首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
目的:探讨文拉法辛对慢性应激抑郁大鼠前额区3种可塑性相关蛋白mRNA表达的影响。方法:用慢性不可预见应激(CUS)方法建立抑郁大鼠模型,给予2种剂量(5mg/kg和10mg/kg)的抗抑郁药物文拉法辛14d或28d,用逆转录-聚合酶链反应检测大鼠前额区脑源性神经营养因子(BDNF)、转录因子环磷腺苷反应元件结合蛋白(CREB)和神经细胞粘附分子(NCAM)mRNA表达的变化。结果:抑郁模型大鼠体质量增加量,蔗糖水消耗量和行为学测试均较正常组明显下降,提示抑郁模型大鼠在第28天建立成功。CUS28d后前额区BDNF、CREB和NCAM mRNA表达均较正常组明显降低(P〈0.05),5mg/kg文拉法辛组明显增加抑郁模型大鼠前额区3种可塑性相关蛋白mRNA的表达,10mg/kg文拉法辛组轻度降低抑郁模型大鼠前额区3种可塑性相关蛋白mRNA的表达。结论:文拉法辛在调节前额区神经可塑性时具有剂量依赖性,BDNF、CREB和NCAM在抑郁症病因和治疗中可能发挥着重要作用。  相似文献   

2.
目的 观察文拉法辛对慢性应激抑郁大鼠海马区可塑性相关蛋白mRNA表达的影响.方法 用慢性不可预见应激(CUS)方法建立大鼠抑郁模型,给予2种剂量(5 mg/kg体质量和10 mg/kg体质量)的抗抑郁剂文拉法辛,用反转录-聚合酶链反应检测大鼠海马区脑源性神经营养因子(BDNF)、转录因子环磷腺苷反应元件结合蛋白(CREB)及神经细胞黏附分子(NCAM)mRNA表达的变化.正常对照组、抑郁模型组、抑郁模型后注射生理盐水14 d组及28 d组各10只,抑郁模型后小剂量文拉法辛(5 mg/kg体质量)治疗14 d组及28 d组、抑郁模型后大剂量文拉法辛(10 mg/kg体质量)治疗14 d组及28 d组各11只.结果 抑郁模型大鼠体质量、蔗糖水消耗量及旷场实验结果均明显低于正常对照组,提示抑郁模型大鼠在第28天建立成功.慢性不可预见应激28 d后,抑郁模型大鼠海马区BDNF(0.18±0.09)、CREB(0.10±0.05)及NCAM(0.08±0.04)mRNA表达水平均明显低于正常组[吸光度比值分别为(0.41±0.12)、(0.26±0.05)及(0.24±0.08);P均<0.05 ].5 mg/kg体质量文拉法辛明显增加海马区3种可塑性相关蛋白mRNA的表达;10 mg/kg文拉法辛轻度降低海马区3种可塑性相关蛋白mRNA的表达.结论 文拉法辛在一定剂量范围内调节海马区的神经可塑性,BDNF、CREB及NCAM在抑郁症的病因及治疗中发挥重要作用.  相似文献   

3.

Objective

The present study aimed to investigate whether graded doses of Bacopa Monniera (BM) extract could produce antidepressant-like effects in chronic unpredictable stress (CUS) induced depression in rats and its possible mechanism(s).

Methods

Rats were subjected to an experimental setting of CUS. The effect of BM extract treatment in CUS-induced depression was examined using behavioral tests including the sucrose consumption, open field test and shuttle box escape test. The mechanism underlying the antidepressant-like action of BM extract was examined by measuring brain-derived neurotrophic factor (BDNF) protein and mRNA expression in brain tissues of CUS-exposed rats.

Results

Exposure to CUS for 4 weeks caused depression-like behavior in rats, as indicated by significant decreases in sucrose consumption, locomotor activity and escape latency. In addition, it was found that BDNF protein and mRNA levels in the hippocampus and frontal cortex were lower in CUS-treated rats, as compared to controls. Daily administration of the graded doses of BM extract during the 4-week period of CUS significantly suppressed behavioral changes and attenuated the CUS-induced decrease in BDNF protein and mRNA levels in the hippocampus and frontal cortex.

Conclusion

The results suggest that BM extract alleviates depression induced by CUS. Present study also confirms that 80-120 mg/kg doses of BM extract have significantly higher antidepressant-like activity.  相似文献   

4.
Jacobsen JP  Mørk A 《Brain research》2004,1024(1-2):183-192
The reported increase in brain-derived neurotrophic factor (BDNF) mRNA expression after antidepressant treatment is a cornerstone of the BDNF hypothesis of antidepressant action. However, if this increase becomes manifest on the BDNF protein level is unknown. In the present study we performed parallel measurements of BDNF mRNA and protein expression in the frontal cortex and hippocampus of the rat after chronic treatment with electroconvulsive seizures (ECS), lithium, desipramine or escitalopram. ECS increased BDNF mRNA and protein in the hippocampus and BDNF protein in the frontal cortex. Desipramine moderately increased BDNF mRNA expression in the dentate gyrus but did not change BDNF protein in neither region. Escitalopram did not affect BDNF mRNA expression, but decreased BDNF protein in the frontal cortex and the hippocampus. Lithium increased BDNF protein levels in the hippocampus and frontal cortex, but overall decreased BDNF mRNA expression. Thus, here we report a striking non-correspondence between changes in BDNF mRNA and protein expression induced by the antidepressant treatments and lithium. Further, increased expression of BDNF mRNA or protein was not a common action of the treatments. We also investigated if treatment-induced modulations of the tissue contents of 5-hydroxytryptamine (5-HT) and its metabolite, 5-hydroxy-indoleacetic acid (5-HIAA), were related to changes in BDNF mRNA or protein expression. No correlation was found. However, all treatments increased 5-HT levels in the hippocampus.  相似文献   

5.
BACKGROUND: Estradiol affects neuronal plasticity, mood, and cognition. We examined the effects of the estrous cycle, acute and chronic estradiol treatments on BDNF mRNA expression in the hippocampus and cortex of female rats. The roles of 5-HT2A receptors and of stress on the BDNF mRNA regulation were also explored. METHODS: BDNF mRNA levels were measured using in situ hybridization at proestrus and estrus, and following acute and chronic estradiol treatment of acutely and chronically ovariectomized (OVX) female rats. Some rats were pretreated with 5-HT2A agonist and antagonist, and another group was subjected to two-hour immobilization stress. RESULTS: BDNF mRNA levels in the dentate gyrus and the medial prefrontal cortex were decreased during estrus, when estradiol levels are highest. Acute estradiol treatment decreased hippocampal BDNF mRNA in acutely OVX rats, but neither acute nor chronic estradiol had effect in chronically OVX rats. Estradiol pretreatment reduced the 5-HT2A receptor-mediated cortical upregulation in BDNF mRNA and did not effect the stress-induced down-regulation of BDNF mRNA in the dentate gyrus. CONCLUSIONS: The duration of the estradiol treatment and the duration of the ovarian hormone deprivation are important factors in the regulation of BDNF synthesis and possibly in the functional outcome of estrogen treatment.  相似文献   

6.
Adult‐born granule cells in the mammalian dentate gyrus have long been implicated in hippocampal dependent spatial learning and behavioral effects of chronic antidepressant treatment. Although recent anatomical and functional evidence indicates a dissociation of the dorsal and ventral regions of the hippocampus, it is not known if adult neurogenesis within each region specifically contributes to distinct functions or whether adult‐born cells along the entire dorsoventral axis are required for these behaviors. We examined the role of distinct subpopulations of adult‐born hippocampal granule cells in learning‐ and anxiety‐related behaviors using low‐dose focal x‐irradiation directed specifically to the dorsal or ventral dentate gyrus. Our findings indicate a functional dissociation between adult‐born neurons along the longitudinal axis of the dentate gyrus wherein new neurons in the dorsal dentate gyrus are required for timely acquisition of contextual discrimination while immature neurons in the ventral dentate gyrus are necessary for anxiolytic/antidepressant‐related effects of fluoxetine. Interestingly, when contexts are presented with altered temporal cues, or fluoxetine is administered alongside chronic glucocorticoid treatment, this dissociation is abrogated such that adult‐born neurons across the entire dorsoventral extent of the dentate gyrus appear to contribute to these behaviors. Our results suggest that individual subpopulations of adult‐born hippocampal neurons may be sufficient to mediate distinct behaviors in certain conditions, but are required to act in concert in more challenging situations. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
The endocannabinoid ligand 2‐arachidonoylglycerol (2‐AG) is inactivated primarily by monoacylglycerol lipase (MAGL). We have shown recently that chronic treatments with MAGL inhibitor JZL184 produce antidepressant‐ and anxiolytic‐like effects in a chronic unpredictable stress (CUS) model of depression in mice. However, the underlying mechanisms remain poorly understood. Adult hippocampal neurogenesis has been implicated in animal models of anxiety and depression and behavioral effects of antidepressants. We tested whether CUS and chronic JZL184 treatments affected adult neurogenesis and synaptic plasticity in the dentate gyrus (DG) of mouse hippocampus. We report that CUS induced depressive‐like behaviors and decreased the number of bromodeoxyuridine‐labeled neural progenitor cells and doublecortin‐positive immature neurons in the DG, while chronic JZL184 treatments prevented these behavioral and cellular deficits. We also investigated the effects of CUS and chronic JZL184 on a form long‐term potentiation (LTP) in the DG known to be neurogenesis‐dependent. CUS impaired LTP induction, whereas chronic JZL184 treatments restored LTP in CUS‐exposed mice. These results suggest that enhanced adult neurogenesis and long‐term synaptic plasticity in the DG of the hippocampus might contribute to antidepressant‐ and anxiolytic‐like behavioral effects of JZL184. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
Chronic antidepressant treatment up-regulates the cAMP cascade in limbic brain regions, suggesting that activation of this pathway contributes to the therapeutic efficacy of antidepressants. A role for cAMP signaling is supported by the finding that rolipram, a selective inhibitor of cAMP-specific phosphodiesterases type 4 (PDE4), has antidepressant efficacy in behavioral models of depression and in clinical trials. To elucidate further the role of PDE4 isozymes, we characterized the expression and regulation of PDE4A splice variants (i.e. PDE4A1, PDE4A5, PDE4A8 and PDE4A10) in rat brain by chronic antidepressant treatment. Initial in situ hybridization studies (ISH) revealed high levels of PDE4A1 mRNA in medial septum, diagonal band, olfactory system, hippocampus and cerebellum. PDE4A5 mRNA expression was restricted to the olfactory nuclei, deep cortical layers, dentate and CA1 pyramidal layers. PDE4A10 mRNA was localized in the dentate gyrus and CA1 pyramidal layers. PDE4A8 mRNA was absent in rat brain. We determined the influence of chronic fluoxetine or electroconvulsive seizure (ECS) treatments on PDE4A splice variants expression in various brain regions. ISH analysis indicated that chronic fluoxetine or ECS treatments significantly increased PDE4A1, but not PDE4A5 or PDE4A10, mRNA levels in frontal and parietal cortices. ECS increased PDE4A5 levels in the anterior cingulate and frontoparietal cortices, CA1 and dentate gyrus, whereas chronic fluoxetine or ECS treatment increased PDE4A10 levels in the hippocampus. The differential up-regulation of PDE4A splice variants suggests compensatory region-specific responses to the antidepressant-induced increase in cAMP signaling and suggests that these splice variants may be relevant as targets for antidepressant intervention.  相似文献   

9.
Acute nicotine administration (0.5 mg/kg i.p.) significantly decreased BDNF mRNA levels in dentate gyrus, CA3 and CA1 subfields of the rat hippocampus 2 h and 24 h after administration. However, with 7 days nicotine treatment, tolerance developed to the inhibitory effect of nicotine on BDNF mRNA expression and there was a significant increase in BDNF expression 2 h after the final injection in the CA1 region. These data suggests that changes in expression of hippocampal BDNF may be involved in the behavioural effects of nicotine observed after acute and chronic treatment.  相似文献   

10.
The hippocampus of spontaneously hypertensive rats (SHR) and deoxycorticosterone (DOCA)‐salt hypertensive rats shows decreased cell proliferation and astrogliosis as well as a reduced number of hilar cells. These defects are corrected after administration of 17β‐oestradiol (E2) for 2 weeks. The present work investigated whether E2 treatment of SHR and of hypertensive DOCA‐salt male rats modulated the expression of brain‐derived neurotrophic factor (BDNF), a neurotrophin involved in hippocampal neurogenesis. The neurogenic response to E2 was simultaneously determined by counting the number of doublecortin‐immunopositive immature neurones in the subgranular zone of the dentate gyrus. Both hypertensive models showed decreased expression of BDNF mRNA in the granular zone of the dentate gyrus, without changes in CA1 or CA3 pyramidal cell layers, decreased BDNF protein levels in whole hippocampal tissue, low density of doublecortin (DCX)‐positive immature neurones in the subgranule zone and decreased length of DCX+ neurites in the dentate gyrus. After s.c. implantation of a single E2 pellet for 2 weeks, BDNF mRNA in the dentate gyrus, BDNF protein in whole hippocampus, DCX immunopositive cells and the length of DCX+ neurites were significantly raised in both SHR and DOCA‐salt‐treated rats. These results indicate that: (i) low BDNF expression and deficient neurogenesis distinguished the hippocampus of SHR and DOCA‐salt hypertensive rats and (ii) E2 was able to normalise these biologically important functions in the hippocampus of hypertensive animals.  相似文献   

11.
Adrenal steroid and stress effects were determined in hippocampus on levels of dynorphin (DYN) mRNA, expressed in dentate gyrus, and excitatory amino acid receptors, measured in Ammon's horn and dentate gyrus. Adrenalectomy (ADX) decreased DYN mRNA levels in dentate gyrus and replacement with aldosterone (ALDO), a specific type I adrenal steroid receptor agonist, prevented the decrease. Ru28362, a specific type II receptor agonist, had no effect. Likewise, kainate receptor binding to the stratum lucidum and hilus region of dorsal hippocampus was decreased after ADX and this decrease was prevented by ALDO but not by Ru28362 treatment. Similar though smaller effects were found for CNQX binding to AMPA receptors but only in the dentate gyrus molecular or infra- and supragranular layers. Although corticosterone (CORT) treatment of intact rats (40 mg/kg for 3 weeks) elevated DYN mRNA levels in dentate gyrus, up to 14 days of daily restraint stress (1 or 6 h/day) had no significant effect. Neither CORT treatment nor repeated restraint stress altered NMDA and non-NMDA glutamate receptors in hippocampus. The results of this study showing ADX-induced decreases of DYN mRNA and CNQX binding in dentate gyrus and decreased kainate binding in mossy fiber terminal regions are consistent with morphological evidence showing that adrenal steroids maintain normal integrity and structure of dentate gyrus neurons and do so via type I adrenal steroid receptors. These same parameters are apparently not sensitive to chronic restraint stress although the effects of other stressors must be examined.  相似文献   

12.
In recent years, our understanding of neural circuits associated with depression has increased. Although inherited factors are known to influence individual differences in the risk for this disorder, it has been difficult to identify specific genes that moderate circuit functions affecting depression. Genome-wide association studies have identified genetic variants of Cntn1 that are linked to major depressive disorders. Cntn1, a subset of the neural cell adhesion protein and immunoglobulin supergene family, participates in cell contact formation and axonal growth control and plays a role in degenerative and inflammatory disorders. However, neuronal substrates that mediate Cntn1 action on depression-like phenotypes and involved mechanisms are unclear. Here, we exploited chronic unpredictable stress (CUS) exposure and found that CUS treatment significantly increased hippocampal Cntn1 messenger RNA and protein expression in both mice and rats, but not in the medial prefrontal cortex, which presented a region-specific regulation. Using an adeno-associated virus-based approach to directly overexpress Cntn1 via stereotactic injection, we demonstrated that Cntn1 overexpression in the hippocampus triggered anxiety- and depression-like phenotypes in addition to microglia activation or phagocytosis in the hippocampus, resulting in upregulation of pro-inflammatory cytokine (IL1α, IL6, and Ccl2) mRNA expression and downregulation of anti-inflammatory cytokine (IL4 and CD206) mRNA expression, determined using real-time quantitative PCR, thus impairing hippocampal immature neurons in the dentate gyrus, determined using immunohistochemical staining for doublecortin, a specific marker for immature neurons. Collectively, our results identified Cntn1 as a novel risk gene involved in regulating anxiety and depression via functional actions in the hippocampus that is correlated with microglial activation or phagocytosis and reduced hippocampal immature neurons. These results may provide a better understanding of the pathophysiological mechanisms underlying the risk of depression-related disorders.  相似文献   

13.
14.
15.
We examined the effects of chronic activity wheel running and antidepressant treatment on brain-derived neurotrophic factor (BDNF) messenger RNA (mRNA) in multiple brain regions-hippocampal formation (HF), ventral tegmental area/substantia nigra (VTA/SN), nucleus accumbens (NAc), and piriform cortex (PFx)-after bilateral olfactory bulbectomy (OBX). Male, Long-Evans rats (n=72) underwent either sham or OBX surgery and were randomly divided into eight experimental groups in a 2 (sham vs. OBX) x 2 (sedentary vs. activity wheel)x2 (saline vs. imipramine) factorial design. Animals were killed after 21 days of treatment. Drug x exercise interaction effects were observed for HF (P=0.006-0.023) and VTA/SN (P=0.021); exercise increased BDNF mRNA in the saline treated animals but not in the imipramine treated animals. OBX did not affect BDNF mRNA in the HF or VTA/SN (P>0.05). BDNF mRNA levels in the PFx were not altered by exercise, drug, or OBX (P>0.05). These results suggest that the effect of exercise on BDNF mRNA extends beyond the HF to the mesolimbic ventral tegmental area and that the potentiation of BDNF mRNA by exercise and antidepressant pharmacotherapy, reported by other investigators, is time limited.  相似文献   

16.
The basolateral nucleus of the amygdala (BLA) plays a key role in emotional arousal and anxiety, and expresses high levels of corticotropin-releasing factor receptor (CRFR)1. In rat brain slices, we have recently shown that afferent activation of the BLA is increased following application of exogenous corticotropin-releasing factor (CRF). Here we examined the impact of chronic unpredictable stress (CUS) on this effect of CRF and whether blockade of CRFR1 could prevent stress-induced changes in the electrophysiological response, the animal's behavior and in cell proliferation in the hippocampus. The behavior of the rats was monitored via a series of tests that formed part of the CUS. Electrophysiological measures of the BLA response to CRF, cell proliferation in the dentate gyrus and the expression of CRF and CRFR1 mRNA in amygdaloid nuclei were determined ex vivo after completion of the CUS. CRF-induced potentiation of afferent activation of the BLA was reduced in rats exposed to CUS, an effect that was inhibited by chronic antagonism of CRFR1. Furthermore, the reduction in BLA response to CRF was correlated with the anxiety trait of the animals, determined prior to initiation of the CUS. These results implicate CRFR1 in chronic stress-induced alterations in amygdala function and behavior. Furthermore, they show that CRFR1 antagonists can prevent changes induced by chronic stress, in particular in those animals that are highly anxious.  相似文献   

17.
In situ hybridization and Northern blots were used to study expression of mRNAs for members of the nerve growth factor family in the rat brain following an excitatory stimulus. One hour after a unilateral needle insertion or saline injection into the dorsal hippocampus, the level of brain-derived neurotrophic factor (BDNF) mRNA increased markedly in granular neurons of the dentate gyrus and in the piriform cortex ipsilateral to the injection. The same treatment also increased the level of NGF mRNA in granular neurons of the ipsilateral dentate gyrus. The rapid increase in BDNF and NGF mRNA after a needle insertion or injection of saline was transient and preceded by an increase in c-fos mRNA in the same brain regions. In contrast to a needle insertion per se or a saline injection, 7 h after a unilateral injection of kainic acid into the dorsal hippocampus, the level of BDNF mRNA was dramatically increased in the ipsilateral hippocampus, as well as in the ipsilateral frontoparietal, piriform and perihinal cortex, the amygdaloid complex, claustrum, and ventromedial hypothalamus. A less pronounced increase was also seen in these brain areas on the contralateral side. Northern blots revealed that the level of BDNF mRNA increased 5- and 40-fold in the contra- and ipsilateral hippocampus, respectively, compared to sham-operated control animals. In contrast to BDNF and NGF, the level of hippocampus-derived neurotrophic factor/neurotrohin-3 (HDNF/NT-3) mRNA was not altered by either needle insertion or injection of saline or kainic acid.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Repeated maternal separation of rat pups during the early postnatal period may affect brain-derived neurotrophic factor (BDNF) or neurons in brain areas that are compromised by chronic stress. In the present study, a highly significant increase in hippocampal BDNF protein concentration was found in adult rats that as neonates had been subjected to 180 min of daily separation compared with handled rats separated for 15 min daily. BDNF protein was unchanged in the frontal cortex and hypothalamus/paraventricular nucleus. Expression of BDNF mRNA in the CA1, CA3, or dentate gyrus of the hippocampus or in the paraventricular hypothalamic nucleus was not affected by maternal separation. All animals displayed similar behavioral patterns in a forced-swim paradigm, which did not affect BDNF protein concentration in the hippocampus or hypothalamus. Repeated administration of bromodeoxyuridine revealed equal numbers of surviving, newly generated granule cells in the dentate gyrus of adult rats from the 15 min or 180 min groups. The age-dependent decline in neurogenesis from 3 months to 7 months of age did not differ between the groups. Insofar as BDNF can stimulate neurogenesis and repair, we propose that the elevated hippocampal protein concentration found in maternally deprived rats might be a compensatory reaction to separation during the neonatal period, maintaining adult neurogenesis at levels equal to those of the handled rats.  相似文献   

19.
Brain-derived neurotrophic factor (BDNF) has been suggested to be involved in memory processes. In the present study, the association between memory impairment at senescence and BDNF expression in the hippocampus was studied in 30–32-month-old Brown Norway rats, which had been maternally deprived early in life. These animals display a bimodal distribution in their spatial learning ability: rats are either non-impaired or impaired. BDNF mRNA expression in the hippocampus was compared between non-impaired and impaired rats. We measured BDNF mRNA expression in the hippocampus 3 h after training in the Morris water maze (‘post-training’) and at 1 month after training (‘basal’). Non-impaired performers displayed a higher post-training BDNF mRNA level in the CA1 region than impaired rats. In addition, only in the non-impaired performers post-training BDNF mRNA levels in CA1 and dentate gyrus were increased as compared to basal levels. Thus, we have demonstrated that in senescent rats, hippocampal BDNF expression in response to water maze training is associated with memory performance.  相似文献   

20.
Depression is a mental illness which is harmful seriously to the society. This study investigated the effects of fluoxetine on the CNPase+ oligodendrocytes in hippocampus of the depressed rats to explore the new target structure of antidepressants. Male Sprague–Dawley rats were used to build chronic unpredictable stress (CUS) depressed model of rats. Then, the depressed rats were divided into the CUS standard group and the CUS + fluoxetine (CUS/FLX) group. The CUS/FLX group was treated with fluoxetine at dose of 5 mg/(kg·d) from the fifth week to seventh week. After 7 weeks CUS intervention, the sucrose preference of the CUS standard group was significantly lower than that of the control group and the CUS/FLX group. The stereological results showed that the total number of the CNPase+ cells in the CA1, CA3, and DG subfield of the hippocampus in the CUS standard group were significantly decreased, when compared with the CNPase+ cells in the control group. However, the total number of the CNPase+ cells in the CA1 and CA3 subfield of the hippocampus in the CUS standard group was significantly decreased when it compared with CNPase+ cells in the CUS/FLX group. Therefore, fluoxetine might prevent the loss of CNPase+ oligodendrocytes in CA1 and CA3 subfields of hippocampus of the depressed rats. The oligodendrocytes in hippocampus may play an important role in the pathogenesis of depression. The current result might provide structural basis for the future studies that search for new antidepressant strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号