首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Genistein, a phytoestrogen possessing a high affinity for estrogen receptor beta (ERbeta), is of increasing interest because of its possible influence on the physiology of mammalian reproductive tracts. Although estrogen has been demonstrated to regulate Calbindin-D9k (CaBP-9k) in the rat uterus as with other calcium binding proteins, the role of ERbeta on the modulation of CaBP-9k remains to be elucidated. To elucidate the effect of genistein as a selective ERbeta agonist on uterine expression of CaBP-9k mRNA and protein, immature female rats were injected with genistein daily for three consecutive days in a dose-dependent (0.4, 4, and 40 mg/kg/day) and time-dependent (40 mg/kg/day; 3, 6, 12, 24, 48, and 72 h) manner. Then, the expression of CaBP-9k mRNA and protein was analyzed by Northern hybridization and Western blot, respectively, in the absence or presence of ICI 182,780 (ICI), an estrogen antagonist. In addition, the protein levels of ERalpha and ERbeta and mRNA level of progesterone receptor (PR) were further measured following genistein treatment to elucidate which of ERs is involved in CaBP-9k modulation. In a dose-dependent experiment, the highest dose of genistein (40 mg/kg/day) for 3 days significantly induced uterine CaBP-9k protein as 17beta-estradiol (E2) did. In addition, its maximal mRNA expression was observed at 3 and 6 h, and it returned to control level at 24 h in a time-dependent experiment. In parallel with its mRNA level, the protein level of CaBP-9k was significantly induced by genistein at 3 h and sustained up to 48 h. The pretreatment with ICI, followed by genistein or E2, completely blocked genistein- and E2-induced CaBP-9k protein in the uterus of immature rats. Interestingly, genistein was demonstrated to induce ERalpha protein, but not ERbeta and PR mRNA, an E2-responsive gene, in this tissue. These results imply that genistein, an ERbeta ligand, may regulate CaBP-9k gene through ERalpha pathway. Taken together, the present study demonstrated that genistein enhanced CaBP-9k gene via ERalpha in the uterus of immature rats, suggesting that ERalpha may be a key mediator in uterine CaBP-9k gene induction in immature rats.  相似文献   

2.
Tamoxifen, a selective estrogen receptor modulator, has agonist or antagonist activity, depending on the target tissue. The estrogen-like agonist effects of tamoxifen in the uterus are mediated primarily by 4-hydroxytamoxifen (4OH), the major active metabolite. Tamoxifen, 4OH and estradiol-17beta (E2) all bind to estrogen receptors (ERalpha and ERbeta), but with different affinities, suggesting that these ligands are capable of producing differential in vivo effects on the uterus. However, differences in short-term effects of tamoxifen, 4OH and E2 on the uterus have not been compared in the rat in vivo. Thus, we treated adult, ovariectomized rats (225-250 g) with vehicle (sesame oil), tamoxifen (1 mg/kg body weight), 4OH (0.01, 0.1 or 1.0 mg/kg body weight), E2 (40 microg/kg body weight), estradiol valerate (a long-lasting estrogen; 40 microg/kg body weight) or ICI 182,780 (a pure anti-estrogen; 1 mg/kg body weight). Animals were sacrificed at 0, 3, 6, 12 or 24 h post-injection, and protein and mRNA levels for ERalpha and two estrogen-regulated early response genes, c-fos and jun-B, were examined. Administration of E2 and 4OH (1 mg/kg body weight dose) resulted in down-regulation of uterine ERalpha protein in the uterine luminal and glandular epithelium by 6 h post-treatment. In contrast, no change in ERalpha level was observed after treatment with tamoxifen. Rapid (by 3 h) and transient increases in c-fos and jun-B mRNA levels were observed after E2 treatment; however, c-fos and jun-B induction by 4OH was highly dose dependent, and higher 4OH doses induced rapid but persistent proto-oncogene expression in vivo. Our results demonstrate that tamoxifen and its major metabolite have differential effects on uterine gene expression, and 4OH is highly estrogenic in the rat uterus.  相似文献   

3.
Mirex, an organochlorine pesticide, is a potent non-phorbol ester tumor promoter in mouse skin. Previous studies have shown that female mice are 3 times more sensitive to mirex tumor promotion than male mice and that ovariectomized (OVX) female mice are resistant to mirex promotion, suggesting a role for ovarian hormones in mirex promotion. To determine whether the ovarian hormone 17-beta estradiol (E2) is responsible for the sensitivity of female mice to mirex promotion, female mice were initiated with DMBA; 2 weeks later groups of mice were OVX and implants, with or without E2, were surgically implanted subcutaneously. These mice were treated topically twice weekly with mirex for 26 weeks. E2 implanted OVX mice demonstrated high normal physiologic levels of serum E2 throughout the tumor promotion experiment. E2 implants restored by 80% the intact mirex-sensitive phenotype to the OVX mice. Consistent with a role for E2 and ERalpha and ERbeta, treatment of DMBA-initiated female mice with topical ICI 182,780, an estrogen-receptor antagonist, reduced mirex tumor multiplicity by 30%. However, in cells co-transfected with ERalpha or ERbeta and estrogen-responsive promoter reporter, mirex did not stimulate promoter reporter activity, suggesting that the promotion effect of mirex is downstream of ERalpha/beta. Finally, a tumor promotion study was conducted to determine whether E2 implants could increase the sensitivity of male mice to mirex promotion. E2 implants in male mice did increase sensitivity to mirex promotion; however, the implants did not produce the full female sensitivity to mirex tumor promotion. Collectively, these studies indicate that E2 is a major ovarian hormone responsible for mirex tumor promotion sensitivity in female mice.  相似文献   

4.
Estrogenic activities of the phenolic preservatives methylparaben, ethylparaben, propylparaben, butylparaben, isopropylparaben and isobutylparaben were examined by assaying estrogen-receptor (ER)-dependent proliferation of MCF-7 cells. All the compounds stimulated the proliferation to about the same level as the maximal cell yield attained with 3x10(-11) M 17beta-estradiol, but at a concentration in the order of 10(5) to 10(7) higher than 17beta-estradiol. The cell-proliferative effects of parabens were completely suppressed by anti-estrogen ICI 182,780. MCF-7 cells treated with butylparaben and isobutylparaben exhibited a decrease in gene expression of ERalpha and an increase in that of progesterone-receptor (PR), but the effects of these parabens were not as prominent as those of 17beta-estradiol. Western blot analysis indicated that these parabens caused a slight decrease in expression of ERalpha protein. Competitive binding to human ERalpha and ERbeta in vitro revealed that the parabens with longer side-chains showed greater affinity for estrogen receptors, and that they had similar relative binding affinity (RBA) values to both ERalpha and ERbeta. RBA values were much smaller than that of diethylstilbestrol. In conclusion, parabens have ER-dependent estrogenic activities, and their effects on the intracellular signaling pathway might be different from that of 17beta-estradiol.  相似文献   

5.
6.
Exposure to endocrine disrupters such as dioxins, PCBs and certain pesticides are suspected to affect human reproductive health. We have analyzed the effect of the currently used pesticides prochloraz and methiocarb on the estrogen receptor (ER)alpha and beta mRNA levels in parallel with the natural ligand, 17beta-estradiol (E2). Using the highly sensitive on-line RT-PCR technique we were able to quantify the ERalpha and ERbeta mRNA levels in the human breast cancer cell line, MCF7-BUS. Upon exposure with E2 or prochloraz a down regulation of ERalpha and ERbeta mRNAs was observed after 48 h of treatment. Co-treatment with the ER antagonist ICI 182,780 abolished these mRNA down regulations. Western blot analyses elicited a decreased ER protein level after 3 h of exposure with prochloraz but after 24 h the ERalpha protein level had recovered to basal level. Methiocarb exposure had no effect on the ERalpha mRNA level, whereas an increase in the ERbeta mRNA level was observed after 3 h of exposure. Our study demonstrates that like E2, prochloraz had the potential to down regulate the expression of ERalpha and ERbeta mRNAs as well as the ERalpha protein level in MCF7-BUS cells.  相似文献   

7.
To investigate the influence of phyotestrogens in the diet, an immature uterotrophic assay of ethinylestradiol, bisphenol A, 4-nonylphenol or genistein was performed in rats given the formula MF diet, modified NIH-07 open formula diet, or modified NIH-07 phytoestrogen-lowered-diet (study 1). The chemicals were administered subcutaneously from 20 days of age for 3 days. Doses of ethinylestradiol, bisphenol A, 4-nonylphenol or genistein were 0.06-0.6 micro g/kg per day, 1-10 mg/kg per day, 10-100 mg/kg per day or 1-20 mg/kg per day, respectively. In another study, an immature uterotrophic assay of genistein and ethinylestradiol together with ICI 182,780 or antide was performed to compare the ovarian changes with these chemicals (study 2). Doses of genistein or ethinylestradiol were 30 mg/kg per day or 0.6 micro g/kg per day, respectively, and these chemicals were injected subcutaneously from 20 days of age for 3 days. In study 1, there were no essential differences in the uterus weights among the various phytoestrogen-content diets. In study 2, the ovary weights in rats given genistein were significantly higher than in the controls, whereas the ovary weights in rats given ethinylestradiol were lower than in the controls. The ovary weights in the ICI 182,780 plus genistein group were significantly higher than in the genistein group, but decrease of the ovary weights was detected in the antide plus genistein group. There was no significant difference in ovary weights between the ICI 182,780 plus ethinylestradiol group and the ethinylestradiol group, but decrease of ovary weights was detected in antide plus ethinylestradiol group. In a histological examination of the ovary, fluid-filled follicles in the genistein group were more numerous than in other groups and increase of granulosa cell fragmentation was seen in the ethinylestradiol and other groups with the exception of the genistein group. The present findings demonstrate that the sensitivity of the immature rat uterotrophic assay is not influenced by the relatively low level of phytoestrogen in diets and that the ovarian changes occurring with genistein and ethinylestradiol are different.  相似文献   

8.
Preclinical and clinical studies indicate that females are more vulnerable to relapse than males, and the neurobiological effects of estrogen are thought to mediate, in part, the sex differences in cocaine-taking behavior. The goal of the present study was to investigate the involvement of estrogen receptor alpha (ERalpha) and beta (ERbeta) in estrogen-mediated increases in cocaine-induced reinstatement of extinguished cocaine-seeking behavior in ovariectomized (OVX) female rats. Rats were initially trained to self-administer cocaine (0.4 mg/kg/inf, i.v.) under a fixed-ratio 1 (FR 1) schedule of reinforcement during daily 2-h sessions. After a 10-day maintenance period, cocaine solutions were replaced with saline, and self-administration was extinguished over a 14-day period. OVX rats were then treated with either the mixed ERalpha/beta agonist estradiol benzoate (EB), the ERalpha-selective agonist, propyl-pyrazole-triol (PPT), the ERbeta-selective agonist, diarylpropionitrile (DPN), or a vehicle control (dimethyl sulfoxide, DMSO). Treatment lasted a total of 9 days, and during this time, rats were assessed for nonreinforced reinstatement of extinguished cocaine-seeking behavior after priming injections of saline or cocaine (5, 10, or 15 mg/kg, i.p.). OVX rats showed no differences in self-administration during maintenance or extinction. OVX rats treated with EB exhibited greater responding for cocaine during reinstatement compared to OVX+DMSO controls. Selective activation of ERbeta with DPN also increased cocaine-induced reinstatement responding, whereas selective activation of ERalpha with PPT did not affect cocaine-seeking behavior. These results indicate that estrogen influences the propensity for reinstatement of extinguished cocaine-seeking behavior, and that estrogen-mediated enhancement of cocaine-induced reinstatement responding involves the activation of ERbeta.  相似文献   

9.
10.
Phytoestrogens exert pleiotropic effects on cellular signaling and show some beneficial effects on estrogen-dependent diseases. However, due to activation/inhibition of the estrogen receptors ERalpha or ERbeta, these compounds may induce or inhibit estrogen action and, therefore, have the potential to disrupt estrogen signaling. We performed a comprehensive analysis and potency comparison of phytoestrogens and their human metabolites for ER binding, induction/suppression of ERalpha and ERbeta transactivation, and coactivator recruitment in human cells. The soy-derived genistein, coumestrol, and equol displayed a preference for transactivation of ERbeta compared to ERalpha and were 10- to 100-fold less potent than diethylstilbestrol. In contrast, zearalenone was the most potent phytoestrogen tested and activated preferentially ERalpha. All other phytoestrogens tested, including resveratrol and human metabolites of daidzein and enterolactone, were weak ER agonists. Interestingly, the daidzein metabolites 3',4',7-isoflavone and 4',6,7-isoflavone were superagonists on ERalpha and ERbeta. All phytoestrogens tested showed reduced potencies to activate ERalpha and ERbeta compared to diethylstilbestrol on the estrogen-responsive C3 promoter compared to a consensus estrogen response element indicating a degree of promoter dependency. Zearalenone and resveratrol were antagonistic on both ERalpha and ERbeta at high doses. The phytoestrogens enhanced preferentially recruitment of GRIP1 to ERalpha similar to 17beta-estradiol. In contrast, for ERbeta no distinct preference for one coactivator (GRIP1 or SRC-1) was apparent and the overall coactivator association was less pronounced than for ERalpha. Due to their abundance and (anti)-estrogenic potencies, the soy-derived isoflavones, coumestrol, resveratrol, and zearalenone would appear to have the potential for effectively functioning as endocrine disruptors.  相似文献   

11.
Fractionation of the neutral extract of Onobrychis ebenoides (Leguminosae) yielded a new isoflavone, named ebenosin (1), in addition to the known ones, afrormosin (2), formononetin (3) and daidzein (4). Although the relative binding affinities of 1 - 4 for estrogen receptor alpha (ERalpha) were nearly comparable and matched those of 1-3 for ERbeta, that of 4 for the latter receptor was significantly higher than any of the other. Compounds 1 - 4 induced cell proliferation and gene expression in breast and endometrial cancer cells in an ER-dependent manner. Nonetheless, the rank order of induction potencies ( 4 > 3 >or= 2 >or= 1) matched better that of affinities for ERbeta ( 4 > 3 >or= 2 >or= 1) rather than ERalpha ( 4 >or= 3 >or= 2 >or= 1). While the antiestrogen ICI 182,780 could inhibit the induction of proliferation of ER-positive breast cancer cells by 1-4, it could not prevent 1 from exhibiting significant ER-independent cytotoxicity at 10 microM. By contrast, 1 was much less cytotoxic and only weakly estrogenic for ER-positive endometrial adenocarcinoma cells. In conclusion, our data suggest that the C-8 isoprenyl substituent of 1 renders it cytotoxic and/or estrogenic in a cell-dependent manner.  相似文献   

12.
INTRODUCTION Phytoestrogens are naturally found in many plants,particularly soy beans, and they are defined as plantsubstances that are structurally or functionally similarto estradiol[1,2]. Genistein, a phytoestrogen, may haveestrogenic cardioprotective actions[3]. Epidemiologicaldata suggest a reduction in the incidence of coronaryheart disease in humans who have a high intake ofphytoestrogens[4]. Increased plasma levels of thephytoestrogen genistein are suggested as an explana-tion for…  相似文献   

13.
Isoflavones, such as genistein and daidzein, are found in abundance in soybeans. These plant-derived substances have estrogenic activities and can bind to the estrogen receptors (ERs). In this study, we investigated that the effects of 17beta-estradiol (E2), genistein and daidzein on nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) activity in RAW264.7 cells. We found that these isoflavones significantly increased lipopolysaccharide-induced NO production and iNOS expression as much as E2 at physiological concentrations. Moreover, E2 and isoflavone enhanced the production of tumor necrosis factor-alpha that is one of the important cytokines regarding NO production. The enhancing effects of E2 and isoflavones on NO production were markedly inhibited by not only N(G)-nitro-L-arginine methyl ester (an inhibitor of NOS), but also ICI 182780 (ERs antagonist). Two types of ERs were identified as ERalpha and ERbeta. An ERalpha agonist could increase iNOS expression in RAW264.7 cells, while an ERbeta agonist could not. In conclusion, our results suggest E2, genistein and daidzein activate iNOS, and then up-regulate NO production. This enhancing effect is aroused through ERalpha pathway in RAW264.7 cells.  相似文献   

14.
Although the ovarian surface epithelium (OSE) is responsive to hormones and endocrine-disrupting chemicals, little information is available on the metabolizing capabilities of the OSE. Thus, we tested the hypothesis that the OSE is capable of expressing genes regulating phase I metabolism of estrogen and the estrogenic endocrine disruptor methoxychlor (MXC). To test this hypothesis, we isolated mouse OSE cells and cultured them with vehicle (dimethylsulfoxide; DMSO), 3 microM MXC, or 0.1 microM 17beta-estradiol (E2) +/- the anti-estrogen ICI 182,780 (1 microM) for 14 days. After culture, the cells were subjected to quantitative real-time polymerase chain reaction for cytochrome P450s (CYPs) 1A1, 1B1, 2C29, and 1A2, and estrogen receptor alpha (ERalpha). Our results indicate that E2 and MXC did not alter the expression of CYP1A1 or CYP1A2. In contrast, E2 significantly increased expression of CYP1B1 compared to controls (DMSO = 0.93 +/- 0.1, E2 = 3.12 +/- 0.64 genomic equivalents (GE), n = 4, p < or = 0.01). The E2-induced increase in CYP1B1 was abolished by co-treatment with ICI 182,780 (0.41 +/- 0.17 GE). MXC treatment did not affect CYP1B1 expression. Both MXC and E2 increased expression of CYP2C29 (DMSO = 0.02 +/- 0.003; MXC = 0.04 +/- 0.008; E2 = 0.46 +/- 0.03 GE, n = 4, p < or = 0.05). MXC- and E2-induced elevations in CYP2C29 were abolished by co-treatment with ICI 182,780 (0.02 +/- 0.005; 0.02 +/- 0.07 GE). In addition, E2 increased ERalpha expression 15-fold compared to controls (DMSO = 1.10 +/- 0.09, E2 = 15.0 +/- 3.60 GE, n = 3, p < or = 0.05), and ICI 182,780 abolished the E2-induced increase in ERalpha expression (1.85 +/- 1.09 GE). MXC treatment did not affect ERalpha expression. These data indicate that the OSE expresses enzymes known to metabolize native and xenoestrogens and that MXC and E2 modulate expression of some of them through ER-linked mechanisms.  相似文献   

15.
16.
17.
We recently discovered that ICI 182,780 (1), an antagonist of estrogen receptor (ER)-dependent proliferation in reproductive tissues, functions as an estrogenic agonist in primary neurons. The present study investigated whether the agonist properties of 1 in neurons could be translated into structural analogs. 7alpha-[(4R,8R)-4,8,12-trimethyltridecyl]estra-1,3,5-trien-3,17beta-diol (2), a hybrid structure of 17beta-estradiol and vitamin E, was synthesized and found to bind to both ERalpha and ERbeta. In vitro analyses demonstrated that 2 was neuroprotective and effective in activating molecular mechanisms associated with estrogenic agonist activity in rat primary hippocampal neurons. Collectively, the data support an estrogenic agonist profile of 2 action comparable to 1 in primary neurons, confirming that estrogenic activity of 1 in neurons is not a unique phenomenon. These results provide support for the development of a brain-selective ER modulator, with potential as an efficacious and safe estrogen alternative to prevent Alzheimer's disease and cognitive decline in postmenopausal women.  相似文献   

18.
It has been demonstrated in our previous studies that Calbindin-D9k (CaBP-9k) is a potent biomarker for screening estrogen-like chemicals in the rat model. Although treatments with 17beta-estradiol (E2) and endocrine disrupting compounds resulted in the up-regulation of uterine CaBP-9k, the mechanism of CaBP-9k induction by these compounds through two subtypes of estrogen receptors (ERalpha and ERbeta) is unclear. Thus, in the present study, immature rats were treated with propyl pyrazole triol (PPT, an ERalpha-selective ligand), diarylpropionitrile (DPN, an ERbeta-selective ligand), E2, or dimethyl sulfoxide (DMSO, a vehicle control) for three days in order to clarify which subtype of ER is involved in the uterine CaBP-9k induction. Following injection with these ER ligands, uterine CaBP-9k expression was analyzed by Northern blot and immunoblot assays. Uterine CaBP-9k expression is mainly mediated by PPT in a dose- and time-dependent manner in immature rats, whereas no significant alteration of the uterine CaBP-9k gene was observed after DPN treatment. In addition, an estrogenicity of PPT in inducing CaBP-9k expression was completely blocked by the anti-estrogen ICI 182,780, implying that uterine CaBP-9k is solely induced by ERalpha. A single treatment with PPT rapidly increased the protein levels of ERalpha and PR, an E2-mediated gene, in these tissues. Taken together, these results indicate that uterine CaBP-9k is induced by E2 and endocrine disrupting chemicals via the ERalpha pathway, but not ERbeta, in the uterus of immature rats.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号