首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Biomaterials are widely used in guided bone regeneration (GBR) and guided tissue regeneration (GTR). After application, there is an interaction between the host immune system and the implanted biomaterial, leading to a biomaterial-specific cellular reaction. The present review focuses on cellular reactions to numerous biomaterials in vivo with consideration of different implantation models and microenvironments in different species, such as subcutaneous implantation in mice and rats, a muscle model in goats and a femur model in rabbits. Additionally, cellular reactions to different biomaterials in various clinical indications within the oro-maxillofacial surgical field were considered. Two types of cellular reactions were observed. There was a physiological reaction with the induction of only mononuclear cells and a pathological reaction with the induction of multinucleated giant cells (MNGCs). Attention was directed to the frequently observed MNGCs and consequences of their appearance within the implantation region. MNGCs have different subtypes. Therefore, the present review addresses the different morphological phenotypes observed within the biomaterial implantation bed and discusses the critical role of MNGCs, their subtypes and their precursors as well as comparing the characteristics and differences between biomaterial-related MNGCs and osteoclasts. Polymeric biomaterials that only induced mononuclear cells underwent integration and maintained their integrity, while polymeric biomaterials that induced MNGCs underwent disintegration with material breakdown and loss of integrity. Hence, there is a question regarding whether our attention should be directed to alternative biological concepts, in combination with biomaterials that induce a physiological mononuclear cellular reaction to optimize biomaterial-based tissue regeneration.  相似文献   

2.
In this study the tissue reaction to five different β-tricalcium phosphate (β-TCP)-based bone substitute materials differing only in size, shape and porosity was analyzed over 60 days, at 3, 10, 15, 30 and 60 days after implantation. Using the subcutaneous implantation model in Wistar rats both the inflammatory response within the implantation bed and the resulting vascularization of the biomaterials were qualitatively and quantitatively assessed by means of standard and special histological staining methods. The data from this study showed that all investigated β-TCP bone substitutes induced the formation of multinucleated giant cells. Changes in size, shape and porosity influenced the integration of the biomaterials within the implantation bed and the formation of tartrate-resistant acid phosphatase (TRAP)-positive and TRAP-negative multinucleated giant cells, as well as the rate of vascularization. While a high porosity generally allowed cell and fiber in-growth within the center of the bone substitute, a lower porosity resulted in a mosaic-like integration of the materials, with the granules serving as place holders. The number of multinucleated giant cells located in the implantation bed positively correlated with the vascularization rate. These data emphasize that all biomaterials investigated were capable of inducing the formation of TRAP-positive multinucleated giant cells as a sign of biomaterial stability. Furthermore, these cells directly influenced vascularization by secretion of vascular endothelial growth factor (VEGF), as well as other chemokines. Based on these findings, the role of multinucleated giant cells in the foreign body reaction to biomaterials might need to be reconsidered. This study demonstrates that variations in the physical properties of a bone substitute material clearly influence the (extent of the) inflammatory reaction and its consequences.  相似文献   

3.
Pellets of mineralized and demineralized bone and a composite mixture of mineralized and demineralized, devitalized bone particles were implanted subcutaneously on the dorsal body wall of young adult rats. Two weeks post-implantation, the pellets were removed and processed for histochemical and morphological analyses. Rat proximal tibia was also processed for evaluation. The levels of tartrate-resistant acid phosphatase (TRAP) activity in the multinucleated giant cells (MNGCs) from each of the three implants and from osteoclasts were assessed using an image analyzer. The osteoclasts from the proximal tibia and the majority of MNGCs from the demineralized implants demonstrated high levels of TRAP activity. MNGCs from the mineralized implants showed either a low level or absence of TRAP activity. Most MNGCs from the composite implants exhibited a low level of TRAP activity; however, there was a population of cells that demonstrated a high level of reaction product, similar to that seen in the tibia and demineralized implant. Morphologically, osteoclasts from the proximal tibia and from the osteogenic demineralized implant exhibited ruffled borders. A small population of MNGCs from the composite implant also revealed osteoclastic features. In summary, MNGCs from the mineralized implant did not exhibit a level of TRAP reaction product or morphology similar to osteoclasts, while the majority of cells from the demineralized implant and a subpopulation of the MNGCs elicited by the composite implant did demonstrate TRAP expression and morphology similar to osteoclasts. The expression of osteoclastic characteristics in cells at an ectopic site may be dependent on accessory signals from the skeletal microenvironment; such signals appear to be absent from or incomplete in the mineralized implants but appear to be present when demineralized bone particles are implanted.  相似文献   

4.
Designing new biomaterials that can modulate the inflammatory response instead of attempting just to reduce it constitutes a paradigm change in regenerative medicine. This work aimed to investigate the capacity of an immunomodulatory biomaterial to enhance bone regeneration. For that purpose we incorporated a molecule with well-established pro-inflammatory and pro-healing roles, fibrinogen, in chitosan scaffolds. Two different incorporation strategies were tested, leading to concentrations of 0.54 ± 0.10 mg fibrinogen g?1 scaffold immediately upon adsorption (Fg-Sol), and 0.34 ± 0.04 mg fibrinogen g?1 scaffold after washing (Fg-Ads). These materials were implanted in a critical size bone defect in rats. At two months post-implantation the extent of bone regeneration was examined by histology and the systemic immune response triggered was evaluated by determining the percentages of myeloid cells, T and B lymphocytes in the draining lymph nodes. The results obtained indicate that the fibrinogen incorporation strategy conditioned the osteogenic capacity of biomaterials. Fg-Ads scaffolds led to more bone formation, and the presence of Fg stimulated angiogenesis. Furthermore, animals implanted with Fg-Ads scaffolds showed significant increases in the percentages of B lymphocytes and myeloid cells in the draining lymph nodes, while levels of T lymphocytes were not significantly different. Finally, a significant increase in TGF-β1 was detected in the plasma of animals implanted with Fg-Ads. Taken together the results presented suggest a potential correlation between the elicited immune response and biomaterial osteogenic performance.  相似文献   

5.
Deciduous wood, birch, pretreated by a technique combining heat and water vapor was applied for the reconstruction of bone defects in the knee joint of rabbits. It was observed that wood showed characteristic properties to be incorporated by the host bone during observation time of 4, 8, and 20 weeks. The natural channel structure of wood served as a porous scaffold, allowing host bone growth as small islets into the wood implants. The other properties of heat-treated wood, such as bioactivity, good handling properties, and sufficient biomechanical properties, might be additional favorable factors for the application of wood as a natural composite material for bone and cartilage repair. At the interface of the surfaces of wood and living bone, bonding occurred. The Chemical Interface Model for bonding bone to wood consists of the reactive ions, such as hydroxyl groups --OH, and covalent bonding as well as hydrogen bonding, which originate from both wood and bone. The bone tissue trauma, with its reactive Ca(2+) and PO(4) (3-) ions, proteins, and collagen, available for interaction at ionic and nanolevel, are associated with the complicated chemistry in the cellular response of the early bone healing process. It was concluded that heat-treated wood acted like a porous biomaterial scaffold, allowing ongrowth and ingrowth of bone and cartilage differentiation on its surface, and demonstrating osteoconductive contact, bonding at the interface.  相似文献   

6.
Kim MS  Ahn HH  Shin YN  Cho MH  Khang G  Lee HB 《Biomaterials》2007,28(34):5137-5143
An innate immune response is often found at the site of biomaterial implantation. Since the effective use of biomaterials in vivo requires good biocompatibility and biofunctionality, it is vital that we assess and compare the inflammatory reactions provoked by various implanted biomaterials in vivo. In the present study, we assessed the host tissue response to poly(lactic-co-glycolic acid) (PLGA)- and small intestinal submucosa (SIS)-based scaffolds subcutaneously implanted in Fischer rats. Our results revealed that the PLGA-based scaffolds resulted in severe post-implantation inflammation, whereas the SIS-based scaffolds induced only a slight post-implantation inflammation and a PLGA/SIS-based copolymer yielded intermediate results.  相似文献   

7.
This study aims to conduct a histological evaluation of tissue response to a membrane obtained from demineralized bovine cortical bone, associated or not, to tetracycline (TTC). TTC treated and untreated bovine membranes were implanted in the subcutaneous tissue of rats (n = 120). The animals were killed 1, 3, 7, 15, 30, and 60 days after surgery. The tissue around the material was fixed in 10% buffered formalin for 24 h. Sections of 6 mm were stained with hematoxylin and eosin. In general, moderate to intense inflammatory response was observed in the initial periods (1 and 3 days), moderate response in the 7- and 15-day periods, and that was remarkably reduced at 30 and 60 days. Resorptions of the membranes by mononuclear cells (fibroblasts and macrophages) and multinucleated giant cells were observed 15 days after implantation. Only the remnants of the material could be detected in some animals in 60 days. Both membranes were tolerated by the tissue and were completely resorbed after 30-60 days. While the association of TTC apparently accelerated the biodegradability of the membrane substrate, no significant differences were found in the tissue response behavior between the two groups tested.  相似文献   

8.
Scaffolds for bone tissue engineering should provide an osteoconductive surface to promote the ingrowth of new bone after implantation into bone defects. This may be achieved by hydroxyapatite loading of distinct scaffold biomaterials. Herein, we analyzed the in vitro and in vivo properties of a novel nanosize hydroxyapatite particles/poly(ester-urethane) (nHA/PU) composite scaffold which was prepared by a salt leaching–phase inverse process. Microtomography, scanning electron microscopy and X-ray spectroscopy analyses demonstrated the capability of the material processing to create a three-dimensional porous PU scaffold with nHA on the surface. Compared to nHA-free PU scaffolds (control), this modified scaffold type induced a significant increase in in vitro adsorption of model proteins. In vivo analysis of the inflammatory and angiogenic host tissue response to implanted nHA/PU scaffolds in the dorsal skinfold chamber model indicated that the incorporation of nHA particles into the scaffold material did not affect biocompatibility and vascularization when compared to control scaffolds. Thus, nHA/PU composite scaffolds represent a promising new type of scaffold for bone tissue engineering, combining the flexible material properties of PU with the advantage of an osteoconductive surface.  相似文献   

9.
An unusual case of sialolith with bone formation, occurring in the submandibular gland of a 33-year-old woman, is reported. In addition to the irregularly laminated structure of sialolith, sparsely scattered foci of bone tissue were found. Some of them were mature, lamellar bone with lacunae containing osteocytes, endosteum and a bone marrow-like element. Others were immature bone associated with or without multinucleated giant cells. Foci of bone tissue were in contact with caliculi or fibrous tissue, and no epithelial component was seen around them. These observations suggest that bone formation in the present case may be in the nature of pathological ossification, and that in the earlier stage, the bone that is deposited is woven and is replaced through successive remodeling cycles by lamellar bone. This is the first case of sialolith with bone formation, although sialolithiasis is a common disease of the salivary glands.  相似文献   

10.
To evaluate the in vivo foreign body reaction to bio-inert 2-methacryloyloxyethyl phosphorylcholine (MPC) polymers, MPC polymer-coated porous substrates, with large surface area, were implanted subcutaneously in mice for 7 and 28?days, and the surrounding tissue response and cells infiltrating into the porous structure were evaluated. The MPC polymer surface induced low angiogenesis and thin encapsulation around the porous substrate, and slightly suppressed cell infiltration into the porous substrate. M1-type macrophage specific gene (CCR7) expression was suppressed by the MPC polymer surface after 7?days, resulting in the suppression of inflammatory cytokine/chemokine gene expression. However, the expression of these genes on the MPC polymer surface was higher than on the non-coated surface after 28?days. These findings suggest that MPC polymer surfaces successfully inhibit inflammatory responses during the early stage of tissue response, and seem to retard its occurrence over time.  相似文献   

11.
For bone formation in critical-sized or poor healing defects, osteoinductive behavior of synthetic bone grafts is crucial. Although the osteoconductive behavior of calcium phosphate (CaP) cement is generally accepted, its osteoinductive potential is less reported. In this study, osteoinduction of porous CaP cement was investigated. Four goats received each six subcutaneous placed prehardened porous CaP cement implants. Implantation time was 3 and 6 months. After explantation, histological evaluation and scoring with a histological grading scale for soft-tissue implants were performed. The histological sections revealed that the implants degraded for more than 50% over time. The implants had lost their macroporous structure from 3 months on. A medium-thick fibrous capsule with a few inflammatory cells surrounded the implants after 3 months. This capsule significantly decreased in thickness after 6 months. Throughout the implant ingrowth of fibrous tissue was seen with scattered foci of inflammatory cells. Cement particles were surrounded by a layer of inflammatory cells. The massive inflammatory response in the interstice was seen after 3 months, which disappeared after 6 months implantation. No bone formation was detected in any of the specimens. The fast degradation and thereby collapsing of the porous structure of our CaP cement implant might have prevented osteoinduction.  相似文献   

12.
This study reports the development of a non-dispersive calcium phosphate cement (nd-CPC) paste containing tetracalcium phosphate and anhydrous dicalcium phosphate that can be used as a filling material in dental and orthopedic applications. The nd-CPC bone cement is compared with two commercial materials, OsteoSet® and Collagraft® bone grafts. Gross examination of retrieved implants/bone composite samples indicated that none of the implants in this study evoked an inflammatory response. The OsteoSet® (calcium sulfate) implant was resorbed too quickly to allow for osteo-remodeling, and it led to the formation of fibrous connective tissue in the fracture site, which remained even 24 weeks after implantation. Histological examination revealed that nd-CPC and Collagraft® (hydroxyapatite/tricalcium phosphate/collagen) had greater remodeling and osteoconductive activity than OsteoSet® at both 12 and 24 weeks after implantation. Greater remodeling activities were found with nd-CPC cement than with the other materials at 12 weeks after implantation, and the Fourier transform infrared absorption band of carbonate or cellulose derivatives grew from 6 weeks to 24 weeks after implantation in nd-CPC cement. These findings show that nd-CPC compares favorably to commercial bone remodeling materials, and the fact that it is in a paste formulation makes it an ideal material to fill regeneration defects.  相似文献   

13.
14.
We investigate the effects of a novel bioactive material (Biosilicate(?)) and low-level laser therapy (LLLT), at 60 J/cm(2), on bone-fracture consolidation in osteoporotic rats. Forty female Wistar rats are submitted to the ovariectomy, to induce osteopenia. Eight weeks after the ovariectomy, the animals are randomly divided into four groups, with 10 animals each: bone defect control group; bone defect filled with Biosilicate group; bone defect irradiated with laser at 60 J/cm(2) group; bone defect filled with Biosilicate and irradiated with LLLT, at 60 J/cm(2) group. Laser irradiation is initiated immediately after surgery and performed every 48 h for 14 days. Histopathological analysis points out that bone defects are predominantly filled with the biomaterial in specimens treated with Biosilicate. In the 60-J/cm(2) laser plus Biosilicate group, the biomaterial fills all bone defects, which also contained woven bone and granulation tissue. Also, the biomechanical properties are increased in the animals treated with Biosilicate associated to lasertherapy. Our results indicate that laser therapy improves bone repair process in contact with Biosilicate as a result of increasing bone formation as well as indentation biomechanical properties.  相似文献   

15.
A three-dimensional porous hydroxyapatite/collagen (HAp/Col) composite with a random pore structure was fabricated using freeze-drying processes; the self-organized HAp/Col nanocomposite with a weight ratio of 80.5:19.5, freeze-dried, was kneaded in 100 mM sodium phosphate buffer, frozen at ?20°C and freeze-dried. The cross-linkage of Col molecules was introduced dehydrothermally at 140°C in vacuo. The porous composite had a porosity of 94.7% with pore sizes between 200 and 500 μm. The compressive stress for the wet porous composite in phosphate buffer saline (PBS) was gradually decreased during 20 days incubation with a small amount of weight loss. The cyclic and time-course compression tests showed good repeatability of stress and well-recovery of its height, and caused no collapse of the porous composite. The implantation of the porous composite in rat bone holes showed the biodegradable property and new bone formation occurred in the pores without inflammatory response. The porous composite fabricated has good flexibility and rubber-like elasticity, and is a promising bone regenerative material.  相似文献   

16.
Subcutaneous implantation of bone chips into normal and osteopetrotic (ia) rats results in the formation of multinucleate giant cells (MNGCs) adjacent to the bone surface. In this study the resorptive and morphological characteristics of the cells surrounding these implants were assessed to determine if the bone-resorbing defects seen in ia animals would be mimicked, thus giving validity to the use of this system as a model for the study of osteoclastic lineage and function. Direct measurement of in vivo bone resorption was achieved through the use of 45Ca-labelled bone-chip pairs that were primarily osteoid-exposed and freeze-thawed (FT), primarily mineral-exposed and bleached (B), or primarily mineral-exposed and collagenase-treated (CT). Comparison of the 45Ca content of implanted chips to that of controls indicated the total 45Ca release during a two-week implantation period. There was no significant difference in the amount of label released between normal and ia animals. Both normal and ia rats showed 23% greater total 45Ca release from mineral- versus osteoid-exposed matrix. Cellular events occurring on the bony substrate were evaluated by light and electron microscopy. At 3 days, bone chips were surrounded primarily by mononuclear cells. By 14 days, MNGCs were present at the bone surface in both ia and normal animals. In mineral-exposed implants, 40–50% of the bone surface was covered by MNGCs as compared to 20% of the osteoid-exposed surface. These MNGCs possessed occasional clear zones, but did not exhibit ruffled borders; therefore, they could not be classified as osteoclasts. Thus, the defects seen in ia mutants were not reproduced in this implant system. The 45Ca release that occurred was probably due to the action of mononuclear phagocytes and macrophage polykaryons rather than to true osteoclastic bone resorption.  相似文献   

17.
The sinus between skin and a percutaneous medical device is often a portal for infection. Epidermal integration into an optimized porous biomaterial could seal this sinus. In this study, we measured epithelial ingrowth into rods of sphere-templated porous poly(2-hydroxyethyl methacrylate) implanted percutaneously in mice. The rods contained spherical 20-, 40-, or 60-μm pores with and without surface modification. Epithelial migration was measured 3, 7, and 14 days post-implantation utilizing immunohistochemistry for pankeratins and image analysis. Our global results showed average keratinocyte migration distances of 81 ± 16.85 μm (SD). Migration was shorter through 20-μm pores (69.32 ± 21.73) compared with 40 and 60 μm (87.04 ± 13.38 μm and 86.63 ± 8.31 μm, respectively). Migration was unaffected by 1,1' carbonyldiimidazole surface modification without considering factors of pore size and healing duration. Epithelial integration occurred quickly showing an average migration distance of 74.13 ± 12.54 μm after 3 days without significant progression over time. These data show that the epidermis closes the sinus within 3 days, migrates into the biomaterial (an average of 11% of total rod diameter), and stops. This process forms an integrated epithelial collar without evidence of marsupialization or permigration.  相似文献   

18.
The search for osteoinductive as well as osteoconductive materials has led to the novel idea of using titanium in bone augmentations of the alveolar crest. Due to its excellent biocompatibility and favorable osteogenic properties, highly porous TiO2 granules has been proposed as a promising material for non-resorbable synthetic bone grafts in the restoration of large bone defects, and for bone augmentation in dental applications.ObjectivesThe aim of this study was to investigate the osteoconductive properties and biological performance of porous titanium granules used in osseous defects adjacent to the maxillary sinus in sheep. The experimental animal study involved 15 yearling sheep with a focus on the osteogenic potential of porous titanium used for subantral augmentation.Material and methodsCalibrated defects were prepared in the subantral region of sheep. The defects were randomized into tests and control group. The test defects were grafted with porous titanium granules (PTG), whereas control defects were left empty (sham). Defects were left for healing for 30, 60, and 90 days. After healing, the grafted areas were removed and finally osteoconductivity was analyzed by an orthopantograph (OPG} and histology.ResultsSignificantly more new bone formed in PTG grafted defects compared with sham. The control group showed significantly less expression of key inflammation cells, but with no significant difference in key inflammation cells compared with the experimental groups.ConclusionPorous titanium can offer as an effective alternative to calcium phosphate and bone collagen-based materials used for subantral augmentation of the maxillary bone in cases of dental implantation.  相似文献   

19.
Does endurance running before orchidectomy prevent osteopenia in rats?   总被引:2,自引:0,他引:2  
This experiment was performed to study the effects on femoral bone of endurance training performed during the 3 months before orchidectomy in rats which were then killed 90 days later. A total of 70 male Wistar rats were used at 8 weeks old. One day 0 of the experiment, 10 rats were killed by cervical dislocation and used as first controls. Among the 60 others, 30 were selected for treadmill running (60% maximal oxygen uptake, 1?h?·?day?1, 6?days?·?week?1 for 90 days). The 30 other rats remained at rest. On day 90, 10 exercised (IE) and resting (IR) rats were killed and used as intermediary controls. Among the 20 other animals of each group, 10 were surgically castrated (CXE, CXR) or 10 sham-operated (SHE, SHR) and killed on day 180. On day 90 femoral failure load (three-point bending test) was greater in IE than in IR. Simultaneously, the deoxypyridinolinuria was lower in IE than in IR. On day 180, femoral bones were thinner in CXR than in CXE. The lowest values for trabecular bone are in the distal femoral metaphysis were measured in CXE and CXR rats, but the value measured in CXE was no different from that measured in SHR. Simultaneously total femoral bone density was lower in CXR than in SHE, while no difference concerning femoral metaphyseal density was observed between CXE and SHR. These results confirmed that endurance running increased femoral bone growth and modelling and femoral trabecular area, and thereby peak bone mass, in 8-month-old male rats. In resting animals, castrated after the training period, androgen deficiency decreased femoral density, mineral content and trabecular area. This decrease was not observed in castrated but previously exercised rats. Thus, by increasing peak bone mass, it was considered that endurance training may have a preventive effect against orchidectomy-induced bone loss.  相似文献   

20.
It was hypothesized that muscle injury would be greater with eccentric than with all-out or prolonged exercise, and that immune changes might provide an indication that supplements the information provided by traditional markers such as creatine kinase (CK) or delayed-onset muscle soreness. Eight healthy males [mean (SE): age?=?24.9?(2.3) years, maximum oxygen consumption (O2max)=43.0?(3.1)?ml?·?kg?1?·?min?1] were each assigned to four experimental conditions, one at a time, using a randomized-block design: 5?min of cycle ergometer exercise at 90% O2max (AO), a standard circuit-training routine (CT), 2?h cycle ergometer exercise at 60% O2max (Long), or remained seated for 5?h. Blood samples were analyzed for CK, natural killer (NK) cell counts (CD3?/CD16+56+), cytolytic activity and plasma levels of the cytokines interleukin (IL)-6, IL-10, and tissue necrosis factor α (TNF-α). CK levels were only elevated significantly 72?h following CT. NK cell counts increased significantly during all three types of exercise, but returned to pre-exercise baseline values within 3?h of recovery. Cytolytic activity per NK cell was not significantly modified by any type of exercise. Prolonged exercise induced significant increases in plasma IL-6 and TNF-α. We conclude that the lack of correlation between traditional markers of muscle injury (plasma CK concentrations and muscle soreness rankings) and immune markers of the inflammatory response suggests that, for the types and intensities of exercise examined in this study, the exercise-induced inflammatory response is modified by humoral and cardiovascular correlates of exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号