首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
STATEMENT OF PROBLEM: Bonded densely sintered aluminum oxide ceramic restorations such as Procera AllCeram laminates rely on a strong and long-term durable resin bond. Air particle abrasion and a phosphate-modified resin luting agent have the potential to provide such bonds to aluminum oxide ceramics, but their efficacy on the Procera AllCeram intaglio surface is unknown. The inherent microroughness of this surface may influence bond strengths, because micromechanical interlocking is a main contributor for adhesion of resins to ceramic materials. PURPOSE: This study evaluated the bond strength of a phosphate-modified resin luting agent with and without silanization to an air particle-abraded Procera AllCeram intaglio surface compared with a conventional resin-bonding system before and after artificial aging. MATERIAL AND METHODS: Sixty square (10 x 10 x 2 mm) specimens of Procera AllCeram alumina ceramic with the Procera intaglio surface were air particle abraded with aluminum oxide. Composite cylinders (2.9 mm in diameter and 3.0 mm in width) were fabricated with Z-250 composite and bonded to the ceramic specimens with either Panavia 21 TC or Rely X ARC (control) and their corresponding bonding/silane coupling agents. In addition, Panavia was used without silanization as suggested in similar studies. Subgroups of 10 specimens were stored in distilled water for either 3 or 180 days before shear bond strength was tested with a universal testing machine (MPa) until fracture. The 180-day specimens were subjected to thermocycling at 2000 cycles every 30 days (12,000 cycles total). Data were analyzed with 1-way analysis of variance and Tukey's multiple comparison (alpha=.05). Failure modes were examined with a light microscope (original magnification x 25). RESULTS: Differences between short-term and long-term groups were highly significant (P=.000). Bond strength with Rely X ARC and its silane coupling agent (22.75 +/- 4 MPa) decreased significantly (P=.000) after artificial aging (3.32 +/- 3.62 MPa). Panavia 21 after silanization revealed significantly different (P=.003) early (21.42 +/- 4.3 MPa) and late (16.09 +/- 2.37 MPa) bond strengths but achieved the highest bond strength after artificial aging. Bond strengths of Panavia without silanization both early (8.06 +/- 2.1 MPa) and late (6.91 +/- 2.49 MPa) were not significantly different. Failure modes were mainly adhesive at the ceramic surface for all groups. CONCLUSION: Panavia 21 in combination with its corresponding bonding/silane coupling agent can achieve an acceptable resin bond to the air particle-abraded intaglio surface of Procera AllCeram restorations after artificial aging, which had mixed effects on the other investigated groups. The conventional resin luting agent revealed the most dramatic decrease in bond strength.  相似文献   

2.
OBJECTIVES: This study investigated the influence of a silica-coating method on the resin bond of two different resin composite cements to the intaglio surface of Procera AllCeram densely sintered, high-purity, alumina ceramic restorations after long-term storage and thermocycling. METHOD AND MATERIALS: Densely sintered alumina ceramic specimens were fabricated with the intaglio surface of the Procera AlICeram coping and randomly divided into five adhesive groups (100 total specimens). Resin composite cylinders were bonded either to the untreated or to the tribochemical silica/silane-coated ceramic surface with either a conventional Bis-GMA resin cement or a resin composite containing an adhesive phosphate monomer (Panavia 21) in combination with their corresponding bonding/silane coupling agents. Panavia was also used without silanization to the untreated ceramic surface (control). Subgroups of 10 specimens were stored in distilled water for either 3 (baseline) or 180 days prior to shear bond strength testing. The 180-day samples were subjected to repeated thermocycling for a total of 12,000 cycles. Data were analyzed with one-way analysis of variance and Tukey's multiple comparison. RESULTS: Silica coating significantly increased overall bond strength to Procera AllCeram. RelyX ARC and silica coating revealed the highest bond strength at baseline. Long-term storage and thermocycling significantly decreased overall bond strength. Two groups revealed the significantly highest bond strength values after artificial aging: Panavia 21 with its silane/bonding agent to the original ceramic surface and Panavia 21 to the silica-coated ceramic surface. CONCLUSION: The use of a resin composite containing an adhesive phosphate monomer either in combination with a silane coupling/bonding agent or after tribochemical silica/silane coating revealed the highest long-term shear bond strength to the intaglio surface of Procera AllCeram restorations.  相似文献   

3.
PURPOSE: The aim of this study was to evaluate the effect of two surface conditioning methods on the microtensile bond strength of a resin cement to three high-strength core ceramics: high alumina-based (In-Ceram Alumina, Procera AllCeram) and zirconia-reinforced alumina-based (In-Ceram Zirconia) ceramics. MATERIALS AND METHODS: Ten blocks (5 x 6 x 8 mm) of In-Ceram Alumina (AL), In-Ceram Zirconia (ZR), and Procera (PR) ceramics were fabricated according to each manufacturer's instructions and duplicated in composite. The specimens were assigned to one of the two following treatment conditions: (1) airborne particle abrasion with 110-microm Al2O3 particles + silanization, (2) silica coating with 30 microm SiOx particles (CoJet, 3M ESPE) + silanization. Each ceramic block was duplicated in composite resin (W3D-Master, Wilcos, Petrópolis, RJ, Brazil) using a mold made out of silicon impression material. Composite resin layers were incrementally condensed into the mold to fill up the mold and each layer was light polymerized for 40 s. The composite blocks were bonded to the surface-conditioned ceramic blocks using a resin cement system (Panavia F, Kuraray, Okayama, Japan). One composite resin block was fabricated for each ceramic block. The ceramic-composite was stored at 37 degrees C in distilled water for 7 days prior to bond tests. The blocks were cut under water cooling to produce bar specimens (n = 30) with a bonding area of approximately 0.6 mm2. The bond strength tests were performed in a universal testing machine (crosshead speed: 1 mm/min). Bond strength values were statistically analyzed using two-way ANOVA and Tukey's test (< or = 0.05). RESULTS: Silica coating with silanization increased the bond strength significantly for all three high-strength ceramics (18.5 to 31.2 MPa) compared to that of airborne particle abrasion with 110-microm Al2O3 (12.7-17.3 MPa) (ANOVA, p < 0.05). PR exhibited the lowest bond strengths after both Al2O3 and silica coating (12.7 and 18.5 MPa, respectively). CONCLUSION: Conditioning the high-strength ceramic surfaces with silica coating and silanization provided higher bond strengths of the resin cement than with airborne particle abrasion with 110-microm Al2O3 and silanization.  相似文献   

4.
OBJECTIVES: The purpose of this in vitro study was to evaluate the tensile bond strength of adhesive bonding systems to the densely sintered alumina ceramic Procera, and its durability. METHODS: Plexiglas tubes filled with composite resin were bonded to Procera ceramic discs (99% Al2O3), which were either in their original state as supplied by the manufacturer or which were sandblasted for surface conditioning. Groups of 20 specimens were bonded in an alignment apparatus using 10 bonding methods. Subgroups of 10 bonded specimens were tested for tensile strength following storage in distilled water at 37 degrees C either for 3 days or for 150 days. In addition, the 150 days specimens were thermal cycled 37,500 times. The statistical analyses were conducted with the Kruskal-Wallis test followed by multiple pair-wise comparison of groups using the Wilcoxon rank sum test. RESULTS: Not sandblasted groups showed relatively poor initial bond strengths independent from bonding resins. During 150 days storage time all specimens in the not sandblasted groups debonded spontaneously. Moderate to relatively high initial bond strengths between 18 and 39 MPa were achieved to sandblasted specimens by using the PMMA luting resin Superbond C & B or the composite resin Variolink II or by silica coating and silanation in combination with Variolink II. However, in these groups after 150 days storage time the bond strength decreased significantly. The phosphate monomer containing composite resin Panavia 21 showed the highest bond strength to sandblasted Procera ceramic which did not decrease significantly over storage time. In addition, the bond strengths of sandblasted groups bonded with Variolink II after priming the ceramic with Alloy Primer or the silane Monobond S were relatively high and did also not decrease significantly after 150 days storage time. SIGNIFICANCE: Using ten bonding systems, a stable resin bond to Procera ceramic could be achieved after sandblasting and by using Panavia 21 or by using Variolink II after priming the ceramic with Alloy Primer or Monobond S.  相似文献   

5.
STATEMENT OF PROBLEM: It is not clear how different glass ceramic surface pretreatments influence the bonding capacity of various luting agents to these surfaces. PURPOSE: The purpose of this study was to evaluate the microtensile bond strength (microTBS) of 3 resin cements to a lithia disilicate-based ceramic submitted to 2 surface conditioning treatments. MATERIAL AND METHODS: Eighteen 5 x 6 x 8-mm ceramic (IPS Empress 2) blocks were fabricated according to manufacturer's instructions and duplicated in composite resin (Tetric Ceram). Ceramic blocks were polished and divided into 2 groups (n=9/treatment): no conditioning (no-conditioning/control), or 5% hydrofluoric acid etching for 20 seconds and silanization for 1 minute (HF + SIL). Ceramic blocks were cemented to the composite resin blocks with 1 self-adhesive universal resin cement (RelyX Unicem) or 1 of 2 resin-based luting agents (Multilink or Panavia F), according to the manufacturer's instructions. The composite resin-ceramic blocks were stored in humidity at 37 degrees C for 7 days and serially sectioned to produce 25 beam specimens per group with a 1.0-mm(2) cross-sectional area. Specimens were thermal cycled (5000 cycles, 5 degrees C-55 degrees C) and tested in tension at 1 mm/min. Microtensile bond strength data (MPa) were analyzed by 2-way analysis of variance and Tukey multiple comparisons tests (alpha=.05). Fractured specimens were examined with a stereomicroscope (x40) and classified as adhesive, mixed, or cohesive. RESULTS: The surface conditioning factor was significant (HF+SIL > no-conditioning) (P<.0001). Considering the unconditioned groups, the microTBS of RelyX Unicem was significantly higher (9.6 +/- 1.9) than that of Multilink (6.2 +/- 1.2) and Panavia F (7.4 +/- 1.9). Previous etching and silanization yielded statistically higher microTBS values for RelyX Unicem (18.8 +/- 3.5) and Multilink (17.4 +/- 3.0) when compared to Panavia F (15.7 +/- 3.8). Spontaneous debonding after thermal cycling was detected when luting agents were applied to untreated ceramic surfaces. CONCLUSION: Etching and silanization treatments appear to be crucial for resin bonding to a lithia disilicate-based ceramic, regardless of the resin cement used.  相似文献   

6.
STATEMENT OF PROBLEM: Surface treatment methods used for resin bonding to conventional silica-based dental ceramics are not reliable for zirconium-oxide ceramics. PURPOSE: The aim of this study was to compare the effects of airborne-particle abrasion, silanization, tribochemical silica coating, and a combination of bonding/silane coupling agent surface treatment methods on the bond strength of zirconium-oxide ceramic to a resin luting agent. MATERIAL AND METHODS: Sixty square-shaped (5 x 5 x 1.5 mm) zirconium-oxide ceramic (Cercon) specimens and composite resin (Z-250) cylinders (3 x 3 mm) were prepared. The ceramic surfaces were airborne-particle abraded with 125-microm aluminum-oxide (Al(2)O(3)) particles and then divided into 6 groups (n = 10) that were subsequently treated as follows: Group C, no treatment (control); Group SIL, silanized with a silane coupling agent (Clearfil Porcelain Bond Activator); Group BSIL, application of the adhesive 10-methacryloyloxydecyl dihydrogen phosphate monomer (MDP)-containing bonding/silane coupling agent mixture (Clearfil Liner Bond 2V/ Porcelain Bond Activator); Group SC, silica coating using 30-microm Al(2)O(3) particles modified by silica (CoJet System); Group SCSIL, silica coating and silanization (CoJet System); and Group SCBSIL, silica coating and application of an MDP-containing bonding/silane coupling agent mixture (Clearfil Liner Bond 2V/Porcelain Bond Activator). The composite resin cylinders were bonded to the treated ceramic surfaces using an adhesive phosphate monomer-containing resin luting agent (Panavia F). After the specimens were stored in distilled water at 37 degrees C for 24 hours, their shear bonding strength was tested using a universal testing machine at a crosshead speed of 0.5 mm/min. Debonded specimen surfaces were examined with a stereomicroscope to assess the mode of failure, and the treated surfaces were observed by scanning electron microscopy. Bond strength data were analyzed using 1-way analysis of variance and the Duncan test (alpha = .05). RESULTS: The bond strengths (mean +/- SD; MPa) in the groups were as follows: Group C, 15.7 +/- 2.9; Group SIL, 16.5 +/- 3.4; Group BSIL, 18.8 +/- 2.8; Group SC, 21.6 +/- 3.6; Group SCSIL, 21.9 +/- 3.9; and Group SCBSIL, 22.9 +/- 3.1. The bond strength was significantly higher in Group SCBSIL than in Groups C, SIL, and BSIL (P<.001), but did not differ significantly from those in Groups SC and SCSIL. Failure modes were primarily adhesive at the interface between zirconium and the resin luting agent in Groups C and SIL, and primarily mixed and cohesive in Groups SC, SCSIL, and SCBSIL. CONCLUSION: Tribochemical silica coating (CoJet System) and the application of an MDP-containing bonding/silane coupling agent mixture increased the shear bond strength between zirconium-oxide ceramic and resin luting agent (Panavia F).  相似文献   

7.
PURPOSE: This study tested the hypothesis that the tribochemical silica coating on ceramic surfaces increases the bond strength of resin cement to a glass-infiltrated zirconium-based ceramic. MATERIALS AND METHODS: Fifteen blocks of In-Ceram Zirconia from CEREC InLab (5 per group) and 15 composite blocks (Z-250) 5 mm x 5 mm x 4 mm were made. The ceramic surfaces were polished, and the blocks were divided into three groups: (1) airborne abrasion with 110-microm aluminum oxide particles; (2) Rocatec system, tribochemical silica coating; and (3) CoJet system, tribochemical silica coating. The ceramic blocks were cemented to the composite blocks using Panavia F according to the manufacturer's specifications. All samples were stored in 37 degrees C distilled water for 7 days and later sectioned in two axes using a diamond disk under cooling to obtain specimens with a cross-sectional area of approximately 1 mm2 (n = 45). Each specimen was then attached with cyanoacrylate glue to an adapted device for the microtensile test, which was carried out on a universal testing machine. RESULTS: The results were subjected to ANOVA and Tukey's test. Group 2 (23.0+/-6.7 MPa) and group 3 (26.8+/-7.4 MPa) showed greater bond strength than group 1 (15.1+/-5.3 MPa). There was no significant difference between groups 2 and 3. All failures were in the adhesive zone. CONCLUSION: The hypothesis was confirmed--the tribochemical systems increased the bond strength between Panavia F and In-Ceram Zirconia.  相似文献   

8.
STATEMENT OF PROBLEM: The few available studies on the resin bond to zirconium-oxide ceramic recommend airborne-particle abrasion and modified resin luting agents containing adhesive monomers for superior and long-term durable bond strengths. It is unknown whether this regimen can also be successfully applied to the intaglio surface of a commercial zirconia-based all-ceramic system. PURPOSE: The purpose of this study was to evaluate and compare bond strengths of different bonding/silane coupling agents and resin luting agents to zirconia ceramic before and after artificial aging. MATERIAL AND METHODS: Composite cylinders (2.9 mm x 3.0 mm) were bonded to airborne-particle-abraded intaglio surfaces of Procera AllZirkon specimens (n=80) with either Panavia F (PAN) or Rely X ARC (REL) resin luting agents after pretreatment with Clearfil SE Bond/ Porcelain Bond Activator (Group SE). In another group, Rely X ARC was used with its bonding/silane coupling agent (Single Bond/Ceramic Primer, Group SB). PAN without any bonding/silane agent (Group NO) was the control. Subgroups of 10 specimens were stored in distilled water for either 3 or 180 days before shear bond strength was tested. One hundred eighty-day-old specimens were repeatedly thermal cycled for 12,000 cycles between 5 and 60 degrees C with a 15-second dwell time. Data were analyzed with 1- and 2-way analysis of variance and the Tukey multiple comparisons test (alpha=.05). Failure modes were examined under original magnification x25. RESULTS: After 3 days, SE-REL (25.15 +/- 3.48 MPa) and SE-PAN (20.14 +/- 2.59 MPa) groups had significantly superior mean shear bond strengths (P=.0007) compared with either NO-PAN (17.36 +/- 3.05 MPa) or SB-REL (16.90 +/- 7.22 MPa). SE-PAN, NO-PAN, and SB-REL groups were not significantly different. Artificial aging significantly reduced bond strengths. After 180-day storage, SE-PAN (16.85 +/- 3.72 MPa), and SE-REL (15.45 +/- 3.79 MPa) groups demonstrated significantly higher shear bond strengths than NO-PAN (9.45 +/- 5.06 MPa) or SB-REL (1.08 +/- 1.85 MPa) groups. The modes of failure varied among 3-day groups but were 100% adhesive at the ceramic surfaces after artificial aging. CONCLUSION: Artificial aging significantly reduced bond strength. A bonding/silane coupling agent containing an adhesive phosphate monomer can achieve superior long-term shear bond strength to airborne-particle- abraded Procera AllZirkon restorations with either one of the 2 resin luting agents tested.  相似文献   

9.
PURPOSE: The objective of this study was to test the following hypothesis: the silica coating on ceramic surface increases the bond strength of resin cement to a ceramic. MATERIALS AND METHODS: In-Ceram Alumina blocks were made and the ceramic surface was treated: G1--sand-blasting with 110-microm aluminum oxide particles; G2--Rocatec System: tribochemical silica coating (Rocatec-Pre powder + Rocatec-Plus powder + Rocatec-Sil); G3--CoJet System: silica coating (CoJet-Sand) + ESPE-Sil. The ceramic blocks were cemented to composite blocks with Panavia F resin cement (under a load of 750 g/1 min). The cemented blocks were stored in distilled water at 37 degrees C for 7 days and sectioned along the x and y axes with a diamond disk. Samples with an adhesive area of ca 0.8 mm2 (n = 45) were obtained. The samples were attached to an adapted device for the microtensile test, which was performed in a universal testing machine (EMIC) at a crosshead speed of 1 mm/min. RESULTS: The obtained results were submitted to ANOVA and Tukey's test. Mean values of tensile strength (MPa) and standard deviation values were: (G1) 16.8+/-3.2; (G2) 30.6+/-4.5; (G3) 33.0+/-5.0. G2 and G3 presented greater tensile strength than G1. There was no significant difference between G2 and G3. All the failures took place at the ceramic/resin cement interface. CONCLUSION: The silica coating (Rocatec or CoJet systems) of the ceramic surface increased the bond strength between the Panavia F resin cement and alumina-based ceramic.  相似文献   

10.
OBJECTIVES: This study evaluated the effect of three surface conditioning methods on the microtensile bond strength of resin cement to a glass-infiltrated zirconia-reinforced alumina-based core ceramic. METHODS: Thirty blocks (5 x 5 x 4 mm) of In-Ceram Zirconia ceramics (In-Ceram Zirconia-INC-ZR, VITA) were fabricated according to the manufacturer's instructions and duplicated in resin composite. The specimens were polished and assigned to one of the following three treatment conditions (n=10): (1) Airborne particle abrasion with 110 microm Al(2)O(3) particles + silanization, (2) Silica coating with 110 microm SiO(x) particles (Rocatec Pre and Plus, 3M ESPE) + silanization, (3) Silica coating with 30 microm SiO(x) particles (CoJet, 3M ESPE) + silanization. The ceramic-composite blocks were cemented with the resin cement (Panavia F) and stored at 37 degrees C in distilled water for 7 days prior to bond tests. The blocks were cut under coolant water to produce bar specimens with a bonding area of approximately 0.6mm(2). The bond strength tests were performed in a universal testing machine (cross-head speed: 1mm/min). The mean bond strengths of the specimens of each block were statistically analyzed using ANOVA and Tukey's test (alpha相似文献   

11.
The objective of this study was to test two hypotheses: (1) silica coating affects the bond strength between ceramics and a resin cement; (2) bond strength is affected by the type of ceramic. Twelve blocks 5 x 6 x 8 mm of In-Ceram Zirconia (ZR) and twelve Procera AllCeram (PR) ceramics were made and duplicated in composite. Five blocks of each ceramic were treated as follows: (1) ZR + GB (laboratorial airborne particles abrasion with Al2O3 particles) + silane; (2) ZR + SC (chairside tribochemical silica coating system, Cojet); (3) PR + GB; (4) PR + SC. Two treated samples of ceramic were analyzed under SEM. The ceramic-composite blocks were cemented with Panavia F and stored in 37oC distilled water for 7 days. They were then cut to produce bar specimens (n=30) with a bonding area of 0.6±0.1mm2. Specimens were loaded to failure under tension in a universal testing machine (1 mm/min). Bond strength (sigma) values were statistically analyzed using ANOVA (Two-way) and Tukey (alpha = 0.05). Mean sigma (MPa) and standard deviation were as follows: 1) 15.1 ± 5.3; 2) 26.8 ± 7.4; 3) 12.7 ± 2.6; 4) 18.5 ± 4.7. Silica coated surfaces showed statistically higher sigma than the same substrate treated with GB only. In addition, ZR (with vitreous phase) showed higher ó than PR (without vitreous phase).  相似文献   

12.
This study evaluated the effect of thermocycling on the bond strength between Procera AllCeram (Nobel-Biocare) and a resin cement (Panavia F, Kuraray CO). Nine ceramic blocks with dimensions of 5x6x6mm were conditioned at one face with Rocatec System (Espe). After, they were luted with Panavia F to composite resin blocks (Clearfil AP-X, Kuraray CO). The nine groups formed by ceramic, cement and composite resin were split up obtaining 75 samples with dimensions of 12x1x1mm and adhesive surface presenting 1mm2±0.1mm2 of area. The samples were divided into 3 groups (n=25): G1 - 14 days in distilled water at 37oC; G2 - 6,000 cycles in water (5oC - 55oC - 30s); G3 - 12,000 cycles in water (5oC - 55oC - 30s). The samples were tested in a universal testing machine (EMIC) at a crosshead speed of 1mm/min. Data were analyzed by ANOVA and Tukey tests. The results indicated that mean values of rupture tension (MPa) of G1 (10.71 ± 3.54) did not differ statistically (p <5%) from G2 (9.01 ± 3.90), however there was statistical difference between G1 and G3 (7.28 ± 3.00). It was concluded that thermocycling significantly reduced the bond strength values when samples were submitted to 12,000 cycles.  相似文献   

13.
PURPOSE: An important determinant of the clinical success of ceramic restorations is the bond strength of the luting agent to the seating surface and the prepared tooth structures. Manufacturers of ceramic systems frequently specify both the luting agent and preluting treatment of the seating surface of the crown. Procera AllCeram is an all-ceramic crown comprising a porcelain-veneered coping of densely sintered, high-purity aluminum oxide. This study evaluated the shear bond strength of 4 luting agents: zinc-phosphate, glass-ionomer, resin-modified glass-ionomer, and resin cement (dual cured) to Procera aluminum oxide coping material. The luting agents were subjected to different surface treatments: untreated, sandblasted, or silica coated by the Rocatec system. MATERIALS AND METHODS: Cylindric and cubic specimens of the coping material were luted together, and the shear force necessary to separate the cylinder from the cube was measured with a universal testing machine. The surfaces of the specimens were also analyzed. RESULTS: No significant differences were recorded for the shear bond strengths of the luting agents to the untreated aluminum oxide. Glass-ionomer and the resin-modified glass-ionomer cements had the highest values (4.2 +/- 2.5 MPa and 4.3 +/- 1.9 MPa, respectively), and the lowest were 3.3 +/- 2.3 MPa for the resin cement and 3.2 +/- 1.0 MPa for the zinc-phosphate cement. Similar results were recorded for the sandblasted aluminum oxide surfaces, except with the glass-ionomer, which was significantly higher (12.9 +/- 2.4 MPa). For all 4 luting agents, the highest shear bond strength values were recorded for the silica-coated specimens; the highest was for the resin cement, at 36.2 +/- 7.8 MPa. CONCLUSION: The bond strengths between resin cement and aluminum oxide specimens treated by the Rocatec system were significantly higher than those of the other materials and surface treatments evaluated.  相似文献   

14.
PURPOSE: The current study investigated the effect of different luting agents on the fracture resistance of Procera AllCeram copings. METHODS: Six master dies were duplicated from the prepared maxillary first premolar tooth using nonprecious metal alloy (Wiron 99). Thirty copings (Procera AllCeram) of 0.6-mm thickness were manufactured. Three types of luting media were used: zinc phosphate cement (Elite), glass ionomer cement (Fuji I), and dual-cured composite resin cement (Panavia F). Ten copings were cemented with each type. Two master dies were used for each group, and each of them was used to lute five copings. All groups were cemented according to manufacturer's instructions and received a static load of 5 kg during cementation. After 24 hours of distilled water storage at 37 degrees C, the copings were vertically compressed using a universal testing machine at a crosshead speed of 1 mm/min. RESULTS: ANOVA revealed significant differences in the load at fracture among the three groups (p < 0.001). The fracture strength results showed that the mean fracture strength of zinc phosphate cement (Elite), glass ionomer cement (Fuji I), and resin luting cement (Panavia F) were 1091.9 N, 784.8 N, and 1953.5 N, respectively. CONCLUSION: Different luting agents have an influence on the fracture resistance of Procera AllCeram copings.  相似文献   

15.
Effect of surface treatment of titanium posts on the tensile bond strength.   总被引:1,自引:0,他引:1  
OBJECTIVES: Retention of composite resins to metal can be improved when metal surfaces are conditioned. The purpose of this investigation was to investigate the effect of two conditioning treatments on the tensile bond strength of four resin-based luting cements and zinc phosphate cement to titanium posts. METHODS: The effect on tensile bond strength of (1) air-particle abrasion (50 microm Al2O3) and (2) silica coating (30 microm SiO(x)) and silanization of tapered titanium posts prior to luting with any of the four resin composite luting cements (Compolute) Aplicap, Flexi-Flow cemTM, Panavia 21 EX, Twinlook) were evaluated. The posts luted with zinc phosphate cement (Tenet) were considered as the control group. Following endodontic preparation of 100 intact anterior human teeth with hand instruments, the post spaces were prepared using the opening drills of the corresponding size of the posts. All posts were cemented into the roots according to the manufacturer's instructions of each cement. The specimens were first stored in water at 37 degrees C for 24 h and then subjected to thermocycling (5000 cycles, 5-55 degrees C, 30 s). The tensile strength values were measured on a universal testing machine at a cross-head speed of 0.5 mm/min. Data were analyzed statistically using ANOVA and corrected with Scheffé-test due to the significance levels (P<0.05). RESULTS AND SIGNIFICANCE: The composite resin luting cements did not show significant differences (P<0.05) showing values between (352+/-76N-475+/-104N) when the posts were air-abraded. After silica coating and silanization, significantly higher (P<0.05) tensile strengths were obtained for Compolute Aplicap (600+/-123N) than those of the other luting cements (Flexi-Flow cemTM: 191+/-62N; Panavia 21 EX: 375+/-77; Twinlook: 430+/-78N). No significant differences (P>0.05) were found between the tensile strength of the posts luted with zinc phosphate (414+/-102N) and the resin composite cements. Silica coating and silanization revealed the highest tensile bond strength in posts luted with Compolute Aplicap but it was not effective for the other experimental groups. Zinc phosphate cement exhibited tensile bond strength as good as resin composite cements.  相似文献   

16.
This study evaluated the microtensile bond strength of a resin composite to a ceramic submitted to three surface treatments. Twelve glass-infiltrated alumina ceramic blocks (In-Ceram Alumina, VITA) and twelve resin composite blocks (Clearfil APX, Kuraray) with dimensions of 6mm x 6mm x 5mm were made. The surface of the ceramic was wet-grounded with # 600, 800 and 1200-grid sandpaper, and the blocks were divided in three groups: Group 1 - sandblasting with aluminum oxide - particles 110mm (Micro-Etcher, Danville); Group 2 - Rocatec System (ESPE): Tribochemical silica coating (Rocatec pre-powder + Rocatec-Plus powder + Rocatec-Sil); Group 3 - CoJet System (3M/ESPE): silica coating (silica oxide + ESPE-Sil). The ceramic blocks were cemented to the resin composite blocks with Panavia F (Kuraray Co), following the manufacturer's instructions, under load of 750g for 10min. The samples were stored (distilled water / 7 days / 37O C) and sectioned in two axis, x and y, with diamond disk under cooling in order to obtain samples (S) with 0.6 ± 0.1mm2 of adhesive area (n=36). The S were attached in adapted device for the microtensile test that was performed at an universal testing machine (EMIC), at a speed of 1mm/min. The results (MPa) were submitted to ANOVA and Tukey's test (p<0.05): G1 - 15.36; G2 - 30.98; G3 - 31.25. Groups 2 (Rocatec) and 3 (CoJet) presented larger bond strength than group 1. There was no statistical difference between group 2 and group 3.  相似文献   

17.
This study evaluated the shear bond strength of a newly developed resin bonding system, including single-liquid ceramic primer and dual-cured resin luting agent, to 5 ceramic materials (feldspathic porcelain, machinable ceramic, In-Ceram Alumina, Procera AllCeram alumina, and Cercon). Ceramic specimens were cleaned with phosphoric acid, treated with primer, and bonded with a resin luting agent. Shear bond strength was determined after 24 hours of immersion in water and/or 10,000 thermocycles. There were no significant differences in bond strength before and after thermocycling for the 5 ceramic materials (P > .05). The findings indicate that the resin bonding system may offer an acceptable performance in terms of clinical success for the 5 ceramic restorations.  相似文献   

18.
STATEMENT OF PROBLEM: Surface treatment is an essential step in bonding a ceramic to resin. Alumina ceramics are particularly difficult to prepare for adequate bonding to composite resin cements. PURPOSE: The purpose of this study was to evaluate the bond strength between a densely sintered alumina ceramic and bovine dentin with 2 adhesive resin cements and a resin-modified glass ionomer cement using an extrusion shear strength test. MATERIAL AND METHODS: Alumina cones (n=30), 4 mm in height, 3 mm in diameter at the small end, and with an 8-degree taper, were fabricated. Without any treatment, the cones were cemented in a standardized cavity in 2.5-mm-thick bovine dentin discs using 1 of 3 cement systems: Panavia F, RelyX ARC, or RelyX Luting. The cements were manipulated following the manufacturers' instructions. After 24 hours of storage at 37 degrees C, an extrusion shear test was performed in a universal testing machine at 0.5 mm/min until bonding failure. The data were analyzed using 1-way ANOVA and Tukey HSD test (alpha=.05). All fractured specimens were examined at x25 magnification and classified by fracture mode. Representative specimens were selected for SEM observation. RESULTS: The highest strength values were obtained with Panavia F, and they were significantly higher (P<.05) than each of the other 2 cements, which were not significantly different from each other. Panavia F resulted in predominantly mixed failure and RelyX ARC and RelyX Vitremer showed primarily adhesive failure. CONCLUSIONS: An MDP-containing adhesive system (Panavia F) provides better extrusion bond strength to a high-density alumina ceramic than a Bis-GMA resin luting agent system (RelyX ARC) or a resin-modified glass ionomer cement system (RelyX Luting).  相似文献   

19.
OBJECTIVE: The purpose of this study was to evaluate the shear bond strength (SBS) of a dental luting agent to alumina ceramics after different surface pretreatment. MATERIAL AND METHODS: Specimens (n=50) of pressed blocks (10 x 0 x 5 mm) of alumina ceramic (Procera AllCeram) were divided into untreated specimens (AF) as provided by the manufacturer and polished specimens (AP). Five groups of specimens (n=5 x 10) with different surface pretreatments were prepared. Groups 1 and 2: AF and AP without any pretreatment; Group 3: AF treated with silane, (AF-s); Group 4: AF treated with RF plasma spray (AF-RF); Group 5: AF treated with low fusing porcelain (AF-p) glass pearls. Composite cylinders (5 x 5 mm) were cemented to the test specimens with a resin luting agent. The specimens were loaded to failure in shear mode using a universal testing machine. Recorded loads were used to calculate SBS in MPa. The results were analyzed using one-way ANOVA and the Tukey HSD multiple comparison test at alpha = 0.05. Scanning electron microscopic micrographs (SEM) were used to characterize surfaces of interest. RESULTS: Polished surfaces had significantly lower SBS (p < 0.05) compared with untreated specimens (AP vs AF). Silanated, non-polished surfaces (AF-s) revealed lower SBS, even though the result was not significantly different from that of AF-s without silane treatment. Plasma treatment improved SBS by a factor of 2 (p<0.05) and treatment with low-fusing porcelain micro pearls increased SBS by a factor of 3 compared to untreated surfaces (p<0.05). The layer of glass pearls did not exceed 5 microm (SEM). CONCLUSIONS: Within the limitation of the conditions of this study, treatment of alumina oxide ceramic surfaces with a plasma spray coating or a low-fusing porcelain pearl layer significantly increased the SBS of a resin luting agent to the ceramic surface.  相似文献   

20.
This study aimed to compare the microtensile bond strength of resin cement to alumina-reinforced feldspathic ceramic submitted to acid etching or chairside tribochemical silica coating. Ten blocks of Vitadur-alpha were randomly divided into 2 groups according to conditioning method: (1) etching with 9.6% hydrofluoric acid or (2) chairside tribochemical silica coating. Each ceramic block was luted to the corresponding resin composite block with the resin cement (Panavia F). Next, bar specimens were produced for microtensile testing. No significant difference was observed between the 2 experimental groups (Student ttest, P > .05). Both surface treatments showed similar microtensile bond strength values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号