首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a genomic map of infectious laryngotracheitis virus (ILT) and an 18,912 bp sequence containing the entire unique short region and a portion of the flanking short repeats. In determining the genomic map, an 856 bp region repeated as many as 13 times was identified within the short repeats. The unique short sequence contains nine potential open reading frames (ORFs). Six of these ORFs show homology to other known herpesvirus unique short genes. Using the herpes simplex virus nomenclature, these genes are the US2, protein kinase, and glycoproteins G, D, I, and E (ORF 1, 2, 4, 6, 7, and 8, respectively). Interestingly, an open reading frame with homology to HSV-1 UL47 (ORF 3) is found in the unique short. One very large open reading frame (ORF 5) is present and contains a threonine-rich, degenerate repeat sequence. This gene appears to be unique to ILT among sequenced herpesviruses. Two ORFs were identified within the short repeat (SR) region. SRORF 1 is homologous to a gene (SORF3) found in the unique short region in both MDV and HVT, and appears to be specific to avian herpesviruses. SRORF 2 has homology to HSV US10.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence data-base and have been assigned the accession number U28832.  相似文献   

2.
The sequence of BamHI-I fragment of the herpesvirus of turkeys (HVT) FC126 strain DNA was analyzed for the presence of potential open reading frames (ORFs). Four complete (ORFs 2 to 5) and 2 partial ORFs (ORFs 1 and 6) were detected. ORFs 2 and 3 were homologous to the HSV-1 UL55 and the EHV-1 gene 3, respectively. The ORF 6 was already partially sequenced by Smith et al. (Virology 207, 205-216, 1995), and was homologous to a Marek's disease virus (MDV) ORF located in a similar position (ORF 21; Ross et al., Virus Genes 7, 33-51, 1993a). No significant homology was found for the other ORFs. ORF 4 was antisense to ORF 3. Two HVT recombinants having an expression cassette inserted into two intergenic sites were generated and tested for viremia in chickens. Results demonstrated that these 2 intergenic loci are non-essential for in vitro and in vivo HVT replication. A 650 bp deletion in the repeat region flanking UL (TRL and IRL (BamHI-F)) has been identified in some DNA molecules of HVT FC126 strain. This deletion covers the entire truncated pp38 homologous ORF and the N-terminus of a small ORF which has no detectable homology with any known gene. Our results indicate that (1) this genomic region including the HVT pp38 homologue was not essential for in vitro and in vivo growth of HVT, and (2) this deletion had no apparent effect on Marek's disease (MD) protection induced by HVT.  相似文献   

3.
4.
Marek's disease virus (MDV) is a highly cell-associated avian herpesvirus. In its natural host, MDV induces Marek's disease (MD), a lethal condition characterized by malignant lymphoma of T cells. Although symptoms of MD may be prevented by vaccination, no practical pharmacological method of control has been widely accepted. Viral replication represents a point at which pharmacological control of herpesvirus infection may be most successful. However, this requires detailed knowledge of viral replication proteins. Studies in HSV-1 DNA replication implicate the UL9 protein as a key initiator of replication. For example, binding of UL9 to HSV-1 origins is a prerequisite for assembly of additional replication proteins. In this study, a protein, whose apparent molecular size is similar to that of HSV-1 UL9, was identified in extracts of MDV infected cells by western blot analysis with anti-HSV-1 UL9 antibody. A putative MDV UL9 gene was subsequently identified through sequencing of MDV genome fragments (BamHI G and C). Extended DNA sequence analysis revealed an open reading frame (ORF) which could encode a protein homologous to HSV-1 UL9. The MDV UL9 ORF encodes 841 amino acids, producing a sequence 49% identical to HSV-1 UL9 and 46% identical to VZV gene 51 product (VZV UL9). MDV UL9 shares numerous structural motifs with HSV-1 and VZV UL9 proteins, including six conserved N-terminal helicase motifs, an N-terminal leucine zipper motif, a C-terminal pseudo-leucine zipper sequence, and a putative helix-turn-helix structure.  相似文献   

5.
Summary The DNA sequence of 4005 nucleotides from the Kpnl O and part of Kpnl K fragments in the short unique region of infectious laryngotracheitis virus (ILTV) was determined. The sequence contained two complete and one partial open reading frames (ORFs). The partial ORF was open at the 5 end of the sequence and represented the NH2-terminal 118 amino acids (aa) of a polypeptide. Its partial predicted protein product exhibited significant homology to the US2 gene product of HSV-1 (herpes simplex virus type 1) and its homologs in other herpesviruses. ORF 2 is 471 aa long and could encode a protein of 53.8 kDa which shared aa homology with the protein kinases encoded by HSV-1 US3 and its gene homologs. Analysis of the ORF 2 aa sequence revealed domains characteristic of protein-serine/threonine (S/T) kinases of cellular and viral origin. The ORF 3 encoded a predicted protein of 601 aa (Mr 67.5 kDa) which exhibited limited homology (18% overall identity) with the UL47 protein (major tegument protein) of HSV-1. Northern (RNA) blot hybridization and metabolic inhibitors were used to characterize the ILTV protein kinase and the 67K mRNAs. The data revealed that protein kinase is a gamma-1 gene encoding a 1.6 kb mRNa, while the 67K ORF is a gamma-2 gene encoding a 2 kb mRNA.  相似文献   

6.
A 3789 nucleotide region of the bovine ephemeral fever virus (BEFV) genome, located 1.65 kb downstream of the N gene, has been cloned and sequenced. The region contains two long open reading frames (ORFs) which are bounded by putative consensus (AACAGG) and polyadenylation (CATG[A]7) sequences and are separated by an intergenic region of 53 nucleotides. Discrete mRNAs corresponding to each ORF have been identified. The first ORF encodes a polypeptide comprising 623 residues which was identified by peptide sequencing as the virion G protein. The deduced amino acid sequence of the G protein includes putative signal and transmembrane domains and five potential glycosylation sites. The second ORF encodes a polypeptide of 586 amino acids which also has characteristics of a rhabdovirus glycoprotein, including putative signal and transmembrane domains and eight potential glycosylation sites, and appears to correspond to a 90-kDa nonstructural glycoprotein (GNS) identified in BEFV-infected cells (Walker et al. [1991] J. Gen. Virol. 72, 67-74). A database search indicated that both the G and GNS proteins share significant amino acid sequence homology with other rhabdovirus G proteins and with each other. Highest homology scores for each protein were with sigma virus and vesicular stomatitis virus serotypes.  相似文献   

7.
The genome of varicella-zoster virus (VZV) encodes three major families of glycoproteins (gpI, gpII, and gpIII). mRNA from VZV-infected cells was hybrid selected using a library of VZV recombinant plasmids and translated in vitro; polypeptide products were immunoprecipitated by polyclonal monospecific guinea pig antibodies to gpII. The mRNA encoding a 100-kD polypeptide precipitable by anti-gpII antibodies mapped to the HindIII D fragment near the center of the UL region. DNA sequence analysis of this region of the VZV genome revealed a 2.6-kbp open reading frame (ORF) potentially encoding a 98-kDa polypeptide possessing the characteristics of a glycoprotein. The 100-kDa polypeptide was specified by mRNA isolated by hybrid selection using a plasmid containing part of the 2.6-kbp ORF, and immunoprecipitation of this protein by anti-gpII antibodies and by convalescent zoster serum was blocked specifically by purified gpII. We conclude that the 2.6-kbp ORF encodes gpII. The imputed primary amino acid sequence of gpII shows a high degree of homology to that of herpes simplex virus type 1 (HSV-1) gB, a result consistent with the equivalent map locations of the respective genes in the HSV and VZV genomes and with the recently reported serological cross-reactivity of HSV-1 gB and VZV gpII. Unlike the mature gene products of gB, those of gpII have been described as a pair of glycoproteins with approximate molecular weights of 60 kDa in reducing gels, products of a single glycoprotein species with approximate mol mass of 125-140 kDa in nonreducing gels. Amino-terminal sequences of purified gpII were determined and compared to the imputed amino acid sequence. This comparison implies that the primary translational product is cleaved approximately into halves in vivo and suggests that mature gpII is a disulfide-linked heterodimer.  相似文献   

8.
The nucleotide sequence of the infectious laryngotracheitis virus (ILTV) gene encoding the 205K complex glycoprotein (gp205) was determined. The gene is contained within a 3-kb EcoRI restriction fragment mapping at approximately map coordinates 0.23 to 0.25 in the UL region of the ILTV genome and is transcribed from right to left. Nucleotide sequence analysis of the DNA fragment identified a single, long open reading frame capable of encoding 873 amino acids. The predicted precursor polypeptide derived from this open reading frame would have a calculated Mr of 98,895 Da and contains nine potential glycosylation sites. Hydropathic analysis indicates the presence of an amino terminal hydrophobic sequence and hydrophobic carboxyl terminal domain which may function as a signal peptide and a membrane anchor sequence, respectively. Comparison of the predicted ILTV gp205 protein sequence with those of other herpesviruses revealed a significant sequence similarity with gB-like glycoproteins. Extensive homology was observed throughout the molecule except for the amino and carboxyl termini. The high homology in predicted primary and secondary structures is consistent with the essential role of the gB family of proteins for viral infectivity and pathogenesis.  相似文献   

9.
A library of subgenomic fragments of bovine herpesvirus type 2 (BHV-2) DNA was constructed in the expression cloning vector lambda gt11 and screened with monoclonal antibodies to the glycoprotein gb BHV-2, which is homologous to glycoprotein gB (gB-1) of herpes simplex virus type 1 (HSV-1). Lambda gt11 clones containing gB BHV-2-specific sequences were used to identify lambda EMBL3 vectors with DNA inserts which contained the complete gB BHV-2 gene. Nucleotide sequencing revealed that the gB BHV-2 gene is highly conserved compared to gB-1. The amino acid sequences and the predicted secondary structures of both glycoproteins are very similar. Two further open reading frames (ORF) in close vicinity to the gene encoding gB BHV-2 showed considerable homology to HSV-1 genes. They code for the major DNA-binding protein (dbp) of BHV-2 and a putative 72-kDa polypeptide. The gene of the latter protein corresponding to ICP18.5 of HSV-1 is interspersed between the ORFs of gB BHV-2 and the dbp of BHV-2. All three genes map in the unique long region of the genome. Their homology and the colinear arrangement compared to HSV-1 indicate a close relationship between the two viruses.  相似文献   

10.
11.
The genome of equine herpesvirus-1 (EHV-1) contained three open reading frames (ORFs) in a 3.9 kbpBamHI-SmaI fragment at 0.38–0.41 map units in the long unique region. The most 5′ ORF encoded the carboxy terminus of a protein with 45–55 percent amino acid homology to the DNA-binding proteins (ICP8-DBP) of four other alphaherpesviruses. The middle ORF translated to a polypeptide of 775 residues with 43–55% homology to the ICP18.5 proteins. The most 3′ ORF encoded the EHV-1 glycoprotein B (gB) gene. Three mRNAs of 4.3, 4.4–4.8, and 3.5–3.9 kb (corresponding to the three sequenced ORFs) were all transcribed from the same strand. The gene order of this group was conserved in all herpesviruses examined.  相似文献   

12.
DNA sequence analysis of the unique short (Us) segment of the genome of equine herpesvirus type 1 Kentucky A strain (EHV-1) by our laboratory and strains Kentucky D and AB1 by other workers identifies a total of nine open reading frames (ORF). In this report, we present the DNA sequence of three of these newly identified ORFs, designated EUS 2, EUS 3, and EUS 4. The EUS 2 ORF is 1146 nucleotides (nt) in length and encodes a potential protein of 382 amino acids. Cis-regulatory sequences upstream of the putative ATG start codon include a G/C box 112 nt upstream and two potential TATA-like elements located between 15 and 90 nt before the ATG. The EUS 2 translation product exhibits significant homology to Ser/Thr protein kinases encoded within the Us segments of other herpesviruses, such as herpes simplex virus (26% homology) and pseudorabies virus (PRV), (45% homology), and possesses sequence domains conserved in protein kinases of cellular and viral origin. The EUS 3 ORF begins 127 nt downstream from the EUS 2 stop codon and ends at a stop codon 1119 nt further downstream. A single TATA-like element maps 61 nt upstream of the ORF. This ORF encodes a potential protein of 373 amino acids and is a homolog of glycoprotein gX of PRV, as judged by overall homology of amino acid residues, cysteine displacement, and presence of potential glycosylation sites and signal sequence. Interestingly, the EUS 4 ORF encodes a potential membrane glycoprotein that does not exhibit homology to any reported protein sequence. The EUS 4 ORF encodes a 383 amino acid polypeptide with a sequence indicative of a signal sequence at its amino terminal end, glycosylation sites for N-linked oligosaccharides, and a transmembrane domain near its carboxyl terminus. Several cis-acting regulatory sequences lie upstream of this ORF. These findings support the observation that the short region of alphaherpesviruses show considerable variation in their genetic content and gene organization.  相似文献   

13.
The Marek’s disease virus (MDV, Gallid herpesvirus 2) genome encodes ~110 open reading frames (ORFs). Many of these ORFs are annotated based purely on homology to other herpesvirus genes, thus, direct experiments are needed to verify the gene products, especially the hypothetical or MDV-specific ORFs, and characterize their biological function, particularly with respect to pathogenicity in chickens. Previously, a comprehensive two-hybrid assay screen revealed nine specific chicken-MDV protein–protein interactions. In order to characterize the role of hypothetical MDV proteins R-LORF10 and LORF4, which were shown to interact with major histocompatibility complex (MHC) class II β chain and Ii (invariant or γ) chain, respectively, recombinant MDVs derived from virulent MDV-BAC clone rMd5-B40 were generated. Recombinant MDV rMd5ΔR-LORF10 lacked part of the promoter and the first 17 amino acids in both copies of R-LORF10, and rMd5mLORF4 had point mutations in LORF4 that disrupted the start codon and introduced a premature stop codon without altering the amino acid sequence of overlapping ORF UL1, which encodes glycoprotein L (gL). Mutations in either R-LORF10 or LORF4 neither prevent MDV reconstitution from modified MDV-BACs nor significantly alter virus growth rate in vitro. However, MDV generated from rMd5ΔR-LORF10 had reduced virulence compared to the parental MDV. Surprisingly, MDV with the LORF4 mutations had significantly higher overall MD incidence as measured by mortality, tumor production, and MD symptoms in infected chickens. These results indicate R-LORF10 and LORF4 encode real products, and are involved in MDV virulence although their mechanisms, especially with respect to modulation of MHC class II cell surface expression, are not clearly understood.  相似文献   

14.
Liu F  Ma B  Zhao Y  Zhang Y  Wu YH  Liu X  Wang J 《Virus genes》2008,37(3):328-332
A total of 2,718 bp of DNA fragment was amplified from the C-KCE strain of duck enteritis virus (DEV) genome using thermal asymmetric interlaced PCR. This newly identified viral DNA fragment contained two non-overlapping open reading frames (ORFs) oriented from the 5′ to 3′ direction. The first ORF was comprised of 43.5% G + C and contained the full-length genomic sequence of the UL44 gene (1,296 bp) encoding 431 amino acid residues of DEV glycoprotein C (gC). The second ORF encoded a partial peptide of the UL43 gene. The sequences of DNA and deduced amino acids of the DEV gC gene shared high homology with other members of known herpesviruses, supporting the classification of DEV. Phylogenetic analysis of the DEV gC gene revealed that the gC gene had a close evolutionary relationship with the subfamily of Alphaherpesvirinae.  相似文献   

15.
The DNA sequence of the short (S) genomic component of the equine herpesvirus type 1 (EHV-1)KyA strain has been determined recently in our laboratory. Analysis of a 1353-bp BamHI/PvuII clone mapping at the unique short/terminal inverted repeat (Us/TR) junction revealed 507 bp of Us and 846 bp of TR sequences as well as an open reading frame (ORF) that is contained entirely within the Us. This ORF encodes a potential polypeptide of 219 amino acids that shows significant homology to the US9 proteins of herpes simplex virus type 1 (HSV-1), EHV-4, pseudorabies virus (PRV), and varicella zoster virus (VZV). The US9 polypeptides of the two equine herpesviruses exhibit 50% identity but are twice as large as their counterparts in HSV-1, PRV, and VZV. All five US9 proteins are enriched for serine and threonine residues and share a conserved domain of highly basic residues followed by a region of nonpolar amino acids. DNA sequence and Southern blot hybridization analyses revealed that the Us of EHV-1 KyA differs from the Us of EHV-1 KyD and AB1 in that the ORFs encoding glycoproteins I and E and a unique 10-kDa polypeptide are deleted from the KyA genome. These data demonstrate that the predicted 10-kDa protein unique to EHV-1 is nonessential for replication in vitro and that EHV-1 glycoproteins I and E, like their equivalents in HSV-1 and PRV, are also nonessential. These findings and those reported previously by this laboratory and others reveal that the Us segment of EHV-1 comprises nine ORFs, two of which, US4 and 10-kDa ORF, are unique to EHV-1. The gene order of the Us is US2, protein kinase, gG, US4, gD, gI, gE, 10 kDa, and US9.  相似文献   

16.
17.
DNA fragments containing the secretory glycoprotein A (gA) gene of Marek's disease virus type 1 (MDV 1) were cloned from the DNA libraries of very virulent Md5 and virulent BC-1 strains and sequenced. Two open reading frames (ORF1 and ORF2) were identified for both strains. The ORF1 has the potential to code for a protein of 501 amino acids with a molecular weight of 56 kD that contains strong hydrophobic regions in both the amino and carboxyl termini, and nine potential N-linked glycosylation sites, while the ORF2 is capable of coding for a 24-kD protein. These results indicate that the ORF1 codes for the unprocessed form of gA. Between the Md5 and BC-1 strains, only two sequence mismatches exist in the DNA fragment. More differences appear to exist in the gA sequence of the MDV 1 GA strain (12), which lacks a strong hydrophobic anchor sequence. Similarities between the predicted amino acid sequences of the MDV 1 gA and the proteins of the other herpesviruses such as herpes simplex type I gC, pseudorabies virus gIII, and varicella zoster virus gpV were noted.  相似文献   

18.
Herpes simplex virus type 1 (HSV-1) strain HFEM acquired an apathogenic phenotype due to a deletion within the DNA sequences of the BamHI DNA fragment B of the viral genome. In order to investigate the coding strategy of this particular region of the genome of HSV-1 strain HFEM the DNA nucleotide sequence of the BamHI DNA fragment B was determined. This analysis revealed that the BamHI DNA fragment B of HSV-1 strain HFEM comprises 6593 bp, corresponding to the nucleotide positions (np) 113322 to 117088 and np 120643 to 123465 of the genome of HSV-1 strain 17. According to these data the deletion of the genome of HSV-1 strain HFEM occurred between the np 117089 and 120642. The promoter region of the UL56 gene of HSV-1 strain HFEM is a part of the deleted DNA sequences. Therefore, this gene of HSV-1 strain HFEM is affected and cannot be expressed. The first 35 amino acid (AA) residues of the deduced amino acid sequence of the UL56 open reading frame (ORF) were found to be identical to the amino acid sequence of the UL56 genes of HSV-1 strains 17 and F. However, due to a deletion at np 3494 of the BamHI DNA fragment B of HSV-1 strain HFEM the amino acid composition of the predicted UL56 gene of HSV-1 strain HFEM is different from HSV-1 strain 17 between amino acid positions 36 and 233. In addition the deduced amino acid sequence of the IRL (inverted repeat of the long segment) copy of the IE110 gene of HSV-1 strain HFEM was found to be about 342 amino acids shorter than the amino acid sequence of IE110 gene of HSV-1 strain 17 (775 AA). This was based on a point mutation which was detected within the DNA sequences of Exon 3 of this copy of IE110 gene of HSV-1 strain HFEM.  相似文献   

19.
H Otsuka  S Kit 《Virology》1984,135(2):316-330
The nucleotide sequence of a 2549-bp DNA fragment containing the entire coding region of the marmoset herpesvirus (MarHV) thymidine kinase gene (tk) and the flanking sequences was determined by the dideoxynucleotide chain termination method. The MarHV thymidine kinase polypeptide predicted from the nucleotide sequence contained 376 amino acids and had a molecular weight of 41,281. The sequencing data also reveal that the coding portion of another MarHV gene probably begins only 292 nucleotides downstream from the stop codon of the MarHV tk gene. There was relatively little nucleotide sequence homology between the MarHV tk gene and that of the herpes simplex virus (HSV) types 1 and 2 tk genes. Comparisons of the predicted amino acid sequences of the MarHV thymidine kinase polypeptide with that of the HSV-1 and HSV-2 thymidine kinase polypeptides, however, revealed clear, but interrupted, homology within several regions of the polypeptide chains. Amino acid sequence homology was particularly striking at residues 10 to 27 of the MarHV thymidine kinase polypeptide and residues 49 to 66 of the HSV-1 and HSV-2 thymidine kinase polypeptides. These same amino acid residues exhibit noticeable sequence homology to the mitochondrial beta subunit ATPase, oncogene p21 protein, adenylate kinase, and to other nucleotide-binding proteins. It has been proposed that the indicated regions of homology are elements of a nucleotide-binding pocket in ATPase, p21, and adenylate kinase, raising the possibility that amino acid residues 15 to 25 of the MarHV thymidine kinase and 54 to 64 of the HSV-1 and HSV-2 enzymes are likewise parts of nucleotide-binding sites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号