首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
Bone marrow–mesenchymal stem cells (BM-MSCs) have generated a great perspective in the field of regenerative medicine, and also in the treatment of inflammatory and autoimmune diseases in the past decade due to their immunomodulatory and anti-inflammatory properties. Here, we investigated the effect of xenogeneic BM-MSCs and pancreatic islets co-transplantation obtained from Wistar rats in preventing rejection or inducing tolerance to islet transplantation in non-obese diabetic mice. Non-obese diabetic mice were treated with co-transplantation of pancreatic islets and BM-MSCs (islet + MSCs group) or pancreatic islets only (islet group). Compared to the islet group, islet + MSCs had a lower expression of inflammatory markers, such as, tumor necrosis factor– α (13.40 ± 0.57 vs. 9.90 ± 0.12, P = .01), monocyte chemoattractant protein 1 (51.30 ± 6.80 vs. 9.00 ± 1.80, P = .01), and interleukin 1β (IL-1β) (16.2 ± 1.65 vs. 6.80 ± 1.00, P = .04). Comparing the expression of immune tolerance markers, it is noted that animals receiving the co-transplantation showed a significantly higher expression than the islet group of IL-4 (25.60 ± 1.96 vs. 2.80 ± 0.20, P = .004), IL-10 (188.40 ± 4.60 vs. 4.55 ± 0.12, P = .0001), and forkhead box P3 (34.20 ± 1.3 vs. 1.30 ± 0.2, P = .004), respectively. These results suggest an immunomodulatory action of BM-MSC in islet xenotransplantation showing that these stem cells have the potential to mitigate the early losses of grafts, due to the regulation of the inflammatory process of transplantation.  相似文献   

3.
Diabetes mellitus(diabetes) is a devastating disease that affects millions of people globally and causes a myriad of complications that lead to both patient morbidity and mortality. Currently available therapies, including insulin injection and beta cell replacement through either pancreas or pancreatic islet transplantation, are limited by the availability of organs. Stem cells provide an alternative treatment option for beta cell replacement through selective differentiation of stem cells into cells that recognize glucose and produce and secrete insulin. Embryonic stem cells, albeit pluripotent, face a number of challenges, including ethical and political concerns and potential teratoma formation. Adipose tissue represents an alternative source of multipotent mesenchymal stem cells, which can be obtained using a relatively simple, non-invasive, and inexpensive method. Similarly to other adult mesenchymal stem cells, adipose-derived stem cells(ADSCs) are capable of differentiating into insulin-producing cells. They are also capable of vasculogenesis and angiogenesis, which facilitate engraftment of donor pancreatic islets when co-transplanted. Additionally, anti-inflammatory and immunomodulatory effects of ADSCs can protect donorislets during the early phase of transplantation and subsequently improve engraftment of donor islets into the recipient organ. Although ADSC-therapy is still in its infancy, the potential benefits of ADSCs are far reaching.  相似文献   

4.
OBJECTIVE—Mesenchymal stem cells (MSCs) contribute to endothelial cell (EC) migration by producing proteases, thereby paving the way into the tissues for ECs. MSCs were added to our previously described composite EC islets as a potential means to improve their capacity for islet angiogenesis.RESEARCH DESIGN AND METHODS—Human islets were coated with primary human bone marrow–derived MSCs and dermal microvascular ECs. The capacity of ECs, with or without MSCs, to adhere to and grow into human islets was analyzed. The survival and functionality of these composite islets were evaluated in a dynamic perifusion assay, and their capacity for angiogenesis in vitro was assessed in a three-dimensional fibrin gel assay.RESULTS—ECs proliferated after culture in MSC-conditioned medium, and MSCs improved the EC coverage threefold compared with EC islets alone. Islet survival in vitro and the functionality of the composite islets after culture were equal to those of control islets. The EC-MSC islets showed a twofold increase in total sprout formation compared with EC islets, and vascular sprouts emanating from the EC-MSC–islet surface showed migration of ECs into the islets and also into the surrounding matrix, either alone or in concert with MSCs.CONCLUSIONS—EC proliferation, sprout formation, and ingrowth of ECs into the islets were enhanced by MSCs. The use of composite EC-MSC islets may have beneficial effects on revascularization and immune regulation. The technique presented allows for pretreatment of donor islets with recipient-derived ECs and MSCs as a means of improving islet engraftment.The islets of Langerhans are micro-organs, with afferent and efferent blood vessels connecting the capillary network of the islets to the circulation system (1). Intra-islet endothelial cells (ECs) are fenestrated, and the density of the capillary network in the islets is ∼10 times higher than that of the surrounding exocrine tissue (2,3). During the process of islet isolation before transplantation, the ECs in the islets lose their external vascular support; this situation contributes to their dedifferentiation, apoptosis, and necrosis during subsequent in vitro culture (4).The formation of new capillaries during revascularization is a complex process that involves digestion of the vascular wall by proteases and the migration, proliferation, and differentiation of ECs (5). When blood vessels are assembled, ECs produce platelet-derived growth factor, which attracts supportive cells, including mesenchymal stem cells (MSCs) that can differentiate into pericytes (6).We hypothesized that adding MSCs to our previously described composite EC islets (7) might improve the adherence of the ECs to the islets and subsequent vascularization because MSCs contribute to EC migration by producing proteases, thereby paving the way into the surrounding tissue for the immature EC sprouts (8). MSCs have also been shown to upregulate the expression of angiopoietin and vascular endothelial growth factor (VEGF) in ECs, contributing to an increase in angiogenesis and stabilization of the vasculature (9). Moreover, MSCs have been shown to possess important immune-modulating properties (10), and they do not trigger adaptive immune reactions, which could make them ideal in islet transplantation setting (11,12).The present study describes a gentle and reproducible technique for forming EC-MSC islets that is designed to take into consideration the inherent characteristics of the various cell types involved and to take advantage of the anchorage-dependent growth of ECs and MSCs. Our data demonstrate that addition of MSCs to our composite islets enhanced the capacity of ECs to enclose the islets without compromising the functionality of the islets. Importantly, the MSCs stimulated EC sprout formation not only into the surrounding matrices, but also into the islets where intra-islet capillary-like structures were formed.  相似文献   

5.
The objective of this study was to define pretransplant islet culture conditions for optimum tissue engraftment in the rat islet allotransplantation model. Lewis rat islets were cultured in TCM 199/5% fetal calf serum for I day at 37 degrees C, followed by 1 day of culture at 22 degrees C. When islets from single donors were allotransplanted intraportally into single streptozotocin-diabetic Wistar-Furth rats, complete normoglycemia was restored within 1 day after transplantation in seven out of seven rats, and persisted up to immunological rejection about 1 week later. In five out of six rats receiving a posttransplant injection of antilymphocyte serum, plasma glucose was normalized for >100 days. These data demonstrate, for the first time, successful single-donor-to-single-recipient transplantation of allogeneic rat pancreatic islets. Because islet engraftment may still be regarded as a main problem for clinical islet transplantation, the pretransplant islet culture regimen outlined in this article may lead to a more efficient use of donor pancreatic islet tissue in the clinical setting, as well.  相似文献   

6.
Induction of hematopoietic chimerism and subsequent donor-specific immune tolerance via bone marrow transplantation is an ideal approach for islet transplantation to treat type-1 diabetes. We examined the potential of mesenchymal stem cells (MSCs) in the induction of chimerism and islet allograft tolerance without the incidence of graft-versus-host disease (GVHD). Streptozotocin-diabetic rats received a conditioning regimen consisting of antilymphocyte serum and 5 Gy total body irradiation, followed by an intraportal co-infusion of allogeneic MSCs, bone marrow cells (BMCs) and islets. Although all the recipients rejected the islets initially, half of them developed stable mixed chimerism and donor-specific immune tolerance, shown by the engraftment of donor skin and second-set islet transplants and acute rejection of a third-party skin. The engraftment of the primary islet allografts with stable chimerism was achieved by the addition of a 2-week peritransplant administration of 15-deoxyspergualin (DSG). Without MSCs, none of the recipients treated with DSG developed chimerism or reversal of diabetes. GVHD was not observed in any of the recipients infused with MSCs (0/15), whereas it occurred in 4/11 recipients without MSCs. These results indicate a potential use of MSCs for induction of hematopoietic chimerism and subsequent immune tolerance in clinical islet transplantation.  相似文献   

7.
It has been suggested that free grafts of islets are rejected more vigorously than immediately vascularized intact organs grafts. However, the physiological manifestations of rejection depend, in part, upon the functional reserve of the transplanted tissue. If the number of islets transplanted is just adequate to maintain normoglycemia, the immune destruction of only a few islets will be manifested by hyperglycemia. Thus, differences in rejection time could be an artifact of the islet mass transplanted. We compared the onset of rejection of immediately vascularized segmental pancreatic grafts and of free grafts of islets under conditions in which the β cell mass transplanted, as determined by tissue insulin content, was equivalent. Lewis rats, made diabetic (plasma glucose > 400 mg/dl) by streptozotocin, received either free islet allografts by portal embolization or vascularized segmental pancreatic allografts derived from Fischer donors. Identical pancreatic segments that were not transplanted had a mean (± SE) total tissue insulin content of 33 ± 3 μg. The mean total insulin content of Fischer islets prepared by collagenase digestion in a quantity identical to that used for transplantation to single recipients was 35 ± 7 μg. Similar measurements were made in Fischer to Fischer and Lewis to Lewis isograft control groups. Recipients of both segmental pancreas and free islet grafts became normoglycemic after transplantation and this state was sustained indefinitely in recipients of syngeneic grafts. In rats receiving allografts, the day of rejection, defined as an elevation of plasma glucose to >200 mg/dl, occurred at a mean of 12.1 ± 0.3 days for recipients of pancreatic grafts (n = 17) and 5.2 ± 0.3 days in recipients of islet grafts (n = 17) (P < 0.001). The functional survival of free grafts of allogeneic islets is less than that of islets contained within immediately vascularized pancreatic grafts, even when the transplanted β cell mass is equivalent. However, this difference could still be due to nonimmunologic, quantitative factors that influenced the rate with which hyperglycemia occurred after initiation of the rejection process. The insulin content in the livers of islet isograft recipients showed that only 53 to 71% of the transplanted islets survived. Further experiments that compensate for this factor are needed to determine whether or not there are differences in susceptibility to rejection of the two types of grafts. Nevertheless, on the basis of the number of donors used per recipient, islet allotransplantation is less efficient than pancreas allotransplantation.  相似文献   

8.
Type 1 diabetes is a disease resulting from autoimmune destruction of the insulin-producing beta cells in the pancreas. When type 1 diabetes develops into severe secondary complications, in particular end-stage nephropathy, or life-threatening severe hypoglycemia, the best therapeutic approach is pancreas transplantation, or more recently transplantation of the pancreatic islets of Langerhans. Islet transplantation is a cell therapy procedure, that is minimally invasive and has a low morbidity, but does not display the same rate of functional success as the more invasive pancreas transplantation because of suboptimal engraftment and survival. Another issue is that pancreas or islet transplantation (collectively known as beta cell replacement therapy) is limited by the shortage of organ donors and by the need for lifelong immunosuppression to prevent immune rejection and recurrence of autoimmunity.A bioartificial pancreas is a construct made of functional, insulin-producing tissue, embedded in an anti-inflammatory, immunomodulatory microenvironment and encapsulated in a perm-selective membrane allowing glucose sensing and insulin release, but isolating from attacks by cells of the immune system. A successful bioartificial pancreas would address the issues of engraftment, survival and rejection. Inclusion of unlimited sources of insulin-producing cells, such as xenogeneic porcine islets or stem cell-derived beta cells would further solve the problem of organ shortage.This article reviews the current status of clinical islet transplantation, the strategies aiming at developing a bioartificial pancreas, the clinical trials conducted in the field and the perspectives for further progress.  相似文献   

9.
BACKGROUND: Revascularization of freely transplanted pancreatic islets is essential for appropriate graft function and survival. During the first days after transplantation, however, islet transplants are avascular, and successful engraftment is believed to be markedly hampered by hypoxia-induced tissue injury. Because heat shock has been shown to induce cell resistance against hypoxia, it seems reasonable to stress pancreatic islets by heat before transplantation. In contrast, hypoxia is a major stimulus for angiogenesis, and thus heat shock preconditioning-induced resistance against hypoxia may decrease stimulation of angiogenesis. The authors therefore studied in vivo whether heat shock preconditioning of isolated islets affects angiogenesis and revascularization after free transplantation. METHODS: After collagenase isolation, heat shock-preconditioned islets (42 degrees C for 30 min) were transplanted syngeneically into nontreated skinfold chambers of Syrian hamsters. In a second group of animals, nontreated islets were transplanted into heat shock-preconditioned chambers. Nontreated islets transplanted into nontreated chambers served as controls. Islet angiogenesis and revascularization were quantitatively analyzed during 14 days after transplantation using intravital fluorescence microscopy. Expression of heat shock proteins (HSP) was confirmed by immunohistochemistry and Western blotting. RESULTS: Immunohistochemistry revealed expression of HSP32 (heme oxygenase [HO]-1), HSP72, and also intracellular insulin in isolated and transplanted pancreatic islets. Western blot analysis showed enhanced HSP32 but slightly decreased HSP72 expression in heat shock-preconditioned islets when compared with controls. Intravital microscopy revealed appropriate vascularization of control islets within 14 days after transplantation. Heat shock preconditioning of the host tissue (i.e., the skinfold chambers) did not affect islet vascularization when compared with controls. In contrast, heat shock preconditioning of the isolated islets resulted in a significantly (P < 0.05) impaired take rate, a reduced (P < 0.05) size of the newly formed microvascular network, and thus a smaller area (P < 0.05) of microvascularly perfused endocrine tissue. CONCLUSION: These data suggest that heat shock preconditioning of isolated pancreatic islets before transplantation impairs the process of graft angiogenesis and revascularization. Therefore, transient exposure of isolated islets to heat may not be considered a promising tool to improve the outcome of islet transplantation.  相似文献   

10.
The activation of natural killer (NK) cells in the liver inhibits engraftment of intraportally transplanted islets. We attempted to modulate the activity of NK cells by cotransplanting mesenchymal stem cells (MSCs) with islets in mice. We first investigated the ability of MSCs to secrete prostaglandin E2 , a predominant inhibitor of NK cell function, in various combinations of inflammatory cytokines. Notably, we found that prostaglandin E2 production was partially delayed in MSCs activated by inflammatory cytokines in vitro, whereas liver NK cells were activated early after islet transplant in vivo. Accordingly, preactivated MSCs, but not naive MSCs, substantially suppressed the expression of activation markers in liver NK cells after cotransplant with islets. Similarly, cotransplant with preactivated MSCs, but not naive MSCs, markedly improved the survival of islet grafts. These results highlight MSC cotransplant as an effective and clinically feasible method for enhancing engraftment efficiency.  相似文献   

11.

Purpose

Stem cell-derived tissue may provide a curative treatment for children with type 1 diabetes. Using an avian model, we have previously shown that foregut mesenchyme is able to differentiate into insulin-positive β-cell islets (B islets). Successful clinical islet transplantation, however, is reliant on graft tissue containing both insulin- and glucagon-secreting cells. Therefore, in this study, we assessed the ability of foregut mesenchyme to differentiate into glucagon-positive α-cell islets (A islets).

Methods

Chimeric recombinants (n = 14) were constructed using chick pancreatic epithelium combined with quail stomach mesenchyme from day 4 avian embryos and then cultured in 3 dimensions for 7 days. Cryosectioned recombinants were analyzed using immunocytochemistry against glucagon, insulin, and the quail-specific nucleolar antigen. The A islets and B islets were determined to be of solely epithelial, solely mesenchymal, or mixed origin according to the coexpression of the quail-specific nucleolar antigen.

Results

Forty-eight A islets and 34 B islets were analyzed. Eighty-five percent of the A islets were solely derived from the epithelium, but, notably, 5% were solely derived from the mesenchyme and 10% were of mixed origin. A-islet differentiation from foregut mesenchyme was reduced as compared with B islets (P = .03).

Conclusion

We demonstrate that foregut mesenchyme is able to differentiate into both α and β cells, albeit with quantitative differences. These findings may have important implications for the derivation of islet tissue from mesenchymal stem cells to cure juvenile-onset diabetes.  相似文献   

12.
Diabetes is a major health issue of increasing prevalence. ß-cell replacement, by pancreas or islet transplantation, is the only long-term curative option for patients with insulin-dependent diabetes. Despite good functional results, pancreas transplantation remains a major surgery with potentially severe complications. Islet transplantation is a minimally invasive alternative that can widen the indications in view of its lower morbidity. However, the islet isolation procedure disrupts their vasculature and connection to the surrounding extracellular matrix, exposing them to ischemia and anoikis. Implanted islets are also the target of innate and adaptive immune attacks, thus preventing robust engraftment and prolonged full function. Generation of organoids, defined as functional 3D structures assembled with cell types from different sources, is a strategy increasingly used in regenerative medicine for tissue replacement or repair, in a variety of inflammatory or degenerative disorders. Applied to ß-cell replacement, it offers the possibility to control the size and composition of islet-like structures (pseudo-islets), and to include cells with anti-inflammatory or immunomodulatory properties. In this review, we will present approaches to generate islet cell organoids and discuss how these strategies can be applied to the generation of a bioartificial pancreas for the treatment of type 1 diabetes.  相似文献   

13.

Background

Porcine islet xenotransplantation is considered an attractive alternative treatment for type 1 diabetes mellitus. However, it is largely limited because of initial rejection due to Instant Blood‐Mediated Inflammatory Reaction (IBMIR), oxidative stress, and inflammatory responses. Recently, soluble tumor necrosis factor‐ɑ receptor type I (sTNF‐αR) and heme oxygenase (HO)‐1 genes (HO‐1/sTNF‐αR) have been shown to improve the viability and functionality of porcine islets after transplantation.

Methods

In this study, genetically modified mesenchymal stem cells (MSCs) expressing the HO‐1/sTNF‐αR genes (HO‐1/sTNF‐αR‐MSC) were developed using an adenoviral system, and porcine islet viability and function were confirmed by in vitro tests such as GSIS, AO/PI, and the ADP/ATP ratio after coculturing with HO‐1/sTNF‐αR‐MSCs. Subsequently, isolated porcine islets were transplanted underneath the kidney capsule of diabetic humanized mice without MSCs, with MSCs or with HO‐1/sTNF‐αR‐MSCs.

Results

According to the results, the HO‐1/sTNF‐αR‐MSC‐treated group exhibited improved survival of porcine islets and could reverse hyperglycemia more than porcine islets not treated with MSCs or islets cotransplanted with MSCs. Moreover, the HO‐1/sTNF‐αR‐MSC group maintained its morphological characteristics and the insulin secretion pattern of transplanted porcine islets similar to endogenous islets in immunocompetent humanized mice.

Conclusions

Our results suggest that HO‐1/sTNF‐αR‐MSCs are efficient tools for porcine islet xenotransplantation, and this study may provide basic information for pre‐clinical animal models and future clinical trials of porcine islet xenotransplantation.  相似文献   

14.

OBJECTIVE

To test the graft-promoting effects of mesenchymal stem cells (MSCs) in a cynomolgus monkey model of islet/bone marrow transplantation.

RESEARCH DESIGN AND METHODS

Cynomolgus MSCs were obtained from iliac crest aspirate and characterized through passage 11 for phenotype, gene expression, differentiation potential, and karyotype. Allogeneic donor MSCs were cotransplanted intraportally with islets on postoperative day (POD) 0 and intravenously with donor marrow on PODs 5 and 11. Recipients were followed for stabilization of blood glucose levels, reduction of exogenous insulin requirement (EIR), C-peptide levels, changes in peripheral blood T regulatory cells, and chimerism. Destabilization of glycemia and increases in EIR were used as signs of rejection; additional intravenous MSCs were administered to test the effect on reversal of rejection.

RESULTS

MSC phenotype and a normal karyotype were observed through passage 11. IL-6, IL-10, vascular endothelial growth factor, TGF-β, hepatocyte growth factor, and galectin-1 gene expression levels varied among donors. MSC treatment significantly enhanced islet engraftment and function at 1 month posttransplant (n = 8), as compared with animals that received islets without MSCs (n = 3). Additional infusions of donor or third-party MSCs resulted in reversal of rejection episodes and prolongation of islet function in two animals. Stable islet allograft function was associated with increased numbers of regulatory T-cells in peripheral blood.

CONCLUSIONS

MSCs may provide an important approach for enhancement of islet engraftment, thereby decreasing the numbers of islets needed to achieve insulin independence. Furthermore, MSCs may serve as a new, safe, and effective antirejection therapy.Multipotent mesenchymal stem cells (MSCs) (1,2) can deliver immunomodulatory signals (37) that inhibit allogeneic T-cell responses through downregulation of the proinflammatory cytokines TNF-α and IFN-γ and production of the regulatory cytokines/molecules IL-10, hepatocyte growth factor (HGF), TGF-β, vascular endothelial growth factor (VEGF), indoleamine 2,3-dioxygenase, galectin-1, prostaglandin E2, nitric oxide, and matrix metalloproteinase-2 and -9 (3,812). Inflammatory signals, such as IFN-γ, can activate and upregulate MSC suppressive activities (9,13). These cells are able to migrate to sites of injury after intravenous injection (14,15). Their use in clinical trials and experimental models is based on their immunomodulatory and regenerative properties (1,7,16). Clinically, MSCs have been observed to enhance donor bone marrow cell (DBMC) engraftment and chimerism (17,18). Therefore, cotransplantation of MSCs that secrete immunomodulatory cytokines and growth factors might enhance islet survival and function. In experimental mouse models, intravenously infused MSCs are capable of migrating to pancreatic islets (19,20). Systemic infusion of MSCs in murine models of diabetes was accompanied by delayed onset of diabetes, improved glycemic levels, reduced pancreatic insulitis, and pancreatic tissue regeneration (19,2125), as well as prevention of autoimmune destruction of β-cells via induction of regulatory T-cells (Tregs) (26). Cotransplantation of syngeneic MSCs with a marginal mass of allogeneic islets under the kidney capsule of streptozotocin (STZ)-induced diabetic mice resulted in prolonged normoglycemia (11). Cotransplantation of syngeneic MSC with a marginal mass of allogeneic islets has been performed in the omentum (27) and kidney capsule (28) of STZ-induced diabetic rats, with enhanced islet graft survival as compared with animals receiving islets alone. In this study, cynomolgus monkey MSCs were characterized and donor MSCs were examined for the ability to promote intraportal islet engraftment as well as chimerism in recipients of islet/DBMC transplants. In addition, we tested the use of donor or third-party MSCs to reverse episodes of islet allograft rejection.  相似文献   

15.
Apoptosis during engraftment and inflammation induce poor islet xenograft survival. We aimed to determine whether overexpression of human heme oxygenase‐1 (HO‐1) or soluble tumor necrosis factor‐α receptor type I with human IgG1 Fc (sTNF‐αR‐Fc) in porcine islets could improve islet xenograft survival. Adult porcine islets were transduced with adenovirus containing human HO‐1, sTNF‐αR‐Fc, sTNF‐αR‐Fc/HO‐1 or green fluorescent protein (control). Humanized mice were generated by injecting human cord blood–derived CD34+ stem cells into NOD‐scid‐IL‐2Rγnull mice. Both HO‐1 and sTNF‐αR‐Fc reduced islet apoptosis under in vitro hypoxia or cytokine stimuli and suppressed RANTES induction without compromising insulin secretion. Introduction of either gene into islets prolonged islet xenograft survival in pig‐to‐humanized mice transplantation. The sTNF‐αR‐Fc/HO‐1 group showed the best glucose tolerance. Target genes were successfully expressed in islet xenografts. Perigraft infiltration of macrophages and T cells was suppressed with decreased expression of RANTES, tumor necrosis factor‐α and IL‐6 in treatment groups; however, frequency of pig‐specific interferon‐γ–producing T cells was not decreased, and humoral response was not significant in any group. Early apoptosis of islet cells was suppressed in the treatment groups. In conclusion, overexpression of HO‐1 or sTNF‐αR‐Fc in porcine islets improved islet xenograft survival by suppressing both apoptosis and inflammation. HO‐1 or sTNF‐αR‐Fc transgenic pigs have potential for islet xenotransplantation.  相似文献   

16.
BACKGROUND: The success of pancreatic islet transplantation is limited because of immune rejection of allogeneic transplanted tissue and potential adverse side effects of nonspecific immunosuppression. Local expression of an immunosuppressive agent at the site of islet transplant could promote long-term engraftment without associated systemic side effects. METHODS: We have examined the ability of adenoviral vector mediated local production of sCD40-immunoglobulin (Ig), blocking the CD40-CD40 ligand (CD40L) costimulatory pathway, from genetically modified allogeneic islets to facilitate long-term engraftment in fully allogeneic mouse model. RESULTS: Transplantation of islets infected with an adenoviral vector expressing sCD40-Ig resulted in allograft survival longer than 120 days in five of the nine recipient mice (56%). However, mice that received mock infected (n=5) or control adenoviral vector (Ad.eGFP; n=6) rejected the allograft with a median survival of 15 and 16 days, respectively. Histopathology demonstrated that the grafts of the long-term surviving animals preserved islets with minimal mononuclear cell infiltration. CONCLUSION: These results demonstrate that local inhibition of the CD40-CD40L pathway by adenoviral gene transfer of sCD40-Ig to the islets prior to transplant significantly prolonged islet allograft acceptance. This approach could be used clinically to facilitate islet transplantation.  相似文献   

17.
Transplantation of the whole pancreas organ or isolated Langerhans‐islets is the only methods to cure Type 1 diabetes. Transplantation is largely limited by the lack of organ donors and considerable side effects of immunosuppressive therapies. Porcine pancreas represents a promising cell source to overcome the shortage of islets. Due to the strong rejection of xenoantigens novel strategies such as the generation of transgenic pig islets are needed. Another complementary alternative is the co‐transplantation with immunomodulatory cells that mediate only local immunosuppression at the transplantation site. Mesenchymal stem cells (MSCs) are unique cells residing in different tissues which possess pleiotropic immunoregulatory activities. We isolated murine and human MSCs from bone‐marrow (CD73+, CD105+) and used them for in vitro experiments (mixed lymphocyte reaction after mitogen, allogenic and xenogenic stimulation) and co‐transplantation studies in diabetic C57BL/6 mice. Both murine and human MSCs exert strong immunosuppressive effects on lymphocyte proliferation (up to 75% and 80% respectively). Interestingly, there were major differences in the underlying mechanisms. We were able to demonstrate for the first time that mouse MSCs suppressed MLR by a combination of prostaglandin E2 production and adenosine formation. Only human but not mouse MSCs do express the tryptophan degrading enzyme indoleamine 2,3‐dioxygenase (IDO) upon stimulation with proinflammatory cytokines. Our features such as TGFβ and hepatocyte growth factor (HGF) production also contribute to the immunoregulatory effect. When human lymphocytes were challenges with porcine antigens there was a strong proliferative immune response which can be suppressed in a dose‐dependent manner by the addition of hMSCs (inhibition up to 95%). Co‐transplantation of allogenic islets with MSCs favoured islet cell function and survival. This effect was dependent on the MSC source as demonstrated by the fact that the use of donor MSCs resulted in longer survival rate as compared to syngenic MSCs. In current experiments we test the effect of hMSCs in the NOD SCID‐IL2R–/–mouse model to study immune response of human PBMCs towards porcine islets. In conclusion, our results strongly support and extend the concept that MSCs are potent candidates to control cellular immune rejection. We observed surprising differences in the immunosuppressive properties between mouse and human MSCs. Since human MSCs also strongly suppress immune response against pig antigens, they are promising novel candidates to modulate the local microenviroment for islet cell xenotransplantation. The next step is to analyse survival of transgenic pig islets (CTLA‐4 Ig) with and without hMSC in diabetic NOD SCID‐IL2R–/–mice. Supported by the Deutsche Forschungsgemeinschaft (Transregio Forschergruppe ‘‘Xenotransplantation’’, FOR 535).  相似文献   

18.
Pancreatic islet cell transplantation is a promising approach to restore the required mass of functional beta cells in diabetic patients as a means to achieve long-term normoglycemia. This therapy is, however, not yet widely used, in part because of the shortage of human islet cells. Gaining detailed knowledge of the physiological basis governing the processes of differentiation of pancreatic stem or progenitor cells and the mechanisms and molecules necessary for a successful engraftment of the transplanted cells into the liver is instrumental for the ambitious goal of engineering new pancreatic islets to cure type I diabetes. We describe the in vivo and in vitro localisation of tetranectin (TN) in human and murine islet cells. Similar to human islets, murine islets stain positive for tetranectin. The amount and localization of TN is influenced by different culture conditions. The ability of TN to bind plasminogen indicates that it may have a role in regulating pericellular proteolysis and proteolytic activation of latent forms of metalloproteinases and growth factors. Tetranectin may thereby play an important role in the survival of islets in the liver after islet transplantation. TN-positive cells can be isolated and maintained in culture after human islet isolation, thereby providing the possibility to further clarify its role and function in vivo as well as in the course of islet transplantation.  相似文献   

19.
BACKGROUND: Whereas clinical pancreatic transplantation has been highly successful in correcting the hyperglycemia of insulin-dependent diabetes mellitus (type 1), the results of islet transplantation have been disappointing. This discrepancy may be because of, at least in part, nonspecific loss of islets during the time required for revascularization. To test this hypothesis, we have designed composite kidney grafts containing vascularized autologous islets that can be used to compare the engraftment potential of vascularized versus nonvascularized islet tissue. METHODS: (1) Islet-cell isolation: miniature swine underwent either partial pancreatectomy to isolate autologous islets or total pancreatectomy to isolate minor antigen-mismatched islets. Islets were purified from excised pancreatic tissue by enzymatic digestion and discontinuous density gradient purification. Isolated islets were cultured for 3 days before transplant. (2) Creation of vascularized islet kidneys (IK): autologous islets alone (n=6), minor-mismatched islets alone (n=3), and minor-mismatched islets plus simultaneous autologous thymic tissue (n=3) were transplanted beneath the renal capsule of juvenile miniature swine. Minor antigen-mismatched islets were also transplanted into both the vascularized thymic graft of a thymokidney (to produce a thymo-islet kidney [TIK]) and the contralateral native kidney (n=3) and both the host thymus and beneath the renal capsule (n=2). All recipients receiving minor-mismatched islets were treated with a 12-day intravenous (IV) course of either cyclosporine A (CsA) at 10 mg/kg per day or FK506 at 0.15 mg/kg per day. (3) Assessment of Function: to evaluate the function of the transplanted islets, three animals bearing TIK and IK underwent total pancreatectomy 3 months following islet transplantation. RESULTS: (1) Islet-cell yields: an average of 254,960+/-51,879 (4,452+/-932 islet equivalents [IEQ]/gram of pancreas) and 374,410+/-9,548 (4,183+/-721 IEQ/gram of pancreas) viable islets were obtained by partial pancreatectomy and complete pancreatectomy, respectively. (2) Creation of IK: autologous islets engrafted indefinitely, whereas recipients of minor-mismatched islets alone rejected the islets within 2 months. However, when minor-mismatched islets were implanted into both the thymokidney and the contralateral kidney of animals bearing a thymokidney, the islets engrafted indefinitely in both sites (>3 months). Simultaneous implantation of islets into the host thymus and under the renal capsule also led to permanent engraftment of minor-mismatched islets. (3) Function of vascularized islets: three animals with both a TIK and an IK in place for 3 months underwent total pancreatectomy. All three animals maintained normoglycemia thereafter. In two of these animals, the IKs were removed 2 months after the pancreatectomy, and in both cases normoglycemia was maintained thereafter by the TIK. CONCLUSIONS: The implantation of islets beneath the autologous renal capsule permitted the establishment of a vascular supply and thereby supported normal islet-cell growth and function. The presence of thymic tissue beneath the autologous renal capsule facilitated the engraftment of minor-mismatched islets, and such grafts achieved results similar to autologous islet transplants. Therefore, the ability to create vascularized islet grafts may provide a strategy for successful islet transplantation across allogeneic and potentially across xenogeneic barriers.  相似文献   

20.

Background

We showed that T regulatory (Treg) cells can be attached to the surface of pancreatic islets providing local immunoprotection. Further optimization of the method can improve coating efficiency, which may prolong graft survival. In this study, we compared the effectiveness of two different molecules used for binding of the Tregs to the surface of pancreatic islets. Our aim was to increase the number of Treg cells attached to islets without compromising islets viability and function.

Methods

The cell surface of human Treg cells and pancreatic islets was modified using biotin-polyethylene glycol-N-hydroxylsuccinimide (biotin-PEG-NHS) or biotin-PEG-succinimidyl valeric acid ester (biotin-PEG-SVA). Then, islets were incubated with streptavidin as islet/Treg cells binding molecule. Treg cells were stained with CellTracker CM-DiL dye and visualized using a Laser Scanning Confocal Microscope. The number of Treg cells attached per islets surface area was analyzed by Imaris software. The effect of coating on islet functionality was determined using the glucose-stimulated insulin response (GSIR) assay.

Results

The coating procedure with biotin-PEG-SVA allowed for attaching 40% more Treg cells per 1 μm2 of islet surface. Although viability was comparable, function of the islets after coating using the biotin-PEG-SVA molecule was better preserved than with NHS molecule. GSIR was 62% higher for islets coated with biotin-PEG-SVA compared to biotin-PEG-NHS.

Conclusion

Coating of islets with Treg cells using biotin-PEG-SVA improves effectiveness with better preservation of the islet function. Improvement of the method of coating pancreatic islets with Treg cells could further facilitate the effectiveness of this novel immunoprotective approach and translation into clinical settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号