首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amorphous phase separation (APS) is commonly observed in amorphous solid dispersions (ASD) when exposed to moisture. The objective of this study was to investigate: (1) the phase behavior of amorphous solid dispersions composed of a poorly water-soluble drug with extremely low crystallization propensity, BMS-817399, and PVP, following exposure to different relative humidity (RH), and (2) the impact of phase separation on the intrinsic dissolution rate of amorphous solid dispersion. Drug-polymer interaction was confirmed in ASDs at different drug loading using infrared (IR) spectroscopy and water vapor sorption analysis. It was found that the drug-polymer interaction could persist at low RH (≤75% RH) but was disrupted after exposure to high RH, with the advent of phase separation. Surface morphology and composition of 40/60 ASD at micro-/nano-scale before and after exposure to 95% RH were also compared. It was found that hydrophobic drug enriched on the surface of ASD after APS. However, for the 40/60 ASD system, the intrinsic dissolution rate of amorphous drug was hardly affected by the phase behavior of ASD, which may be partially attributed to the low crystallization tendency of amorphous BMS-817399 and enriched drug amount on the surface of ASD. Intrinsic dissolution rate of PVP decreased resulting from APS, leading to a lower concentration in the dissolution medium, but supersaturation maintenance was not anticipated to be altered after phase separation due to the limited ability of PVP to inhibit drug precipitation and prolong the supersaturation of drug in solution. This study indicated that for compounds with low crystallization propensity and high hydrophobicity, the risk of moisture-induced APS is high but such phase separation may not have profound impact on the drug dissolution performance of ASDs. Therefore, application of ASD technology on slow crystallizers could incur low risks not only in physical stability but also in dissolution performance.  相似文献   

2.
The dependence of the dissolution rate on the pH of the buffered medium, using constant surface area discs, has been examined for crystalline frusemide, a semi-crystalline frusemide-polyvinylpyrrolidone (PVP) solid dispersion and an X-ray amorphous frusemide-PVP dispersion. The marked changes observed in the pH-dissolution profiles indicate that differing dissolution mechanisms operate in the amorphous regions. This conclusion was further supported by the comparison of pH-dissolution and pH-equilibrium solubility profiles that suggested a supersaturation effect to be the relevant term in describing the dissolution enhancing effects of amorphous regions. A marked dissolution enhancement, relative to crystalline frusemide, was shown by the X-ray amorphous solid dispersion in weakly acidic solutions. A similar effect was observed in the dissolution characteristics of gelatin capsule formulations in simulated gastric and intestinal media. In a human bioavailability study, the X-ray amorphous frusemide-PVP solid dispersion exhibited a significant reduction in the time for maximum effect in comparison to crystalline frusemide and a semi-crystalline solid dispersion. This effect, demonstrated by the primary end organ response in seven healthy subjects, concurred with the in-vitro prediction of dissolution enhancement in weakly acidic media.  相似文献   

3.
The purpose of this study was to understand the combined effect of two polymers showing drug–polymer interactions on amorphous stabilization and dissolution enhancement of indomethacin (IND) in amorphous ternary solid dispersions. The mechanism responsible for the enhanced stability and dissolution of IND in amorphous ternary systems was studied by exploring the miscibility and intermolecular interactions between IND and polymers through thermal and spectroscopic analysis. Eudragit E100 and PVP K90 at low concentrations (2.5%–40%, w/w) were used to prepare amorphous binary and ternary solid dispersions by solvent evaporation. Stability results showed that amorphous ternary solid dispersions have better stability compared with amorphous binary solid dispersions. The dissolution of IND from the ternary dispersion was substantially higher than the binary dispersions as well as amorphous drug. Melting point depression of physical mixtures reveals that the drug was miscible in both the polymers; however, greater miscibility was observed in ternary physical mixtures. The IR analysis confirmed intermolecular interactions between IND and individual polymers. These interactions were found to be intact in ternary systems. These results suggest that the combination of two polymers showing drug–polymer interaction offers synergistic enhancement in amorphous stability and dissolution in ternary solid dispersions. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:3511–3523, 2014  相似文献   

4.
Water vapor absorption isotherms were measured for three amorphous hydrophobic drug/poly(vinylpyrrolidone) (PVP) dispersions in the concentration range 10-90% w/w PVP. Experimental isotherms were compared to predicted isotherms calculated using each individual component isotherm multiplied by its weight fraction. Indomethacin (IMC)/PVP, ursodeoxycholic acid (UDCA)/PVP and indapamide (IDP)/PVP amorphous dispersions all exhibited experimental isotherms reduced relative to predicted isotherms indicating that dispersion formation altered the water vapor absorption properties of the individual components. For all three drug/PVP systems, deviation from predicted water uptake was greatest close to the 1:1 drug:PVP monomer composition, indicating that intermolecular interaction in amorphous dispersions affects the water uptake properties of the individual components. Using dry glass transition temperature (T(g)) data, the extent of drug/PVP interaction was shown to be greatest in the IDP/PVP system, which could explain why the largest reduction in water vapor absorption was found in this system. The plasticizing effect of absorbed water varied according to dry dispersion PVP content in all systems and the resulting nonideal changes in free volume, calculated using the Vrentas model, were greatest close to the 1:1 drug:PVP monomer composition. A three-component Flory-Huggins model successfully predicted isotherms for IMC/PVP compositions from 60 to 90% w/w PVP and identified an IMC-PVP interaction parameter chi in the range 1.27-1.49, values that suggest poor homogeneity of mixing in the dry system. These data indicate that amorphous dispersion formation causes both chemical and physical changes in the individual amorphous components that can have a significant effect on their water vapor absorption properties.  相似文献   

5.
In order to reduce the crystallinity of PEG 6000, blends were prepared by spray drying and extrusion with the following polymers; PVP K25, PVPVA 64, and HPMC 2910 E5. The maximal reduction of crystallinity in PEG 6000 was obtained by co-spray drying with HPMC 2910 E5. In the next step the model drug Itraconazole was added to the blend and the resulting ternary solid dispersions were characterized. The results of this study show that the addition of PEG 6000 to the Itraconazole/HPMC 2910 E5 system leads to phase separation that in most cases gives rise to recrystallization of either PEG 6000 or Itraconazole. For all ternary dispersions containing 20% of Itraconazole the drug was highly amorphous and the dissolution was improved compared to the binary 20/80 w/w Itraconazole/HPMC 2910 E5 solid dispersion. For all ternary dispersions containing 40% of Itraconazole, the drug was partially crystalline and the dissolution was lower than the dissolution of the binary 40/60 w/w Itraconazole/HPMC 2910 E5 dispersion. These results show that provided Itraconazole is highly amorphous the addition of PEG 6000 to HPMC 2910 E5 leads to an increase in drug release.  相似文献   

6.
PURPOSE: The purpose of the current study is to evaluate the solubility advantage offered by celecoxib (CEL) amorphous systems and to characterize and correlate the physical and thermodynamic properties of CEL and its amorphous molecular dispersions containing poly(vinylpyrrolidone) (PVP). METHODS: The measurement of crystalline content, glass transition temperatures, and enthalpy relaxation was performed using differential scanning calorimetry. Solubility and dissolutions studies were conducted at 37 degrees C to elucidate release mechanisms. Further, the amorphous systems were characterized by polarized light microscopy and X-ray powder diffraction studies. RESULTS: The PVP content has a prominent effect on the stability and solubility profiles of amorphous systems. A dispersion of 20% w/w PVP with CEL resulted in a maxima in terms of solubility enhancement and lowering of relaxation enthalpy. The release of drug from amorphous molecular dispersions was found to be drug-dependent and independent of the carrier. CONCLUSIONS: The solubility enhancement and enthalpy relaxation studies with respect to PVP concentration helped in a better prediction of role of carrier and optimization of concentration in the use of solid dispersions or amorphous systems. The drug release mechanism is drug-controlled rather than carrier-controlled.  相似文献   

7.
Objectives Andrographolide, a natural lipophilic molecule, has a wide range of pharmacological actions. However, due to low aqueous solubility, it has low oral bioavailability. The purpose of the study was to increase the solubility and dissolution rate of isolated andrographolide by formulating its solid dispersion. Method Solid dispersions were obtained by a spray‐drying technique using different ratios of drug to polyvinylpyrrolidine (PVP K‐30). Solid dispersions in compression with isolated drug and corresponding physical mixtures were characterized for various molecular pharmaceutical properties and subjected to stability study for up to 3 months. Key findings A five‐fold increase in saturation solubility of andrographolide with higher values of Q5min (cumulative percentage release in 5 min) and lower values of t75% (time required for 75% w/w drug release) for solid dispersion was observed in different dissolution mediums. This was attributed to the formation of amorphous nature and intermolecular hydrogen bonding between drug and PVP K‐30. The stability study showed there to be no significant change in molecular pharmaceutical properties and dissolution profile over the period of 3 months. Moreover, the in‐vivo study in Wistar albino rats also justified improvement in the therapeutic efficacy of andrographolide after solid dispersion. Conclusions This study demonstrates the utility of solid dispersion to improve primary and secondary pharmaceutical properties of andrographolide using PVP K‐30 as a carrier.  相似文献   

8.
In the present study predictable pulsatile chronotherapeutics of felodipine (FELO), which is a poorly-water soluble drug, were prepared in the form of two layered tablets. As active core PVP/FELO nanodispersion was used while as effective coating layer different PVP/HPMC blends were added. From dissolution studies of FELO nanodispersions it was revealed that PVP/FELO 90/10 w/w dispersion is an ideal system for pulsatile formulations since the whole amount of FELO is released within the first 30 min. This dissolution enhancement and fast release was attributed to FELO amorphisation, as was found from XRD and DMTA techniques and the effective particle size reduction. Transmission electron microscopy (TEM) studies revealed that FELO creates amorphous nanodispersions into the PVP matrix while particle sizes are directly dependable upon FELO concentration. Drug particles with sizes lower than 150 nm may be the optimal level for a substantial enhancement of FELO dissolution rate. The time of FELO release initiated by the two-layered tablets was adequately adjusted by using different PVP/HPMC blends as coating layer, which is a swellable and erodible barrier. The delaying time of FELO release is directly depended by HPMC concentration and this correlation was mathematically expressed. The significance of these blends is that they are completely miscible over the entire compositional range, thus forming a new matrix with different physicochemical properties, contrary to the initial polymers.  相似文献   

9.
The purpose of this study was to obtain an amorphous system with minimum unit operations that will prevent recrystallization of amorphous drugs since preparation, during processing (compression) and further storage. Amorphous celecoxib, solid dispersion (SD) of celecoxib with polyvinyl pyrrollidone (PVP) and co-precipitate with PVP and carrageenan (CAR) in different ratios were prepared by the spray drying technique and compressed into tablets. Saturation solubility and dissolution studies were performed to differentiate performance after processing. Differential scanning calorimetry and X-ray powder difraction revealed the amorphous form of celecoxib, whereas infrared spectroscopy revealed hydrogen bonding between celecoxib and PVP. The dissolution profile of the solid dispersion and co-precipitate improved compared to celecoxib and amorphous celecoxib. Amorphous celecoxib was not stable on storage whereas the solid dispersion and co-precipitate powders were stable for 3 months. Tablets of the solid dispersion of celecoxib with PVP and physical mixture with PVP and carrageenan showed better resistance to recrystallization than amorphous celecoxib during compression but recrystallized on storage. However, tablets of co-precipitate with PVP and carageenan showed no evidence of crystallinity during stability studies with comparable dissolution profiles. This extraordinary stability of spray-dried co-precipitate tablets may be attributed to the cushioning action provided by the viscoelastic polymer CAR and hydrogen bonding interaction between celecoxib and PVP. The present study demonstrates the synergistic effect of combining two types of stabilizers, PVP and CAR, on the stability of amorphous drug during compression and storage as compared to their effect when used alone.  相似文献   

10.
目的:制备复合载体齐墩果酸固体分散体,提高齐墩果酸的溶出度。方法:采用溶剂法,以聚乙烯吡咯烷酮(PVP VA64)和聚乙烯己内酰胺-聚乙酸乙烯酯-聚乙二醇接枝共聚物(Soluplus)为复合载体,制备齐墩果酸固体分散体,以累积溶出度为评价指标,考察不同载体比例,药物与载体比例,筛选最佳工艺。通过差式扫描量热法(DSC)、扫描电镜(SEM)、傅里叶红外光谱(FTIR)、粉末X 射线衍射(XRPD)等技术手段对其表征,并考察其溶出度。结果:Soluplus和PVP VA64复合载体比例为3∶2,药物与载体比例为1∶7,制备固体分散体,在45 min时累积溶出度为92.43%,DSC、SEM、XRPD、FTIR等表征结果显示药物以无定形状态存在于固体分散体中,且药物与载体之间存在氢键相互作用。结论:Soluplus和PVP VA64作为复合载体材料,联合应用可显著提高齐墩果酸的体外溶出度。  相似文献   

11.
Supercritical carbon dioxide (sc-CO2) was used to prepare coprecipitates of indomethacin (IM) and poly(vinylpyrrolidone) (PVP) with the aim to improve the dissolution rate of IM. The coprecipitates of IM and PVP at various proportions were prepared using a stirred batch reactor containing sc-CO2 as a gas saturated solution (i.e., the compressible CO2 is dissolved in the molten compound). Temperatures between 40 and 90 degrees C and pressure of 150 or 200 bar were employed. The coprecipitates prepared at 75 degrees C and 150 bar were characterized using differential scanning calorimetry (DSC), powder X-ray diffraction (PXD), scanning electron microscopy (SEM), and dissolution testing. The results suggested that IM was totally amorphous at PVP weight fraction of 0.80 and above (indeed, as a molecular composite in which the drug molecules interact with the polymer backbone). As the PVP weight fraction decreased, IM displayed an increasing amount of crystalline material. The SEM photographs of coprecipitates showed a foamed and porous structure. The dissolution rate of IM was increased by incorporation of PVP. IM and PVP at various weight fractions exhibited comparatively higher dissolution rates than that of crystalline IM alone. The sc-CO2 based process produced a solvent free, completely amorphous porous IM solid dispersion with a rapid dissolution rate.  相似文献   

12.
An empirical assessment of drug release from amorphous systems of celecoxib (CEL), poly(vinyl pyrrolidone) (PVP), and meglumine (MEG) was performed and compared with that for its crystalline form. CEL-PVP (4:1 w/w) binary and CEL-PVP-MEG (7:2:1 w/w) ternary amorphous systems provided higher drug dissolution. Mathematical modeling of drug release data was found to best fit the Hixson-Crowell release model. The biphasic drug release during a 6-h duration exhibited higher release kinetics in the first phase due to the presence of drug in amorphous form. The release kinetics subdued in the latter phase due to ongoing devitrification process in amorphous systems. A comprehensive understanding of drug release from amorphous systems will accentuate the rationalized design of amorphous drug delivery systems.  相似文献   

13.
In this study, the dissolution properties of celecoxib (CX) solid dispersions manufactured from Eudragit 4155F and polyvinylpyrrolidone (PVP) were evaluated. Hot-melt extrusion (HME) technology was used to prepare amorphous solid dispersions of drug/polymer binary systems at different mass ratios. The drug concentrations achieved from the dissolution of PVP and Eudragit 4155F solid dispersions in phosphate buffer, pH 7.4 (PBS 7.4) were significantly greater than the equilibrium solubility of CX (1.58 μg/mL). The degree of supersaturation increased significantly as the polymer concentration within the solid dispersion increased. The maximum drug concentration achieved by PVP solid dispersions did not significantly exceed the apparent solubility of amorphous CX. The predominant mechanism for achieving supersaturated CX concentrations in PBS 7.4 was attributed to stabilization of amorphous CX during dissolution. Conversely, Eudragit 4155F solid dispersions showed significantly greater supersaturated drug solutions particularly at high polymer concentrations. For example, at a drug/polymer ratio of 1:9, a concentration of 100 μg/mL was achieved after 60 min that was stable (no evidence of drug recrystallization) for up to 72 h. This clearly identifies the potential of Eudragit 4155F to act as a solubilizing agent for CX. These findings were in good agreement with the results from solubility performed using PBS 7.4 in which Eudragit 4155F had been predissolved. In these tests, Eudragit 4155F significantly increased the equilibrium solubility of CX. Solution (1)H NMR spectra were used to identify drug/polymer interactions. Deshielding of CX aromatic protons (H-1a and H-1b) containing the sulfonamide group occurred as a result of dissolution of Eudragit 4155F solid dispersions, whereas deshielding of H-1a protons and shielding of H-1b protons occurred as a result of the dissolution of PVP solid dispersions. In principle, it is reasonable to suggest that the different drug/polymer interactions observed give rise to the variation in dissolution observed for the two polymer/drug systems.  相似文献   

14.
Formulations containing amorphous active pharmaceutical ingredients (APIs) present great potential to overcome problems of limited bioavailability of poorly soluble APIs. In this paper, we directly compare for the first time spray drying and milling as methods to produce amorphous dispersions for two binary systems (poorly soluble API)/excipient: sulfathiazole (STZ)/polyvinylpyrrolidone (PVP) and sulfadimidine (SDM)/PVP. The coprocessed mixtures were characterized by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and intrinsic dissolution tests. PXRD and DSC confirmed that homogeneous glassy solutions (mixture with a single glass transition) of STZ/PVP were obtained for 0.05 ≤ X(PVP) (PVP weight fraction) < 1 by spray drying and for 0.6 ≤ X(PVP) < 1 by milling (at 400 rpm), and homogeneous glassy solutions of SDM/PVP were obtained for 0 < X(PVP) < 1 by spray drying and for 0.7 ≤ X(PVP) < 1 by milling. For these amorphous composites, the value of T(g) for a particular API/PVP ratio did not depend on the processing technique used. Variation of T(g) versus concentration of PVP was monotonic for all the systems and matched values predicted by the Gordon-Taylor equation indicating that there are no strong interactions between the drugs and PVP. The fact that amorphous SDM can be obtained on spray drying but not amorphous STZ could not be anticipated from the thermodynamic driving force of crystallization, but may be due to the lower molecular mobility of amorphous SDM compared to amorphous STZ. The solubility of the crystalline APIs in PVP was determined and the activities of the two APIs were fitted to the Flory-Huggins model. Comparable values of the Flory-Huggins interaction parameter (χ) were determined for the two systems (χ = -1.8 for SDM, χ = -1.5 for STZ) indicating that the two APIs have similar miscibility with PVP. Zones of stability and instability of the amorphous dispersions as a function of composition and temperature were obtained from the Flory-Huggins theory and the Gordon-Taylor equation and were found to be comparable for the two APIs. Intrinsic dissolution studies in aqueous media revealed that dissolution rates increased in the following order: physical mix of unprocessed materials < physical mix of processed material < coprocessed materials. This last result showed that production of amorphous dispersions by co-milling can significantly enhance the dissolution of poorly soluble drugs to a similar magnitude as co-spray dried systems.  相似文献   

15.
In this study, the dissolution rate of a poorly soluble drug, perphenazine (PPZ) was improved by a solid dispersion technique to permit its usage in intraoral formulations. Dissolution of PPZ (4 mg) in a small liquid volume (3 ml, pH 6.8) within one minute was set as the objective. PVP K30 and PEG 8000 were selected for carriers according to the solubility parameter approach and their 5/1, 1/5 and 1/20 mixtures with PPZ (PPZ/polymer w/w) were prepared by freeze-drying from 0.1 N HCl solutions. The dissolution rate of PPZ was improved with all drug/polymer mixture ratios compared to crystalline or micronized PPZ. A major dissolution rate improvement was seen with 1/5 PPZ/PEG formulation, i.e. PPZ was dissolved completely within one minute. SAXS, DSC and XRPD measurements indicated that solid solutions of amorphous PPZ in amorphous PVP or in partly amorphous PEG were formed. DSC and FTIR studies suggested that PPZ dihydrochloride salt was formed and hydrogen bonding was occurred between PPZ and the polymers. It was concluded that molecular mixing together with salt formation promoted the dissolution of PPZ, especially in the case of the 1/5 PPZ/PEG dispersion, making it a promising candidate for use in intraoral formulations.  相似文献   

16.
A number of studies have been carried out to investigate the crystalline to amorphous conversion of carbamazepine (CBZ) using solid dispersion techniques. In this study we have tried to achieve conversion using a novel technique combining near-supercritical carbon dioxide (n-scCO(2)) and pharmaceutically acceptable polymers (Na CMC and PVP) of varying molecular weights. Physical mixtures were prepared in two identical sets, one exposed to n-scCO(2) treatment and other was untreated. The treated physical mixtures were compared to untreated using PXRD, DSC and USP in vitro dissolution techniques. Routinely used PXRD analysis involves qualitative estimation of the amorphous conversion of a drug. In this work a previously developed mathematical parameter, ratio of ratios (ROR), was utilized to better quantify the crystalline to amorphous conversion of CBZ. The findings from the three methods indicated that only the lowest molecular weight PVP, PVP10k, facilitated significant crystalline to amorphous conversion of CBZ. In vitro dissolution, which is considered as an estimate of bioavailability demonstrated an initial dissolution of CBZ significantly greater in the treated physical mixtures of PVP10k:CBZ than the initial dissolution of the corresponding untreated physical mixtures and pure untreated CBZ.  相似文献   

17.
Solid dispersions were prepared by a melting method from the water-insoluble model drugs carbamazepine and nifedipine and polyethylene glycol 1500 (PEG 1500) or 1:1 mixtures of PEG 1500 and the polymers polyvinylpyrrolidone (PVP 30, PVP 12), polyvinylpyrrolidone-co-vinylacetate (PVPVA) and Eudragit EPO (Eudragit) in order to combine advantages of the different carrier polymers (recrystallization inhibition, processability and stability). The solid dispersions were characterized by dissolution, powder X-ray diffractometry and microscopy directly after preparation and after storage for 3 and 6 months at 25 °C/0% relative humidity (RH) or 3 months at 40 °C/75% RH. More than 80% drugs were released from all solid dispersions within 20 min. The dissolution rate of carbamazepine decreased in the order of PEG 1500 > PEG 1500/Eudragit > PEG 1500/PVP 30 > PEG 1500/PVPVA > PEG 1500/PVP 12. The dissolution rank order was not directly correlated to the amorphous/crystalline state of the drugs, but rather to the properties of the PEG 1500/polymer compositions. Nifedipine was released in the order of PEG 1500 > PEG 1500/PVPVA > PEG 1500/PVP 30 > PEG 1500/PVP 12 > PEG 1500/Eudragit. Amorphous nifedipine was present in all PEG 1500/polymer dispersions except in pure PEG 1500 solid dispersion. The significant increase in dissolution rate of PEG 1500 solid dispersions was due to the reduced crystallinity of the drug and the excellent solubilisation properties of PEG 1500. After 6 months storage at 25 °C/0% RH, the solid dispersions released both drugs in the order PEG 1500/PVPVA > PEG 1500/PVP 30 > PEG 1500/PVP 12 > PEG 1500/Eudragit > PEG 1500. The stabilized amorphous state of the drug resulted in stable dissolution profiles of PEG 1500/PVPVA, PEG 1500/PVP 30 and PEG 1500/PVP 12 when compared to the PEG 1500 solid dispersions, which contained a higher amount of crystalline drug. The solid dispersions with PEG 1500/PVPVA or PEG 1500/PVP stored for 3 months at 40 °C/75% RH showed phase separation due to the hygroscopic properties of the polymers. The influence of 10% (w/w) of the solubilisers polyoxyl 40 hydrogenated castor oil (Cremophor), macrogol-15-hydroxystearate (Solutol) and fatty alcohol alkoxylate (Pluronic) on the dissolution rate and the physical state of the drug was significant.  相似文献   

18.
Solid dispersions in water-soluble carriers have attracted considerable interest as a means of improving the dissolution rate, and hence possibly bioavailability, of a range of hydrophobic drugs. The aim of the present study was to improve the solubility and dissolution rate of a poorly water-soluble drug, Lovastatin, by a solid dispersion technique. Solid dispersions were prepared by using polyethylene glycol 4000 (PEG 4000) and polyvinylpyrrolidone K30 (PVP K30) in different drug-to‐carrier ratios. Dispersions with PEG 4000 were prepared by fusion-cooling and solvent evaporation, whereas dispersions containing PVP K30 were prepared by solvent evaporation technique. These new formulations were characterized in the liquid state by phase solubility studies and in the solid state by differential scanning calorimetry, X-ray powder diffraction, and FT-IR spectroscopy. The aqueous solubility of Lovastatin was favored by the presence of both polymers. The negative values of the Gibbs free energy and enthalpy of transfer explained the spontaneous transfer from pure water to the aqueous polymer environment. Solid-state characterization indicated Lovastatin was present as amorphous material and entrapped in polymer matrix. In contrast to the very slow dissolution rate of pure Lovastatin, the dispersion of the drug in the polymers considerably enhanced the dissolution rate. This can be attributed to improved wettability and dispersibility, as well as decrease of the crystalline and increase of the amorphous fraction of the drug. Solid dispersion prepared with PVP showed the highest improvement in wettability and dissolution rate of Lovastatin. Even physical mixture of Lovastatin prepared with both polymers also showed better dissolution profile than that of pure Lovastatin. Tablets containing solid dispersion prepared with PEG and PVP showed significant improvement in the release profile of Lovastatin compared with tablets containing Lovastatin without PEG or PVP.  相似文献   

19.
Solid dispersions in water-soluble carriers have attracted considerable interest as a means of improving the dissolution rate, and hence possibly bioavailability, of a range of hydrophobic drugs. The aim of the present study was to improve the solubility and dissolution rate of a poorly water-soluble drug, Lovastatin, by a solid dispersion technique. Solid dispersions were prepared by using polyethylene glycol 4000 (PEG 4000) and polyvinylpyrrolidone K30 (PVP K30) in different drug-to-carrier ratios. Dispersions with PEG 4000 were prepared by fusion-cooling and solvent evaporation, whereas dispersions containing PVP K30 were prepared by solvent evaporation technique. These new formulations were characterized in the liquid state by phase solubility studies and in the solid state by differential scanning calorimetry, X-ray powder diffraction, and FT-IR spectroscopy. The aqueous solubility of Lovastatin was favored by the presence of both polymers. The negative values of the Gibbs free energy and enthalpy of transfer explained the spontaneous transfer from pure water to the aqueous polymer environment. Solid-state characterization indicated Lovastatin was present as amorphous material and entrapped in polymer matrix. In contrast to the very slow dissolution rate of pure Lovastatin, the dispersion of the drug in the polymers considerably enhanced the dissolution rate. This can be attributed to improved wettability and dispersibility, as well as decrease of the crystalline and increase of the amorphous fraction of the drug. Solid dispersion prepared with PVP showed the highest improvement in wettability and dissolution rate of Lovastatin. Even physical mixture of Lovastatin prepared with both polymers also showed better dissolution profile than that of pure Lovastatin. Tablets containing solid dispersion prepared with PEG and PVP showed significant improvement in the release profile Lovastatin compared with tablets containing Lovastatin without PEG or PVP.  相似文献   

20.
The dissolution properties of hydrochlorothiazide-PVP 10 000 mechanical mix and coprecipitate systems were qualitatively similar to those previously reported using hydroflumethiazide. Quantitative differences were dependent on the proportion of PVP present, its molecular weight and method of incorporation. Cumulative urinary excretion data from test capsule preparations showed that bioavailability was enhanced by the presence of PVP. However, the degree of enhancement was less than that expected from constant surface area disc rate studies. Dissolution tests on the capsule formulations, using the U.S.P. basket stirrer assembly, did not correlate with in vivo results. Using the Levy beaker method and a stirring speed of 40 rev min-1, good correlation between amount dissolved in 30 min and amount excreted in urine after 24 h was obtained. The dissolution tests revealed that PVP retards the initial dissolution from capsule dosage forms, probably by retarding deaggregation and dispersion of drug particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号