slow or resuspension processes re-expose heavily contaminated older layers. Chronostratigraphic sediment core studies typically characterize contaminant level histories by using total sediment concentrations, C(sed) , and do not determine the freely dissolved porewater concentrations, C(pw) , which provide a better measure of bioavailability. Here both C(sed) and C(pw) profiles were established for PAHs and PCBs in dated sediment cores from diverse areas of Oslo Harbor, Norway. Sediment-porewater partitioning profiles were established alongside profiles of various sorbing carbonaceous phases, including total organic carbon (TOC), black carbon, and diverse carbonaceous geosorbents identified by petrographic analysis. Stratigraphic trends in carbonaceous phases and C(sed) could be associated with different industrial epochs: hydropower (post-1960, approximately), manufactured gas (~1925-1960), coal (~1910-1925), and early industry (~1860-1910). Partitioning was highly variable and correlated best with the TOC. Hydropower-epoch sediments exhibit decreasing C(sed) with time and a relatively strong sorption capacity compared with the manufactured-gas epoch. Sediments from the manufactured-gas epoch exhibit substantial PAH and metal contamination, large amounts of coke and char, and a low sorption capacity. Reexposure of sediments of this epoch increases risks to local benthic species. Implications on natural recovery as a sediment management strategy are discussed.  相似文献   

9.
The toxicity of polycyclic aromatic hydrocarbons (PAHs) to Hyalella azteca, was measured in 34 sediment samples collected from four manufactured-gas plant (MGP) sites ranging in total PAH16 (sum of 16 U.S. Environmental Protection Agency priority pollutant PAHs) concentrations from 4 to 5700 mg/kg, total organic carbon content from 0.6 to 11%, and soot carbon from 0.2 to 5.1%. The survival and growth of H. azteca in 28-d bioassays were unrelated to total PAH concentration, with 100% survival in one sediment having 1,730 mg/kg total PAH16, whereas no survival was observed in sediment samples with concentrations as low as 54 mg/kg total PAH16. Twenty-five of the 34 sediment samples exceeded the probable effects concentration screening value of 22.8 mg/kg total PAH13 (sum of 13 PAHs) and equilibrium partitioning sediment benchmarks for PAH mixtures (on the basis of the measurement of 18 parent PAHs and 16 groups of alkylated PAHs, [PAH34]); yet, 19 (76%) of the 25 samples predicted to be toxic were not toxic to H. azteca. However, the toxicity of PAHs to H. azteca was accurately predicted when either the rapidly released concentrations as determined by mild supercritical fluid extraction (SFE) or the pore-water concentrations were used to establish the bioavailability of PAHs. These results demonstrate that the PAHs present in many sediments collected from MGP sites have low bioavailability and that both the measurement of the rapidly released PAH concentrations with mild SFE and the dissolved pore-water concentrations of PAHs are useful tools for estimating chronic toxicity to H. azteca.  相似文献   

10.
The uptake patterns and toxicity of polychlorinated biphenyl (PCB) congeners in the white sea urchin, Lytechinus pictus, on exposure to contaminated sediments were investigated. First-order modeling of uptake of the 10 most abundant PCB congeners or domains (containing more than one coeluting congener) by L. pictus indicated that a 35-d exposure was insufficient to reach steady state. Bioaccumulation of PCBs in sea urchins exhibited substantial difference between field and amended sediments, suggesting that caution must be exercised in sample preparation. Some evidence was observed of dependence of measured biota-sediment accumulation factors (BSAFs) on K(ow), indicating that equilibrium partitioning of PCBs may not always be achieved between biota lipid, sediment organic carbon, and water. Survival of L. pictus was unaffected by exposure to field and amended sediments with PCB concentrations varying more than three orders of magnitude. The growth measures (diameter, wt, and gonad wt) were significantly reduced in L. pictus exposed to San Diego Bay ([SDB]; San Diego, CA, USA) sediment, whereas they were relatively unaffected after exposure to amended sediments (with much higher PCB concentrations than SDB sediment) prepared from a New Bedford Harbor (MA, USA) sediment. The toxic effects as measured by the growth rates in L. pictus were likely attributable to polycyclic aromatic hydrocarbons (PAHs), which were elevated in SDB sediment (7.3 microg/g), rather than PCBs.  相似文献   

11.
The significance of black carbon (BC) for the bioavailability of polycyclic aromatic hydrocarbons (PAHs) was examined by using historically contaminated intact sediment cores in laboratory exposure experiments with the deposit-feeding amphipod Monoporeia affinis. Log values of amphipod biota-sediment accumulation factors (BSAFs) were significantly related to log BC, whereas log BSAFs were related to log octanol-water partition coefficients only in background sediments containing less BC. In the background sediments, the BSAF for polycyclic aromatic hydrocarbons (PAHs) was 1 to 2 for phenanthrene, with lower values for more hydrophobic PAHs, indicating an increase in nonequilibrium conditions with increasing PAH molecular size. For the near-equilibrated phenanthrene and fluoranthene, higher BSAFs were measured during exposure to background sediments, with BSAF decreasing to <0.1 in contaminated sediments in the Stockholm waterways. In situ caged mussels (Dreissena polymorpha) exhibited field BSAF values (relative to sediment-trap-collected suspended matter) for polychlorinated biphenyls (PCBs) of 0.1 to 0.4, but for PAHs of similar hydrophobicity and molecular size, the field BSAFs were much lower and in the range 0.002 to 0.05. This PAH-PCB dichotomy is consistent with recently reported much stronger binding to diesel soot (a form of BC) for PAHs than for PCBs of equal hydrophobicities. Lower BSAFs for the near-equilibrated PAHs (phenanthrene and fluoranthene) in the urban sediments relative to the background sediments were consistent with the larger presence of BC in the urban sediments. This study provides the first linked BSAF-BC field data that supports a causal relationship between strong soot sorption and reduced bioavailability for PAHs.  相似文献   

12.
When sediments are found to be toxic usually there is a mixture of chemicals present. Often it is important to establish which chemicals contribute to the toxicity. Establishing causality can be difficult and often requires fractionation with subsequent toxicity testing. The sample collection and manipulation process can alter chemical bioavailability and toxicity. An in situ toxicity identification evaluation (iTIE) chamber is described that was placed in sediments and fractionated pore-water chemicals into nonpolar chemicals, metals, and ammonia-type groups. This method was field tested and compared to the laboratory-based, U.S. Environmental Protection Agency (U.S. EPA) toxicity identification evaluation (TIE) method. Field studies were performed at three sites contaminated primarily with polycyclic aromatic hydrocarbons (PAHs) (Little Scioto River, OH, USA), polychlorinated biphenyls (PCBs) (Dicks Creek, OH, USA), and chlorobenzenes (Sebasticook River, ME, USA). Both the iTIE and the U.S. EPA TIE methods used Daphnia magna in 24-h exposures. Although the iTIE and TIE were conducted on sediments from the same location, there was significantly more toxicity observed in the iTIE testing. The dominant chemical classes were separated by the iTIE method and revealed which fractions contributed to toxicity. The loss of toxicity in the TIE approach did not allow for subsequent fractionation and stressor identification. Advantages of the iTIE over the TIE method were greater sensitivity and ability to detect causative toxic chemical fractions; lack of sediment collection and subsequent manipulation; and, thus, reduction in potential artifacts, more realistic exposure with slow, continual pore-water renewal in situ, ability to evaluate pore waters in sandy or rocky substrates where pore waters are difficult to collect, and a quicker phase I evaluation. Limitations of the iTIE method as compared to the TIE methods were extensive pretest assembly process, fewer phase I fractionation possibilities, and restriction to shallow waters. The results of these studies suggest that the iTIE method provides a more accurate and sensitive evaluation of pore water toxicity than the laboratory TIE method.  相似文献   

13.
Three soil samples contaminated with polycyclic aromatic hydrocarbons (PAHs) that caused 100% mortality to terrestrial oligochaetes were extracted with supercritical carbon dioxide to remove the bioavailable fraction of PAHs. Although the remaining PAH concentrations were high after supercritical fluid extraction (SFE), 650 to 8,000 mg/kg, acute toxicity to Eisenia fetida and Enchytraeus albidus essentially was eliminated. These results demonstrate that mild SFE with pure carbon dioxide preferentially extracts PAH molecules that are bioavailable toxicologically to the oligochaetes, although biologically unavailable PAHs are not extracted, suggesting that SFE could be used for the removal of toxicity due to hydrophobic organic chemicals in soils during toxicity identification evaluations.  相似文献   

14.
Sediment quality in the Atlantic coast of Spain   总被引:1,自引:0,他引:1  
Sediments from the Atlantic coast of Spain have been studied to evaluate environmental quality by using an integrated approach including chemical and toxicological data. Sediment samples were collected in four littoral ecosystems located in Spain, Bay of Cádiz, Guadalquivir River estuary, Ría of Huelva, and Ría of Coru?a. To characterize the sediments, organic carbon, granulometric content, total sulfide, eight trace metals (Hg, Cd, Pb, Cu, Zn, As, Ni, and Cr), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) were measured. The toxicity of sediments was assessed with the amphipod Ampelisca brevicornis, the clam Ruditapes philippinarum, juveniles of the fish Solea senegalensis, populations of the estuarine rotifer Brachionus plicatilis, and populations of the bacterium Vibrio fischeri (Microtox). The results obtained show that in general, stations located in the Ría of Huelva were associated with heavy metal contamination and with the highest toxicity. Only chronic toxicity tests were capable of identifying the effects associated with PCB concentrations. The sediment quality guidelines calculated by means of a multivariate analysis approach for contaminants not associated with biological effects (mg/kg) are Hg, 0.54; Cd, 0.51; Pb, 260; Cu, 209; Zn, 513; As, 27.4; and total PCBs, 0.05.  相似文献   

15.
Bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) was measured in the deposit-feeding oligochaete Ilyodrilus templetoni exposed for 28?d to Anacostia River sediment (Washington, DC, USA) and to an initially uncontaminated sediment from Brown Lake (Vicksburg, MS, USA) sequentially diluted with 3 to 25% contaminated New Bedford Harbor sediment (New Bedford, MA, USA). The Anacostia River sediment studies represented exposure to a historically contaminated sediment with limited availability, whereas exposure to the other sediment included both the historically contaminated New Bedford Harbor sediment and fresh redistribution of contaminants into the Brown Lake sediments. Organism tissue concentrations did not correlate with bulk sediment concentrations in the Anacostia River sediment but did correlate with the sequentially diluted sediment. Porewater concentrations measured via disposable solid-phase microextraction fiber (SPME) with polydimethylsiloxane (PDMS), however, correlated well with organism uptake in all sediments. Bioaccumulation was predicted well by a linear relationship with the product of porewater concentration and compound octanol-water partition coefficient (Anacostia, slope?=?1.08, r2?=?0.76; sequentially diluted sediments, slope = 1.24, r2?=?0.76). The data demonstrate that the octanol-water partition coefficient is a good indicator of the lipid-water partition coefficient and that porewater concentrations provide a more reliable indicator of bioaccumulation in the organism than sediment concentrations, even when the route of uptake is expected to be via sediment ingestion.  相似文献   

16.
Sediments in Lyons Creek East (Welland, Ontario), a tributary of the Niagara River and part of the Niagara River Area of Concern, which exceed screening-level environmental-quality criteria for multiple contaminants, were assessed for biological impacts using information from multiple lines of evidence. An initial chemical survey indicated the primary contaminants of concern to be polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), zinc, and p,p′-DDE due to frequent exceedences of sediment guidelines. A subsequent study focused on the chemical composition of sediment, status of benthic invertebrate communities, contaminant bioaccumulation in resident benthos, and sediment toxicity to laboratory-exposed organisms. Chemical and biological conditions in the creek were compared with those in reference creeks using both multivariate (cluster analysis and ordination) and univariate (regression) techniques. Sediment PCBs (≤19 μg/g), PAHs (≤63 μg/g), and Zn (≤7969 μg/g) were increased above the sediment-quality guidelines along most of the creek; however, the upper 1.5 km portion of the creek was the most highly contaminated and therefore the main focus for biological study. Although severe toxicity was evident at several locations in the upper creek, resident benthic communities were minimally affected by sediment contamination. The cause of toxicity was likely related to a combination of stressors, including PCBs, PAHs, and metals. Due to its biomagnifiable nature, bioaccumulation focused on PCBs; concentrations in resident macroinvertebrates were ≤2 orders of magnitude greater than those found in reference creeks and were above tissue residue guidelines, indicating a potential risk for consumers of benthos. This risk was not limited to the upper 1.5 km where other effects were seen.  相似文献   

17.
Thirteen sediment cores of 1.5–6 m depth were collected from the lower Passaic River in Newark, New Jersey and assayed for metals, total petroleum hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), and Aroclor® and coplanar polychlorinated biphenyls (PCBs). Chronological profiles of chemical concentrations at specified depths and sediment accumulation rates in each core were determined by 137Cs and 210Pb radioisotope measurements. Temporal concentrations of these chemicals were compared to available benchmark sediment toxicity values to assess historic and current toxic hazards to aquatic organisms. Elevated concentrations of several metals, including copper, lead, mercury, nickel, and zinc, were found in surface and buried sediments at concentrations that greatly exceeded Long and Morgan (1991) Effects Range-Low (ER-L) and Effects Range-Median (ER-M) values. Aroclors® 1242, 1248, and 1254 and several PAHs were also found at concentrations exceeding Long and Morgan (1991) benchmark toxicity values. In general, the highest metal and PAH concentrations were found in sediment deposited prior to the 1960s. Elevated PCB concentrations were found in sediment deposited between 1950 and 1980. The results indicate that the lower Passaic River is heavily contaminated due to recent and historical municipal and industrial discharges from local and up-stream sources. The primary sources of PCBs, PAHs, and metals appear to be discharges of industrial effluents either directly into the waterway or through combined sewer overflows. Additional inputs are probably from urban runoff entering through combined sewer overflows and storm drains.  相似文献   

18.
This is the second part of a study that evaluates the influence of nonpoint sources on the sediment quality of five adjacent streams within the metropolitan Kansas City area, central United States. Physical, chemical, and toxicity data (Hyalella azteca 28-day whole-sediment toxicity test) for 29 samples collected in 2003 were used for this evaluation, and the potential causes for the toxic effects were explored. The sediments exhibited a low to moderate toxicity, with five samples identified as toxic to H. azteca. Metals did not likely cause the toxicity based on low concentrations of metals in the pore water and elevated concentrations of acid volatile sulfide in the sediments. Although individual polycyclic aromatic hydrocarbons (PAHs) frequently exceeded effect-based sediment quality guidelines [probable effect concentrations (PECs)], only four of the samples had a PEC quotient (PEC-Q) for total PAHs over 1.0 and only one of these four samples was identified as toxic. For the mean PEC-Q for organochlorine compounds (chlordane, dieldrin, sum DDEs), 4 of the 12 samples with a mean PEC-Q above 1.0 were toxic and 4 of the 8 samples with a mean PEC-Q above 3.0 were toxic. Additionally, four of eight samples were toxic, with a mean PEC-Q above 1.0 based on metals, PAHs, polychlorinated biphenyls (PCBs), and organochlorine pesticides. The increase in the incidence of toxicity with the increase in the mean PEC-Q based on organochlorine pesticides or based on metals, PAHs, PCBs, and organochlorine pesticides suggests that organochlorine pesticides might have contributed to the observed toxicity and that the use of a mean PEC-Q, rather than PEC-Qs for individual compounds, might be more informative in predicting toxic effects. Our study shows that stream sediments subject to predominant nonpoint sources contamination can be toxic and that many factors, including analysis of a full suite of PAHs and pesticides of both past and present urban applications and the origins of these organic compounds, are important to identify the causes of toxicity.  相似文献   

19.
Contamination of sediments is a serious problem in most industrialized areas. Sediments are often contaminated with trace metals and organic contaminants like polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). Bioassays are often used to determine the effect of contaminants on biota. However, survival or growth may not be the most sensitive endpoints. Behavioral changes often occur at much lower concentrations. Our study aimed to assess the effect of PAHs on habitat choice of two common freshwater invertebrates, the amphipod Gammarus pulex and the isopod Asellus aquaticus. We spiked clean field sediment with a mixture of four PAHs, fluoranthene, pyrene, chrysene, and benzo[k]fluoranthene, to a total concentration of 30 mg PAH/kg dry weight. Both species were offered a choice between PAH-spiked sediments and clean sediments in laboratory experiments. Results show that both species avoid PAH-spiked sediment. Origin of the population, either from a clean reference site or from a polluted site, did not affect habitat choice of either species.  相似文献   

20.
We report on a procedure using powdered coconut charcoal to sequester organic contaminants and reduce toxicity in sediments as part of a series of toxicity identification and evaluation (TIE) methods. Powdered coconut charcoal (PCC) was effective in reducing the toxicity of endosulfan-spiked sediments by 100%. Powdered coconut charcoal also was effective in removing almost 100% of the toxicity from two field sediments contaminated with polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs). Powdered coconut charcoal did not change the toxicity of ammonia or metal-spiked sediments; however, there was some quantitative reduction in the concentrations of free metals (element specific) in metal-spiked sediments. Powdered coconut charcoal is an effective, relatively specific method to sequester and remove toxicity from sediments contaminated with organic contaminants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号