首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的 探讨201Tl定量门控心肌灌注体层显像与99mTc-红细胞门控心血池显像测量左心室射血分数(LVEF)的相关性.方法 72例受检者接受201Tl静息门控心肌灌注体层显像,用AUTOQUANT 4.21软件测量LVEF,并与24 h内的静息99mTc-红细胞平衡法门控心血池显像结果进行比较.结果 ①门控心肌灌注体层显像与门控心血池显像测量LVEF值的结果呈明显正相关(r=0.554,P=-0.000),两种方法无统计学差别(t=1.194,P>0.05).②不同疾病组之间两种测量方法无统计学差异(P值均大于0.05).③门控心肌灌注体层显像及门控心血池显像测量的LVEF值分别为(64.68±10.77)%和(62.46±8.99)%,门控心肌灌注体层显像测量的LVEF值要比门控心血池显像高出3.55%.结论 201Tl门控心肌灌注体层显像与99mTc-红细胞门控心血池显像测量LVEF值的相关性好且结果准确,但门控心肌灌注体层显像的LVEF测量值要稍高于门控心血池显像.  相似文献   

2.
The goal of this study was to validate the accuracy of the Emory Cardiac Tool Box (ECTB) in assessing left ventricular end-diastolic or end-systolic volume (EDV, ESV) and ejection fraction (LVEF) from gated (99m)Tc-methoxyisobutylisonitrile ((99m)Tc-MIBI) SPECT using cardiac MRI (cMRI) as a reference. Furthermore, software-specific characteristics of ECTB were analyzed in comparison with 4D-MSPECT and Quantitative Gated SPECT (QGS) results (all relative to cMRI). METHODS: Seventy patients with suspected or known coronary artery disease were examined using gated (99m)Tc-MIBI SPECT (8 gates/cardiac cycle) 60 min after tracer injection at rest. EDV, ESV, and LVEF were calculated from gated (99m)Tc-MIBI SPECT using ECTB, 4D-MSPECT, and QGS. Directly before or after gated SPECT, cMRI (20 gates/cardiac cycle) was performed as a reference. EDV, ESV, and LVEF were calculated using Simpson's rule. RESULTS: Correlation between results of gated (99m)Tc-MIBI SPECT and cMRI was high for EDV (R = 0.90 [ECTB], R = 0.88 [4D-MSPECT], R = 0.92 [QGS]), ESV (R = 0.94 [ECTB], R = 0.96 [4D-MSPECT], R = 0.96 [QGS]), and LVEF (R = 0.85 [ECTB], R = 0.87 [4D-MSPECT], R = 0.89 [QGS]). EDV (ECTB) did not differ significantly from cMRI, whereas 4D-MSPECT and QGS underestimated EDV significantly compared with cMRI (mean +/- SD: 131 +/- 43 mL [ECTB], 127 +/- 42 mL [4D-MSPECT], 120 +/- 38 mL [QGS], 137 +/- 36 mL [cMRI]). For ESV, only ECTB yielded values that were significantly lower than cMRI. For LVEF, ECTB and 4D-MSPECT values did not differ significantly from cMRI, whereas QGS values were significantly lower than cMRI (mean +/- SD: 62.7% +/- 13.7% [ECTB], 59.0% +/- 12.7% [4DM-SPECT], 53.2% +/- 11.5% [QGS], 60.6% +/- 13.9% [cMRI]). CONCLUSION: EDV, ESV, and LVEF as determined by ECTB, 4D-MSPECT, and QGS from gated (99m)Tc-MIBI SPECT agree over a wide range of clinically relevant values with cMRI. Nevertheless, any algorithm-inherent over- or underestimation of volumes and LVEF should be accounted for and an interchangeable use of different software packages should be avoided.  相似文献   

3.
目的比较静息门控心肌显像滤波反投影法(FBP)和OSEM重建图像后用定量门控心肌断层显像(QGS)、四维模型心肌断层显像(4D—MSPECT)、爱莫瑞心脏工具箱(ECToolbox)软件测量的心功能参数。方法临床疑诊或确诊冠心病患者144例,均行^99Tc^m-MIBI静息门控心肌SPECT显像,所有患者均用FBP和OSEM重建图像,用QGS、4D—MSPECT、ECToolbox软件计算心功能参数LVEF,EDV和ESV,采用Bland—Altman法检验2种重建方法的一致性,配对t检验方法检验心功能参数差异,相关性分析用直线回归分析。结果FBP和OSEM重建测量的心功能参数一致性和相关性好(r均〉0.93,P均〈0.001)。QGS软件FBP重建测得的EDV低于OSEM重建测得的EDV,其他2种软件为FBP高于OSEM[QGS:(82.2±39.1)ml和(83.5±40.8)ml,t=-2.53,P〈0.05;4D—MSPECT:(93.5±46.9)ml和(88.8±45.2)ml,t=5.95,P〈0.01;ECToolbox:(106.4±51.1)ml和(100.8±49.0)ml,t=3.99,P〈0.01]。对于ESV,4D-MSPECT软件FBP测量值高于OSEM[(37.5±41.4)ml和(34.8±37.6)ml,t=3.92,P〈0.01]。QGS软件FBP测得的LVEF低于OSEM测得的LVEF[(62.1±16.9)%和(63.1±16.1)%,t=-3.14,P〈0.01]。ECToolbox软件FBP测得的LVEF高于用OSEM测得的LVEF[(74.1±18.8)%和(71.3±17.1)%,t=5.28,P〈0.01]。结论2种重建方法所测量的心功能参数虽然相关性和一致性很好,但某些参数值差异有统计学意义。  相似文献   

4.
Emory cardiac toolbox (ECTb) and quantitative gated single photon emission tomography - SPET (QGS) software are the two most often used techniques for automatic calculation of left ventricular volumes (LVV) and ejection fraction (LVEF). Few studies have shown that these software are not interchangeable, however the effect of perfusion defects on performance of these software has not been widely studied. The aim of this study was to compare the performance of QGS and ECTb for the calculation of LVEF, end-systolic volume (ESV) and end-diastolic volume (EDV) in patients with normal and abnormal myocardial perfusion. One hundred and forty-four consecutive patients with suspected coronary artery disease underwent a two-day protocol with dipyridamole stress/rest gated technetium-99m-methoxy isobutyl isonitrile ((99m)Tc-sestamibi) myocardial perfusion (GSPET) (8 gates/cardiac cycles). Rest GSPET scintiscan findings were analyzed using QGS and ECTb. Correlation between the results of QGS and ECTb was greater than 90%. In patients with no perfusion defects, EDV and LVEF using ECTb, were significantly higher than using QGS (P<0.001), whereas no significant difference was noticed in ESV (P=0.741). In patients with perfusion defects, also ECTb yielded significantly higher values for EDV, ESV and LVEF than QGS (P<0.001). In tomograms of patients with perfusion defects, mean differences of EDV and ESV between the two software, were significantly higher than in tomograms of patients without defects (P<0.001), while for LVEF this difference was not significant (P= 0.093). Patients were classified into three subgroups based on the summed rest score (SRS); G1: patients with SRS < or = 3 (n=109), G2: patients with 4 < or = SRS < or = 8 (n=13) and G3: patients with SRS > or = 9 (n=22). One-way ANOVA showed that the mean differences of EDV and ESV values between ECTb and QGS between the subgroups were significant (P<0.001 for both parameters), while no significant difference was noticed between the subgroups, as for the mean difference of LVEF, calculated by the two software (P=0.07). By increasing SRS, the EDV and ESV values were overestimated to a higher level by the ECTb as compared to the QGS software. Linear regression analysis showed that the difference in LVV values, between the two software increased, when SRS also increased (P<0.001). In conclusion, correlation between QGS and ECTb, software was very good both in patients with and without perfusion defects. In patients with perfusion defects, calculated LVEF, ESV and EDV values are higher using ECTb compared to the QGS software. However, the more extensive the perfusion defect was, the greater the difference of LVV between these two software. For the follow up of patients, we suggest the use of a single software either QGS or ECTb, for serial measurements of LV function.  相似文献   

5.
BACKGROUND: Myocardial imaging with tracers such as technetium-99m sestamibi or thallium-201 is extensively used as a means of measuring myocardial perfusion. With gated acquisition, these tracers can also be used as a means of measuring left ventricular ejection fraction (EF) and end diastolic and end systolic volumes (EDV and ESV, respectively). The objective of this study was to determine the normal range of EF, EDV, and ESV and to evaluate differences caused by either the tracer used, the gender of the patient, or the acquisition camera used. METHODS AND RESULTS: A total of 1513 consecutive patients (mean age, 60+/-12 years [SD]) who had normal results on Bruce exercise tests had either Tc-99m sestamibi (n = 884) or Tl-201 (n = 629) injected at peak stress. Although all patients were referred for the evaluation of chest pain or dyspnea and many had cardiac risk factors, all had normal exercise capacity corrected for age, no electrocardiographic signs of ischemia, normal results on perfusion scans, and normal wall motion determined by means of quantitated gated single photon emission computed tomography (QGS). Scans were acquired on 1 of 3 different cameras. The mean EF for all patients who had gated Tc-99m sestamibi scans was 63% +/- 9%, not different from patients who had gated Tl-201 scans (63% +/- 9%). However, when the gender of the patient was considered, the mean EF for women was 66% +/- 8% with Tc-99m sestamibi (n = 519), higher than the mean EF for men (58% +/- 8%, n = 365, P<.0001). Similarly, the mean EF for women studied with Tl-201 (67% +/- 8%, n = 326) was higher than that of men (59% +/- 7%, n = 303,P<.0001). Patients with diabetes mellitus (n = 153) had a slightly reduced EF (62% +/- 10%, P<.001). In a subset of 240 patients, 140 patients studied with Tc-99m sestamibi and 100 studied with Tl-201, the EDV and ESV for women (n = 124) was estimated by means of QGS to be lower (57 +/- 17 mL and 19 +/- 11 mL, respectively) than those for men (74 +/- 22 mL-and 29 +/- 13 mL, respectively; n = 116; P<.001 for each comparison). No clinically significant differences in EF or volumes were noted based on tracers used or acquisition camera. For patients with normal results on exercise treadmill tests and perfusion imaging, the lower limit of normal for EF with gated perfusion imaging with QGS was 50% for women and 43% for men. For EDV and ESV, the upper limit of normal was 91 mL and 40 mL, respectively, for women and 119 mL and 55 mL, respectively, for men. CONCLUSIONS: No significant differences related to either tracer or acquisition camera used were noted for EF, suggesting equivalency for clinical trials for patients with normal results on exercise tests. However, EF, EDV, and ESV determined by means of gated perfusion imaging need to be corrected for gender.  相似文献   

6.
BACKGROUND AND AIM: The Cedars-Sinai Quantitative Gated Single Photon Emission Computed Tomography (SPECT) (QGS) program, used to quantify left ventricular function parameters from gated myocardial perfusion scintigraphy (MPS), has been extensively validated and compared with other methods of quantification. However, little is known about the reproducibility of QGS on different processing systems. This study compared the findings of QGS running on workstations provided by two different manufacturers. METHODS: Gated rest MPS studies of 50 patients were analysed retrospectively. Filtered back-projection (FBP) was performed using identical parameters on Philips Pegasys and Nuclear Diagnostics Hermes workstations to produce gated short-axis (SA) slices. In addition, the gated SA slices reconstructed on the Pegasys were transferred to the Hermes. QGS was used to calculate the end-diastolic volume (EDV), end-systolic volume (ESV) and left ventricular ejection fraction (LVEF) in each case. RESULTS: The mean+/-standard deviation differences between the Pegasys and Hermes function parameters were -7.06+/-3.91 ml (EDV), -5.54+/-3.21 ml (ESV) and +1.14%+/-1.43% (LVEF) when data were reconstructed on different systems, and -0.16+/-1.58 ml (EDV), -0.10+/-1.02 ml (ESV) and +0.14%+/-0.73% (LVEF) when data were reconstructed on the same system. Bland-Altman plots showed definite trends for EDV and ESV for data reconstructed on different systems, but no trends were seen for data reconstructed on the same system. CONCLUSIONS: When data were reconstructed on two separate systems, the difference between the function parameters obtained from Pegasys and Hermes could be ascribed to differences in the reconstruction process on each system despite the use of identical parameters (filters, etc). However, when the same reconstructed data were analysed on both systems, no significant difference in left ventricular function parameters was observed.  相似文献   

7.
Gated myocardial perfusion SPECT allows assessment of left ventricular end-diastolic volume (EDV), left ventricular end-systolic volume (ESV), left ventricular stroke volume (SV), and left ventricular ejection fraction (LVEF). Acquiring images with the patient both prone and supine is an approved method of identifying and reducing artifacts. Yet prone positioning alters physiologic conditions. This study investigated how prone versus supine patient positioning during gated SPECT affects EDV, ESV, SV, LVEF, and heart rate. METHODS: Forty-eight patients scheduled for routine myocardial perfusion imaging were examined with gated (99m)Tc-sestamibi SPECT (at rest) while positioned prone and supine (consecutively, in random order). All parameters for both acquisitions were calculated using the commercially available QGS algorithm. RESULTS: Whereas EDV and SV were significantly lower (P < 0.0004) for prone acquisitions (EDV, 110.5 +/- 39.1 mL; SV, 55.9 +/- 13.3 mL) than for supine acquisitions (EDV, 116.9 +/- 36.2 mL; SV, 61.0 +/- 14.5 mL), ESV and LVEF did not differ significantly. Heart rate was significantly higher (P < 0.0001) during prone acquisitions (69.1 +/- 10.5 min(-1)) than during supine acquisitions (66.5 +/- 10.0 min(-1)). CONCLUSION: The observed position-dependent effect on EDV, SV, and heart rate might be explained by decreased arterial filling and increased sympathetic nerve activity. Hence, supine reference data should not be used to classify the results of prone acquisitions.  相似文献   

8.
We compared the left ventricular (LV) end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (LVEF) as calculated by Cedars automated quantitative gated SPECT (QGS) to those determined by first-pass radionuclide angiography (FPRNA) and contrast left ventriculography (LVG) in a group of 21 patients (mean age 61.4 +/- 9.2 y). METHODS: A total of 740 MBq 99mTc-tetrofosmin was administered rapidly into the right cubital vein at rest, and FPRNA was performed using a multicrystal gamma camera. One hour after injection, QGS was performed with a temporal resolution of 10 frames per R-R interval. LVG was performed within 2 wk. RESULTS: The EDV, ESV and LVEF calculated by QGS were highly reproducible (intraobserver, r = 0.99, r = 0.99 and r = 0.99, respectively; interobserver, r = 0.99, r = 0.99 and r = 0.99, respectively; P < 0.01) and were more consistent than those determined by FPRNA (intraobserver, r = 0.97, r = 0.95 and r = 0.93, respectively; interobserver, r = 0.86, r = 0.96 and r = 0.91, respectively; P < 0.01). There was a good correlation between EDV, ESV and LVEF by FPRNA and those by LVG (r = 0.61, r = 0.72 and r = 0.91, respectively; P < 0.01), and there was an excellent correlation between QGS and LVG (r = 0.73, r = 0.83 and r = 0.87, respectively; P < 0.01). The mean EDV by QGS (100 +/- 11.3 mL) was significantly lower than by FPRNA (132 +/- 16.8 mL) or LVG (130 +/- 8.1 mL), and the mean ESV by QGS (53.8 +/- 9.3 mL) was lower than by FPRNA (73.0 +/- 13.3 mL). Ejection fraction values were highest by LVG (57.1% +/- 3.2%), then QGS (51.8% +/- 3.0%) and FPRNA (48.9% +/- 2.4%). CONCLUSION: QGS gave more reproducible results than FPRNA. LV volumes and LVEF calculated by QGS correlated well to those by LVG.  相似文献   

9.
The main aim of this study was to validate the accuracy of 4D-MSPECT in the assessment of left ventricular (LV) end-diastolic/end-systolic volumes (EDV, ESV) and ejection fraction (LVEF) from gated technetium-99m methoxyisobutylisonitrile single-photon emission tomography (99mTc-MIBI SPET), using cardiac magnetic resonance imaging (cMRI) as the reference method. By further comparing 4D-MSPECT and QGS with cMRI, the software-specific characteristics were analysed to elucidate clinical applicability. Fifty-four patients with suspected or proven coronary artery disease (CAD) were examined with gated 99mTc-MIBI SPET (8 gates/cardiac cycle) about 60 min after tracer injection at rest. LV EDV, ESV and LVEF were calculated from gated 99mTc-MIBI SPET using 4D-MSPECT and QGS. On the same day, cMRI (20 gates/cardiac cycle) was performed, with LV EDV, ESV and LVEF calculated using Simpsons rule. Both algorithms worked with all data sets. Correlation between the results of gated 99mTc-MIBI SPET and cMRI was high for EDV [R=0.89 (4D-MSPECT), R=0.92 (QGS)], ESV [R=0.96 (4D-MSPECT), R=0.96 (QGS)] and LVEF [R=0.89 (4D-MSPECT), R=0.90 (QGS)]. In contrast to ESV, EDV was significantly underestimated by 4D-MSPECT and QGS compared to cMRI [130±45 ml (4D-MSPECT), 122±41 ml (QGS), 139±36 ml (cMRI)]. For LVEF, 4D-MSPECT and cMRI revealed no significant differences, whereas QGS yielded significantly lower values than cMRI [57.5%±13.7% (4D-MSPECT), 52.2%±12.4% (QGS), 60.0%±15.8% (cMRI)]. In conclusion, agreement between gated 99mTc-MIBI SPET and cMRI is good across a wide range of clinically relevant LV volume and LVEF values assessed by 4D-MSPECT and QGS. However, algorithm-varying underestimation of LVEF should be accounted for in the clinical context and limits interchangeable use of software.  相似文献   

10.
The aim of this study was to determine normative volumetric data and ejection fraction values derived from gated myocardial single-photon emission tomography (SPET) using the commercially available software algorithm QGS (quantitative gated SPET). From a prospective database of 876 consecutive patients who were referred for a 2-day stress-rest technetium-99m tetrofosmin (925 MBq) gated SPET study, 102 patients (43 men, 59 women) with a low (<10%) pre-test likelihood of coronary disease were included (mean age 57.6 years). For stress imaging, a bicycle protocol was used in 79 of the patients and a dipyridamole protocol in 23. Left ventricular ejection fraction (LVEF) and end-diastolic and -systolic volumes (EDV and ESV) were calculated by QGS. EDV and ESV were corrected for body surface area, indicated by EDVi and ESVi. To allow comparison with previous reports using other imaging modalities, men and women were divided into three age groups (<45 years, > or =45 years but <65 years and > or =65 years). Men showed significantly higher EDVi and ESVi values throughout and lower LVEF values when compared with women in the subgroup > or =65 years (P<0.05, ANOVA). Significant negative and positive correlations were found between age and EDVi and ESVi values for both women and men and between LVEF and age in women (Pearson P< or =0.01). LVEF values at bicycle stress were significantly higher than at rest (P=0.000, paired t test), which was the result of a significant decrease in ESV (P=0.003), a phenomenon which did not occur following dipyridamole stress (P=0.409). The data presented suggest that LVEF and EDVi and ESVi as assessed by QGS are strongly gender-specific. Although the physiological significance of these results is uncertain and needs further study, these findings demonstrate that the evaluation of cardiac function and volumes of patients by means of QGS should consider age- and gender-matched normative values.  相似文献   

11.
Purpose The segmentation algorithm ESM based on an elastic surface model was validated for the assessment of left ventricular volumes and ejection fraction from ECG-gated myocardial perfusion SPECT. Additionally, it was compared with the commercially available quantification packages 4D-MSPECT and QGS. Cardiac MRI was used as the reference method. Methods SPECT and MRI were performed on 70 consecutive patients with suspected or proven coronary artery disease. End-diastolic (EDV) and end-systolic (ESV) volumes and left ventricular ejection fraction (LVEF) were derived from SPECT studies by using the segmentation algorithms ESM, 4D-MSPECT and QGS and from cardiac MRI. Results ESM-derived values for EDV and ESV correlated well with those from cardiac MRI (correlation coeffients R = 0.90 and R = 0.95, respectively), as did the measurements for LVEF (R = 0.86). Both EDV and ESV were slightly overestimated for larger ventricles but not for smaller ventricles; LVEF was slightly overestimated irrespective of ventricle size. The above correlation coefficients are comparable to those for the 4D-MSPECT and QGS segmentation algorithms. However, results obtained with the three segmentation algorithms are not interchangeable. Conclusion The ESM algorithm can be used to assess EDV, ESV and LVEF from gated perfusion SPECT images. Overall, the performance was similar to that of 4D-MSPECT and QGS when compared with cardiac MRI. Results obtained with the three tested segmentation methods are not interchangeable, so that the same algorithm should be used for follow-up studies and control subjects.  相似文献   

12.
Electrocardiographic (ECG) gated single-photon emission tomography (SPET) allows for simultaneous assessment of myocardial perfusion and left ventricular (LV) function. Presently 8-frame per cardiac cycle ECG gating of SPET images is standard. The aim of this study was to compare the effect of 8-frame and 16-frame gated SPET on measurements of LV volumes and to evaluate the effects of the presence of myocardial perfusion defects and of radiotracer dose administered on the calculation of LV volumes. A total of 86 patients underwent technetium-99m SPET myocardial perfusion imaging using 16-frame per cardiac cycle acquisition. Eight-frame gated SPET images were generated by summation of contiguous frames. Left ventricular end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (EF) were calculated from the 16-frame and 8-frame data sets. The patients were divided into groups according to the administered dose of the radiotracer and the size of the perfusion defect. Results. Sixteen frame per cardiac cycle acquisition resulted in significantly larger EDV (122±72 ml vs 115±68 ml, P<0.0001), smaller ESV (64±58.6 ml vs 67.6±59.5 ml, P<0.0001), and higher LVEF (55.3%±18% vs 49%±17.4%, P<0.0001) as compared to 8-frame SPET imaging. This effect was seen regardless of whether a high or a low dose was administered and whether or not significant perfusion defects were present. This study shows that EDV, ESV and LVEF determined by 16-frame gated SPET are significantly different from those determined by 8-frame gated SPET. The radiotracer dose and perfusion defects do not affect estimation of LV parameters by 16-frame gated SPET.Disclosure: Frans J.T. Wackers and Yi-Hwa Liu, through an arrangement with Yale University School of Medicine (New Haven, Conn.), receive royalties from the sale of Wackers-Liu CQ software.  相似文献   

13.
The aim of this study was to determine normative volumetric data and ejection fraction values derived from gated myocardial single-photon emission tomography (SPET) using the commercially available software algorithm QGS (quantitative gated SPET). From a prospective database of 876 consecutive patients who were referred for a 2-day stress-rest technetium-99m tetrofosmin (925 MBq) gated SPET study, 102 patients (43 men, 59 women) with a low (<10%) pre-test likelihood of coronary disease were included (mean age 57.6 years). For stress imaging, a bicycle protocol was used in 79 of the patients and a dipyridamole protocol in 23. Left ventricular ejection fraction (LVEF) and end-diastolic and -systolic volumes (EDV and ESV) were calculated by QGS. EDV and ESV were corrected for body surface area, indicated by EDVi and ESVi. To allow comparison with previous reports using other imaging modalities, men and women were divided into three age groups (<45 years, ₙ years but <65 years and ₭ years). Men showed significantly higher EDVi and ESVi values throughout and lower LVEF values when compared with women in the subgroup ₭ years (P<0.05, ANOVA). Significant negative and positive correlations were found between age and EDVi and ESVi values for both women and men and between LVEF and age in women (Pearson PА.01). LVEF values at bicycle stress were significantly higher than at rest (P=0.000, paired t test), which was the result of a significant decrease in ESV (P=0.003), a phenomenon which did not occur following dipyridamole stress (P=0.409). The data presented suggest that LVEF and EDVi and ESVi as assessed by QGS are strongly gender-specific. Although the physiological significance of these results is uncertain and needs further study, these findings demonstrate that the evaluation of cardiac function and volumes of patients by means of QGS should consider age- and gender-matched normative values.  相似文献   

14.
The aim of this study was to validate Quantitative Gated SPECT (QGS) and 4D-MSPECT for assessing left ventricular end-diastolic and systolic volumes (EDV and ESV, respectively) and left ventricular ejection fraction (LVEF) from gated (18)F-FDG PET. METHODS: Forty-four patients with severe coronary artery disease were examined with gated (18)F-FDG PET (8 gates per cardiac cycle). EDV, ESV, and LVEF were calculated from gated (18)F-FDG PET using QGS and 4D-MSPECT. Within 2 d (median), cardiovascular cine MRI (cMRI) (20 gates per cardiac cycle) was done as a reference. RESULTS: QGS failed to accurately detect myocardial borders in 1 patient; 4D-MSPECT, in 2 patients. For the remaining 42 patients, correlation between the results of gated (18)F-FDG PET and cMRI was high for EDV (R = 0.94 for QGS and 0.94 for 4D-MSPECT), ESV (R = 0.95 for QGS and 0.95 for 4D-MSPECT), and LVEF (R = 0.94 for QGS and 0.90 for 4D-MSPECT). QGS significantly (P < 0.0001) underestimated LVEF, whereas no other parameter differed significantly between gated (18)F-FDG PET and cMRI for either algorithm. CONCLUSION: Despite small systematic differences that, among other aspects, limit interchangeability, agreement between gated (18)F-FDG PET and cMRI is good across a wide range of clinically relevant volumes and LVEF values assessed by QGS and 4D-MSPECT.  相似文献   

15.
BACKGROUND AND AIM: During recovery after exercise, the heart rate and blood pressure return to a resting state more rapidly than the end-systolic left ventricular dimensions and fractional shortening. The aim of this study was to assess how exercise-related cardiac changes affect the interpretation of myocardial perfusion images in normal subjects. Systolic cardiac parameters on gated stress and rest images were evaluated in healthy young and elderly subjects. METHODS: Twenty-six healthy young and 20 healthy elderly subjects participated in the study. An injection of 111-130 MBq of thallium-201 (201Tl) was given at peak exercise. Rest images were acquired 2.5 h after stress acquisition, 15 min after a second injection of 18.5-37 MBq of 201Tl. Data were analysed using automatic-processing software for quantitative gated single photon emission computed tomography (SPECT) (QGS). The parameters derived from QGS were the end-systolic volume (ESV), end-diastolic volume (EDV), left ventricular ejection fraction (LVEF), end-systolic surface area (ESSA) and end-diastolic surface area (EDSA). The difference between wall thickening in the basal and apical segments (Delta WT) was also calculated. Perfusion images were visually assessed for differences in cardiac size, evidence of reversible hypoperfusion and hot spots. RESULTS: In the young group, LVEF was approximately 6% higher at stress than at rest. EDV, ESV, ESSA and EDSA were all significantly lower, and Delta WT was significantly higher, at stress than at rest. In the elderly group, the mean LVEF at stress was slightly higher than the finding at rest (P<0.05). Visual evaluation of perfusion images revealed mild reversible stress hypoperfusion in the inferoseptal region in eight young male subjects. CONCLUSIONS: In healthy young subjects, post-exercise cardiac changes affect systolic functions detected on gated thallium myocardial perfusion scintigraphy, resulting in a smaller heart size during stress. This finding, accompanied by a significant difference in apex to base counts during stress, may cause basal portions of the heart to appear ischaemic. The absence of these findings in the elderly suggests a decrease in contractility with age.  相似文献   

16.
BACKGROUND: Factors affecting the accuracy of left ventricular ejection fraction (LVEF) quantification using automated quantitative gated SPECT have not been adequately investigated in patients in the clinical setting. Therefore, the authors studied the effect of defect size and Tc-99m tetrofosmin dose on the accuracy of LVEF calculation using the automated QGS program. MATERIALS AND METHODS: Thirty-two consecutive patients underwent gated rest and stress myocardial perfusion SPECT after administration of 8 and 27 mCi Tc-99m tetrofosmin, respectively. The LVEF was obtained for both the rest and stress studies using the QGS program and compared with the LVEF obtained using quantitative echocardiography performed within 2 weeks. Myocardial perfusion defects were recorded as scarring, ischemia, or mixed scarring and ischemia in 12 left ventricular segments. The defect size was evaluated by adding the number of affected segments. RESULTS: The mean LVEF calculated using high-dose stress QGS, low-dose rest QGS, and echocardiography was 49.2% +/- 15%, 46.2% +/- 17% and 48.7% +/- 16.9% respectively, with no statistically significant differences. The LVEF obtained using high-dose stress QGS correlated better with echocardiography than did that obtained using low-dose rest QGS (r = 0.86 versus 0.76). In addition, when the high-dose stress LVEF in the 14 patients with normal myocardial perfusion was compared with that in 11 patients who had one- or two-segment perfusion defects, and 7 patients who had perfusion defects in > or = three segments, there was good correlation with echocardiography in the three patient groups (r = 0.85, 0.88, and 0.91, respectively). CONCLUSIONS: Myocardial perfusion defects do not affect the accuracy of LVEF calculation using automated QGS. High-dose gated myocardial SPECT demonstrated better correlation with quantitative echocardiography LVEF results.  相似文献   

17.
The aim of this study was to validate the estimation of left ventricular end-diastolic and end-systolic volumes (EDV, ESV) and ejection fraction (LVEF) as well as wall motion analysis from gated fluorine-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) in patients with severe coronary artery disease (CAD) using software originally designed for gated single-photon emission tomography (SPET). Thirty patients with severe CAD referred for myocardial viability diagnostics were investigated using a standard FDG PET protocol enhanced with gated acquisition (8 gates per cardiac cycle). EDV, ESV and LVEF were calculated using standard software designed for gated SPET (QGS). Wall motion was analysed using a visual four-point wall motion score on a 17-segment model. As a reference, all patients were also examined within a median of 3 days with cardiovascular cine magnetic resonance imaging (cMRI) (20 gates per cardiac cycle). Furthermore, all gated FDG PET data sets were reoriented in a second run with deliberately misaligned axes to test the quantification procedure for robustness. Correlation between the results of gated FDG PET and cMRI was very high for EDV and ESV ( R=0.96 and R=0.97) and for LVEF ( R=0.95). With gated FDG PET, there was a non-significant tendency to underestimate EDV (174+/-61 ml vs 179+/-59 ml, P=0.21) and to overestimate ESV (124+/-58 ml vs 122+/-60 ml, P=0.65), resulting in underestimated LVEF values (31.5%+/-9.4% vs 34.2%+/-12.4%, P<0.003). The results of reorientations 1 and 2 showed very high correlations (for all R>/=0.99). Segmental wall motion analysis revealed good agreement between gated FDG PET data and cMRI (kappa =0.62+/-0.03). In conclusion, despite small systematic differences which contributed mainly to the lower temporal resolution of gated FDG PET, agreement between gated FDG PET and cMRI was good across a wide range of volumes and LVEF values as well as for wall motion analysis. Therefore, gated FDG PET provides clinically relevant information on function and volumes, using the commercially available software package QGS.  相似文献   

18.
The aim of this study was to determine the effect of perfusion defect and imaging sequence on the evaluation of myocardial stunning with gated perfusion SPECT. METHODS: A dynamic mathematic cardiac torso phantom was used to create 100 gated SPECT simulations (50 stress-rest and 50 rest-stress sequences) with a wide range of perfusion defects. No segmental wall motion abnormalities were created. After generating projection images, 2 additional acquisitions were simulated by thresholding the projected data to 25% and 75% of the maximum. Finally, gated SPECT projections were grouped by 2s to generate 2 series of phantoms corresponding to stress-rest and rest-stress imaging sequences. For each sequence, the first dataset was the 25% thresholded gated SPECT. Both 75% thresholded and 100% signal intensity were used as a second dataset. Each simulated gated SPECT image differed from others in the extent of myocardial scar or ischemia, but all had the same end-diastolic volume (EDV) (125 mL), end-systolic volume (ESV) (48 mL), and ejection fraction (EF) (62%). Left ventricular perfusion and function were each assessed using validated software. RESULTS: Mean stress EDV was decreased when compared with rest-simulated data (111 +/- 4.7 and 112.4 +/- 4.8 mL, respectively; P < or = 0.05), and mean stress ESV was increased when compared with rest-simulated data (44 +/- 4.2 and 42.7 +/- 4 mL, respectively; P < 0.02). The resulting mean stress EF was decreased in the same comparison (60.3% +/- 3.1% and 62% +/- 2.7%, respectively; P = 0.0001). After multivariate analysis, the difference between stress and rest EF was significantly influenced by myocardial infarction (P = 0.0027), severe extent of myocardial ischemia (P = 0.0017), and imaging sequence (P < 0.0001). A > or =5% decrease in EF on stress SPECT (i.e., myocardial stunning) was significantly associated with the stress-rest sequence (chi(2) = 26; P < 0.0001). CONCLUSION: Perfusion defects and imaging sequence had significant effects on the evaluation of myocardial stunning using gated perfusion SPECT.  相似文献   

19.

Purpose

In patients with a small heart, defined as an end-systolic volume (ESV) of ≤20 mL calculated using the Quantitative Gated SPECT (QGS) program, underestimation of ESV and overestimation of ejection fraction (EF) using gated myocardial perfusion imaging are considered errors caused by inappropriate delineation of the left ventricle (LV). The aim of this study was to develop a new method for delineation of the LV and to evaluate it in studies using a digital phantom, normal subjects and patients.

Methods

The active shape-based method for LV delineation, EXINI heart (ExH), was adjusted to more accurately process small hearts. In small hearts, due to the partial volume effect and the short distance to the opposite ventricular wall, the endocardial and the epicardial surfaces are shifted in the epicardial direction depending on the midventricular volume. The adjusted method was evaluated using digital XCAT phantoms with Monte Carlo simulation (8 virtual patients), a Japanese multicentre normal database (69 patients) and consecutive Japanese patients (116 patients). The LV volumes, EF and diastolic parameters derived from ExH and QGS were compared.

Results

The digital phantom studies showed a mean ESV of 87 %?±?9 % of the true volume calculated using ExH and 22 %?±?18 % calculated using QGS. In the normal database, QGS gave higher EFs in women than in men (71.4?±?6.0 % vs. 67.2?±?6.0 %, p?=?0.0058), but ExH gave comparable EFs (70.7?±?4.9 % and 71.4?±?5 % in men and women, respectively, p?=?ns). QGS gave higher EFs in subjects with a small heart than in those with a normal-sized heart (74.5?±?5.1 % vs. 66.1?±?4.9 %), but ExH gave comparable values (70.0?±?5.9 % vs. 71.6?±?4.2 %, respectively, p?=?ns). In consecutive patients, the average EFs with QGS in patients with ESV >20 mL, 11–20 mL and ≤10 mL were 57.9 %, 71.9 % and 83.2 %, but with ExH the differences among these groups were smaller (65.2 %, 67.8 % and 71.5 %, respectively).

Conclusion

The volume-dependent edge correction algorithm was able to effectively reduce the effects on ESV and EF of a small heart. The uniform normal values might be applicable to both men and women and to both small and normal-sized hearts.  相似文献   

20.
The purpose of this study was to compare left ventricular (LV) volume and ejection fraction (LVEF) measurements obtained with electrocardiographic gated single-photon emission computed tomographic (SPECT) myocardial perfusion imaging (GS-MPI) with those obtained with gated SPECT cardiac blood-pool imaging (GS-pool). Fifteen patients underwent GS-MPI with technetium-99m-tetrofosmin and GS-pool with technetium-99m-erythrocyte, within a mean interval of 8 +/- 3 days. Eight patients had suspected dilated cardiomyopathy and seven patients had angiographically significant coronary artery disease. End-diastolic volume (EDV), end-systolic volume (ESV) and LVEF measurements were estimated from GS-MPI images by means of Cedars-Sinai automatic quantitative program and from GS-pool images by the threshold technique. Mean differences between GS-MPI and GS-pool in EDV, ESV and LVEF measurements were -2.8 +/- 10.5 ml [95% confidence interval (CI): -8.6 +/- 3.0 ml], 2.6 +/- 7.3 ml (CI: -1.4 +/- 6.6 ml) and -2.3 +/- 5.1% (CI: -5.1 +/- 0.6%), respectively. No significant difference in the mean differences from 0 was found for EDV, ESV or LVEF measurements. Bland-Altman plots revealed no trend over the measured LV volumes and LVEF. For all parameters, regression lines approximated lines of identity. The excellent agreement between GS-MPI and GS-pool measurements suggests that, for estimation of LV volumes and LVEF, these two techniques may be used interchangeably and measurements by one method can serve as a reference for the other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号