首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Because of controversy about the role of the p75 neurotrophin receptor (p75(NTR) ) in the cholinergic basal forebrain (CBF), we investigated this region in p75(NTR) third exon knockout mice that were congenic with 129/Sv controls. They express a shortened intracellular form of p75(NTR) , permitting detection of p75(NTR) -expressing cells. We performed separate counts of choline acetyltransferase (ChAT)-expressing and p75(NTR) -expressing neurons. In agreement with past reports, the number of ChAT-immunoreactive neurons in knockout mice was greater than in wild-type mice, and this was evident in each of the main anatomical divisions of the CBF. In contrast, the number of p75(NTR) -immunoreactive neurons did not differ between genotypes. The biggest increase in ChAT neurons (27%) was in the horizontal limb of the diagonal band of Broca (HDB), in which region the number of p75(NTR) -positive neurons was unchanged. Double staining revealed that some neurons in wild-type mice expressed p75(NTR) but not ChAT. In the knockout mice, all p75(NTR) -expressing neurons expressed ChAT. The increase in cholinergic neurons, therefore, was at least partially attributable to a higher proportion of ChAT immunoreactivity within the population of p75(NTR) -expressing neurons. Cholinergic neurons were also larger in knockout mice than in controls. In the hippocampal CA1 region, knockout mice had a greater number of cholinergic fibers. There was a 77% increase in hippocampal ChAT activity in knockout mice and a 38% increase in heterozygotes. The data do not support an apoptotic role but indicate a broad antineurotrophic role of p75(NTR) in the cholinergic basal forebrain.  相似文献   

2.
192-IgG is an antibody directed against the p75 low affinity nerve growth factor receptor in rats, whereas ME 20.4 was raised against the analogous protein in humans. Coupled to saporin, 192-IgG and ME 20.4 have been used to lesion basal forebrain neurons in rats and primates, respectively. We compared the cross-reactivity of 192-IgG and ME 20.4 in the basal forebrain of rat, human, dog, cat, raccoon, pig, and rabbit. We found excellent species cross-reactivity of ME 20.4 in dog, raccoon, cat, pig and rabbit. In contrast, 192-IgG did not label neurons in any species other than rat. Our findings suggest that ME 20.4-saporin could be used to produce cholinergic basal forebrain lesions in several non-primate species.  相似文献   

3.
4.
Previous studies indicate that brain-derived neurotrophic factor (BDNF), through the mediation of the trkB receptor, modulates the expression of differentiated traits in basal forebrain (BF) oligodendrocytes (OLGs). Specifically, BDNF up-regulates the expression of myelin basic protein (MBP), proteolipid protein (PLP), and myelin associated glycoprotein (MAG; Du et al. [2006] Mol. Cell. Neurosci. 31:366-375). However, the signaling cascades mediating the effects of BDNF have not been defined. The current study employs biochemical and molecular biological approaches to examine the involvements of the mitogen-activated protein kinase (MAPK) pathway, the phosphatidylinositol-3 kinase (PI3K) pathway, and the phospholipase C-gamma (PLC-gamma) pathway. Our results indicate that, in BF OLGs, BDNF activates the MAPK pathway and the PLC-gamma pathway but not the PI3K-Akt signaling cascade. By using specific inhibitors and mutated dominant negative or constitutively active forms of MAPK kinase, we demonstrate that the MAPK pathway is mediating the effects of BDNF on expression of differentiated traits in BF OLGs.  相似文献   

5.
6.
The cholinergic system of the basal forebrain is involved in the modulation of sensory information. This has previously been investigated in the raccoon, an animal especially interesting because of its highly developed somatosensory cortex. The present study focused on the co-expression of the low-affinity neurotrophin receptor p75NTR and calbindin in cholinergic neurons of the raccoon basal forebrain and neostriatum. Carbocyanine immunofluorescence double labelling revealed the co-localization of choline acetyltransferase and p75NTR as well as calbindin in a large portion of basal forebrain neurons, but not in the neostriatum. In contrast, immunolabelling of two other calcium-binding proteins, parvalbumin and calretinin, was found exclusively in non-cholinergic neurons.  相似文献   

7.
Dai X  Qu P  Dreyfus CF 《Glia》2001,34(3):234-239
Previous studies suggest that oligodendrocytes express trophic molecules, including neurotrophins. These molecules have been shown to influence nearby neurons. To determine whether neuronal signals may, in turn, affect oligodendrocyte-derived trophins, we examined regulation of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) mRNA expression in cultured oligodendrocytes of the basal forebrain. Neuronal signals had distinct effects on individual neurotrophins. KCl elicited increases in BDNF mRNA, but did not affect expression of NGF or NT-3. The cholinergic agonist, carbachol, increased expression of NGF, but did not affect expression of BDNF or NT-3. Glutamate elicited a decrease in BDNF, but did not affect expression of NGF or NT-3. This glutamate effect is not due to toxicity, since the number of total cells was unchanged, while the number of mature myelin basic protein positive (MBP+) cells increased. Our observations suggest that individual neuronal signals distinctly influence the trophic function of oligodendrocytes.  相似文献   

8.
The cholinergic system of the rat basal forebrain is used as a model for the homologous region in humans which is highly susceptible to neuropathological alterations as in Alzheimer's disease. Cholinergic cells in the basal forebrain express the low-affinity neurotrophin receptor p75NTR. This has been utilized for selective immunolesioning of cholinergic neurons after internalization of an immunotoxin composed of anti-p75NTR and the ribosome-inactivating toxin saporin. However, the goal of many studies may be not the lesion, but the identification of cholinergic cells after other experimentally induced alterations in the basal forebrain. Therefore, a novel cholinergic marker was prepared by conjugating the monoclonal antibody 192IgG directed against p75NTR with the bright red fluorochrome carbocyanine 3 (Cy3). Three days after intraventricular injection of Cy3-192IgG the fluorescence microscopic analysis revealed a pattern of Cy3-labelled cells matching the distribution of cholinergic neurons. Apparently the marker was internalized within complexes of p75NTR and Cy3-192IgG which were then retrogradely transported to the cholinergic perikarya of the basal forebrain. In addition to the even labelling of somata, a strong punctate-like Cy3-immunofluorescence was seen in structures resembling lysosomes. The specificity of the in vivo staining was proven by subsequent immunolabelling of choline acetyltransferase (ChAT) with green fluorescent Cy2-tagged secondary antibodies. In the medial septum, the diagonal band and the nucleus basalis only cholinergic neurons were marked by Cy3-192IgG. In parallel experiments, digoxigenylated 192IgG was not detectable within cholinergic basal forebrain neurons after intraventricular injection. Presumably, this modified antibody could not be internalized. On the other hand, digoxigenylated 192IgG was found to be an excellent immunocytochemical marker for p75NTR as shown by double labelling including highly sensitive mouse antibodies directed against ChAT. Based on the present findings, future applications of the apparently non-toxic Cy3-192IgG and other antibodies for fluorescent in vivo and in vitro labelling are discussed.  相似文献   

9.
Both excitotoxicity and altered trophic factor support have been implicated in the pathogenesis of Alzheimer's disease. To determine whether stimulation of p75, the low-affinity receptor for nerve growth factor, contributes to the excitotoxin-induced apoptotic death of cholinergic neurons, we examined the effect of unilateral kainic acid (KA; PBS vehicle, 1.25, 2.5 and 5.0 nmol) administration into rat basal forebrain on neuronal loss and p75 expression. KA (2. 5 nmol) destroyed 43% of Nissl-stained neurons and 70% of choline acetyltransferase (ChAT)-positive neurons 5 days after injection. Agarose gel electrophoresis revealed that KA (2.5 nmol) induced local internucleosomal DNA fragmentation after 6-48 h. Immunohistochemical analysis further showed that KA (2.5 nmol) augmented p75 immunoreactivity at a time when terminal transferase-mediated deoxyuridine trophosphate (d-UTP)-digoxigenin nick end labeling (TUNEL)-positive nuclei were increased. Many fragmented nuclei were co-labeled with ChAT antibody. The chronic administration of anti-rat p75 or the protein synthesis inhibitor, cycloheximide, but not anti-human p75, substantially reduced the KA-induced destruction of cholinergic neurons and the induction of internucleosomal DNA fragmentation. Anti-rat p75, but not cycloheximide, also reversed the spatial memory impairment produced by KA. These findings suggest that overexpression of p75 contributes to the excitotoxin-induced death of rat basal forebrain cholinergic neurons by an apoptotic-like mechanism.  相似文献   

10.
The post-stimulation excitability of neurons mediating electrical self-stimulation of the anterior basal forebrain was evaluated psychophysically in the rat. Rats with electrodes in the nucleus accumbens, caudate nucleus, lateral preoptic area, diagonal band, or anterior medial forebrain bundle pressed a lever to earn 0.5-s trains of conditioning (C) and test (T) pulse pairs. The C-T interval was systematically varied and the effectiveness of the T-pulse was estimated by measuring the frequency of pulse pairs required to sustain criterion responding. All sites tested demonstrated similar recovery; T-pulse effectiveness, normalized against the effect of the C-pulse, was lowest at delays of 0.4-0.8 ms and it rose monotonically until 5 ms when it achieved an effectiveness plateau of one. Increasing the current of the T-pulse by 50 or 60% failed to hasten recovery, suggesting that the recovery profiles primarily reflect the activation of neurons very soon after emergence from absolute refractoriness. Compared to lateral hypothalamic and ventral tegmental self-stimulation, the neurons that support self-stimulation in the ventral basal forebrain recover more slowly; recovery here is only about half done by the time lateral hypothalamic placements demonstrate complete recovery.  相似文献   

11.
This study seeks to determine whether knockdown of basal forebrain p75 neurotrophin receptor (p75NTR) expression elicits increased hippocampal choline acetyltransferase (ChAT) activity in mature animals. Antisense (AS) oligonucleotides (oligos) targeting p75NTR were infused into the medial septal area of mature rats continuously for 4 weeks. In all rats, the cannula outlet was placed equidistant between the left and the right sides of the vertical diagonal band of Broca. We tested phosphorothioate (PS), morpholino (Mo), and gapmer (mixed PS/RNA) oligos. Gapmer AS infusions of 7.5 and 22 μg/day decreased septal p75NTR mRNA by 34% and 48%, respectively. The same infusions increased hippocampal ChAT activity by 41% and 55%. Increased hippocampal ChAT activity correlated strongly with septal p75NTR downregulation in individual rats. Infusions of PS and Mo AS oligos did not downregulate p75NTR mRNA or stimulate ChAT activity. These results demonstrate that p75NTR can dynamically regulate hippocampal ChAT activity in the mature CNS. They also reveal the different efficacies of three diverse AS oligo chemistries when infused intracerebrally. Among the three types, gapmer oligos worked best. © 2016 Wiley Periodicals, Inc.  相似文献   

12.
Neurotrophins transmit signals retrogradely from synapses to cell bodies by two different types of surface receptors, p75NTR and Trks. Compared to TrkA, the function of p75NTR in nerve growth factor (NGF) endocytosis is less clear, and it is unknown whether p75NTR by itself may internalize other neurotrophins besides NGF. We directly compared TrkA and p75NTR for their ability to internalize NGF, and we also examined the endocytosis of iodinated brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3) by p75NTR. Cells expressing solely TrkA internalized NGF more efficiently than cells expressing p75NTR. Surprisingly, cells expressing only p75NTR internalized far more BDNF or NT3 than NGF. Moreover, p75NTR was more important for surface binding than for intracellular accumulation of each neurotrophin. Finally, we established a mechanistic role for the clathrin pathway in p75NTR endocytosis. Our results suggest that p75NTR may have multiple roles in different subcellular locations, functioning both at the cell surface and also within endocytic compartments.  相似文献   

13.
Extensive evidence suggests that BDNF regulates neural function and architecture after depolarization. Expression of BDNF is increased after depolarization, and the ability of BDNF to modulate synaptic function is well documented. To further investigate BDNF signaling after activity, we analyzed the effects of depolarization or BDNF treatment on receptor mRNA expression in cultured basal forebrain neurons. Levels of mRNA coding for the cognate BDNF receptor, trkB, as well as the common neurotrophin receptor, p75, were quantitated simultaneously using a sensitive solution hybridization technique. Depolarization or BDNF treatment increased p75 mRNA expression 94% and 195%, respectively. In contrast, trkB message decreased 23% after depolarization but was unchanged by BDNF treatment. Together, these changes resulted in significant increases in the p75/trkB ratio after depolarization or BDNF treatment that could alter BDNF binding or signal transduction.  相似文献   

14.
This study sought to determine whether the activity of nitric oxide synthase (NOS) is an important physiological link required to mediate increases in cortical cerebral blood flow (CBF) elicited by electrical microstimulation of the basal forebrain (BF). Changes in cortical CBF were assessed in urethane anesthetized rats using laser-Doppler flowmetry. Microstimulation of the BF elicited stimulus-locked increases in CBF that were dependent on frequency and current intensity (up to 280% of control at 50 Hz). Infusion of the potent NOS inhibitor NG-nitro-L-arginine (L-NNA) resulted in significant dose-related reductions in the BF-elicited response at 50 Hz (3.75-60 mg/kg, i.v.), significant elevation in resting mean arterial pressure (MAP) from 106 to 160 mmHg, and modest 21% reductions in resting CBF. The stereoisomer NG-nitro-D-arginine (D-NNA) was without any effect on CBF, although at higher concentrations MAP was elevated to levels comparable to those obtained with L-NNA. Infusion of arginase was also without effect on resting or BF-elicited CBF responses. In contrast, L-arginine (100-400 mg/kg, i.v.) significantly potentiated the BF-elicited response up to an additional 38%, without affecting resting CBF or MAP. This study suggests that NO, or a related nitroso precursor formed by NOS, has a critical role in mediating regulation of cortical CBF by BF neurons.  相似文献   

15.
Abnormal development of the cholinergic basal forebrain has been implicated innumerous developmental disabilities such as Rett Syndrome and Down Syndrome. This reviewsummarizes recent data using two rodent animal models that involve interrupting cholinergic basalforebrain projections on postnatal day 1 and postnatal day 7 when basal forebrain fibers arebeginning to innervate their neocortical and hippocampal targets, respectively. In one model,electrolytic lesions in mice aimed at the basal forebrain on postnatal day 1 transiently reducecholinergic markers in neocortex which induce permanent alterations in neocortical anatomy thatcorrelate with impairments on cognitive tasks. Furthermore, the lesion effects are sex dependent.In another model, 192 IgG saporin lesions in rats on postnatal day 7 permanently reducecholinergic markers in neocortex and hippocampus, and result in mild impairments in spatialprocessing, acquisition and exploratory activities. These data suggest that during the firstpostnatal week of development the cholinergic basal forebrain system is critical for normalneocortical differentiation and, possibly synaptogenesis in neural circuits that will be important forspatial memory and acquisition of spatial data. During the second postnatal week of development,the cholinergic basal forebrain system appears to take on a role largely similar to its adult role inselective attention and processing of new information. These studies also suggest strongly thatinterrupting cholinergic basal forebrain innervation of neocortex and hippocampus leads toanatomical and neurochemical abnormalities that may serve as neural substrates for some of thecognitive deficits seen in disorders such as Rett Syndrome and Down Syndrome.  相似文献   

16.
Direct, complex effects of estrogens on basal forebrain cholinergic neurons   总被引:8,自引:0,他引:8  
Although controversial, estrogens remain one of the few agents purported to influence the incidence of Alzheimer's disease and one of their postulated mechanisms of action is their effects on basal forebrain cholinergic neurons. However, it is unclear whether the responses of cholinergic neurons to estrogens are direct or mediated via the retrograde influences of neurotrophins, known to be induced by estrogens in the hippocampus and neocortex. In the present study, we explore the issue of the primary site of action of estrogens by studying the regulation of expression of genes that characterize mature cholinergic neurons, i.e., choline acetyltransferase, trkA, and p75(NTR) in the medial septum and the nucleus basalis complex. In parallel, we study the hippocampal expression of NGF, BDNF, and NT-3, i.e., neurotrophins with known trophic roles on cholinergic neurons. Gene expression is studied by RT-PCR in ovariectomized female rats with and without estrogen supplementation within the physiological estradiol range and in rats with complete fimbria-fornix transactions treated with estrogen or vehicle. To clarify mechanisms of estrogen transduction in cholinergic neurons, we study the effects of estrogen treatment on fimbria-fornix-lesioned mice with genetic ablations of ER subtypes alpha and beta. The results of the present study suggest that, while estrogens do regulate BDNF expression in the hippocampus and neocortex, they also exert stimulatory non-trophic effects on basal forebrain cholinergic neurons, primarily on ChAT expression. Cholinergic neurons retain their ability to respond to estrogens after their complete separation from the hippocampus. The elimination of ERalpha alters significantly the phenotypic responsiveness of cholinergic neurons to estrogens, whereas elimination of ERbeta appears to have no effect. Our findings support the idea that estrogens directly enhance cholinergic neuron function and that ERalpha plays a significant role in transducing these regulatory effects.  相似文献   

17.
Basal forebrain cholinergic neurons respond in vitro and in vivo to nerve growth factor (NGF) and to brain-derived neurotrophic factor (BDNF). It is not clear to what extent the neurons that respond to these two factors, or to neurotrophin-3 or−45 (NT-3;NT-45) are identical or only partially overlapping populations. We have addressed this issue in cultures of basal forebrain neurons derived from 2-week-old postnatal rats, using choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) as cholinergic markers. Cholinergic neuron survival was enhanced in the presence of NGF, BDNF andNT-45.NT-45 was as effective as BDNF. NT-3 was without effect at this age, although in cultures derived from embryonic forebrain, cholinergic differentiation was induced by NT-3. Cotreatment with NGF and BDNF resulted in small, but consistent, increases in the number of ChAT-positive neurons, compared with either factor alone.NT-45 was also found to be additive with NGF, whereas cotreatment with BDNF andNT-45 showed no addivity. NT-3 had no additive effects with any other neurotrophin on any cholinergic parameters in postnatal cultures. Taken together, the results indicate the existence in postnatal rat brain of a large overlapping population of cholinergic neurons that are responsive to ligands for the neurotrophin receptors TrkA (NGF) and TrkB (BDNF andNT-45), but not TrkC (NT-3), and small distinct populations that show specificity for NGF or BDNF but not both. We hypothesize that cholinergic neurons projecting into different regions of the hippocampus may derive trophic support from distinct neurotrophins.  相似文献   

18.
In ventromedial cells of the developing CNS, Sonic hedgehog (Shh) has been shown to affect precursor proliferation, phenotype determination, and survival. Here we show that Shh and its receptor, Ptc-1, are expressed in the adult rat basal forebrain, and that Ptc-1 is expressed specifically by cholinergic neurons. In basal forebrain cultures, Shh was added alone and in combination with nerve growth factor (NGF), and the number of cholinergic neurons was determined by choline acetyltransferase (ChAT) immunocytochemistry. By 8 days in vitro, Shh and NGF show a synergistic effect: the number of ChAT-positive cells after treatment with both factors is increased over untreated cultures or cultures treated with either factor alone. While Shh increases the overall basal level of proliferation, double-labeling of dividing neuronal precursors with [(3)H]thymidine followed by ChAT immunocytochemistry after they mature, demonstrates that the specific increase in cholinergic neurons is not due to this proliferation enhancement. These experiments imply a role for Shh in the development of postmitotic cholinergic neurons and suggest a therapeutic value for Shh in neurodegenerative disease.  相似文献   

19.
The p75 low affinity neurotrophin receptor (p75) can induce apoptosis in various neuronal and glial cell types. Because p75 is expressed in the cholinergic neurons of the basal forebrain, p75 knockout mice may be expected to show an increased number of neurons in this region. Previous studies, however, have produced conflicting results, suggesting that genetic background and choice of control mice are critical. To try to clarify the conflicting results from previous reports, we undertook a further study of the basal forebrain in p75 knockout mice, paying particular attention to the use of genetically valid controls. The genetic backgrounds of p75 knockout and control mice used in this study were identical at 95% of loci. There was a small decrease in the number of cholinergic basal forebrain neurons in p75 knockout mice at four months of age compared with controls. This difference was no longer apparent at 15 months due to a reduction in numbers in control mice between the ages of 4 and 15 months. Cholinergic cell size in the basal forebrain was markedly increased in p75 knockout mice compared with controls. Spatial learning performance was consistently better in p75 knockout mice than in controls, and did not show any deterioration with age. The results indicate that p75 exerts a negative influence on the size of cholinergic forebrain neurons, but little effect on neuronal numbers. The markedly better spatial learning suggests that the function, as well as the size, of cholinergic neurons is negatively modulated by p75.  相似文献   

20.
Histamine-containing neurons of the tuberomammillary nucleus (TMN) are implicated in facilitating wakefulness. They project to many brain areas, including the cholinergic basal forebrain (BF). The cholinergic magnocellular regions of the BF are important in the regulation of cortical arousal and wakefulness, and a role for histamine in this activity is suggested by in vitro data indicating histamine excites BF cholinergic and non-cholinergic neurons. To test the hypothesis that histamine induces wakefulness via actions in the BF, we performed microdialysis perfusion of different concentrations of histamine (100, 500 and 1000 microM) in the BF of Sprague-Dawley rats. A MANOVA analysis showed that histamine produced a highly statistically significant and dose-dependent increase in wakefulness and decrease in non-rapid eye movement (NREM) sleep compared with artificial cerebrospinal fluid perfusion. From a wakefulness baseline percentage time of about 12% with artificial cerebrospinal fluid, histamine perfusion increased this value to 26% (100 microM), 36% (500 microM), or 47% (1000 microM). There was no statistically significant change in rapid eye movement (REM) sleep. Histamine perfusion (500 microM) in a control site, the centromedian thalamic nucleus, did not produce any change in behavioral state. The results indicate a prominent role of histamine in wakefulness regulation via the BF and further support the hypothesis that the BF has an important role in EEG activation and wakefulness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号