首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的探讨表皮干细胞联合成纤维细胞-丝素蛋白纳米纤维活性支架体内培养,对Ⅲ度烧伤创面的修复和再生作用。方法(1)表皮干细胞的培养和表征:采用快速贴壁法分离和培养表皮干细胞(Epidermal Stem Cell,ESC)。将表皮干细胞分别在经Ⅳ型胶原蛋白修饰的和未经修饰的培养瓶中,或通过悬浮法培养,研究表皮干细胞的生长特性;以β1整合素和细胞角蛋白CK19免疫荧光染色实验考察细胞表型。(2)活性支架的体外构建和对大鼠Ⅲ度创面的修复作用研究:体外构建成纤维细胞-丝素蛋白纳米纤维活性支架;采取同体对照法,在20只Sprague—Dawley大鼠(sD大鼠)背部制作两个Ⅲ度切痂创面。左侧创面采用体外培养的自体表皮干细胞联合成纤维细胞一丝素蛋白纳米纤维活性支架移植入创面,作为组织工程移植物组;右侧创面采用凡士林纱布敷料覆盖,作为凡士林纱布敷料组。考察组织工程移植物对大鼠Ⅲ度创面的愈合作用。结果以快速贴壁法能够有效地分离得到表皮干细胞,细胞在经Ⅳ型胶原蛋白修饰的培养瓶中生长10d后融合,数目达到5.1×10^5/cm^2。免疫荧光实验表明细胞表面抗原呈β1整合素和角蛋白免疫CK19成阳性,证明分离得到的细胞为表皮干细胞。成纤维细胞能够在丝素蛋白纳米纤维中扩增并分泌细胞外基质,14d后与丝素蛋白纳米纤维形成活性支架。对大鼠Ⅲ度烧伤创面的修复实验表明,组织工程移植物组的创面在第14天和第22天的平均愈合效率为66%和93%,高于凡士林纱布敷料组(32%和69%),P〈0.05。组织工程移植物组的创面平均愈合天数为21d,低于凡士林纱布敷料组(31d),P〈0.05。结论通过Ⅳ型胶原蛋白黏附法,能够分离得到表皮干细胞,并且其在Ⅳ型胶原蛋白表面修饰的培养瓶中的生长活力较高。大鼠Ⅲ度创面的修复实验表明,组织工程移植物,即表皮干细胞联合成纤维细胞-丝素蛋白纳米纤维支架,能够修复Ⅲ度创面,再生皮肤表真皮结构完整;并且与凡士林纱布敷料相比,能够提高创面的愈合效率,减少创面的愈合时间。  相似文献   

2.
背景:细菌感染是影响伤口愈合的主要因素之一,伤口渗出液里含有的大量炎症因子、蛋白酶和自由基都会减缓伤口的愈合速度。新型复合生物抗菌敷料的研发对治疗外科感染伤口有重要的意义,是创伤敷料发展的必然趋势。 目的:观察添加纳米银的海藻酸钙敷料的抗菌活性、吸湿能力及细胞毒性。 方法:将纳米银材料添加到海藻酸钙中制备新型复合生物抗菌敷料,并通过使用平板计数法、MTT法、电子显微镜观察法观察敷料的抗菌活性、吸湿能力及细胞毒性,再与银离子海藻酸钙敷料和海藻酸钙敷料进行对比,以期显示出新型复合生物抗菌敷料的具有强抗菌性及低细胞毒性的优势。 结果与结论:与银离子海藻酸钙敷料和海藻酸钙敷料相比,添加纳米银的新型复合生物抗菌敷料对金黄色葡萄球菌、铜绿假单胞菌均有更强的抑菌作用(P < 0.01),细胞毒性较低(P < 0.01);3种敷料的吸湿能力差异无显著性意义。证实此添加纳米银的海藻酸钙敷料的具有强抗菌性及低细胞毒性。   相似文献   

3.
A durable sandwich wound dressing system with high liquid absorbing, biocompatibility, and antibacterial properties was designed. Various solution weight ratios of collagen to chitosan were used to immobilize on the polypropylene nonwoven fabric, which were pregrafted with acrylic acid (AA) or N-isopropyl acrylamide (NIPAAm) to construct a durable sandwich wound dressing membrane with high water absorbing, easy removal, and antibacterial activity. Swelling properties and antibacterial activity of the membranes were measured, and wound healing enhancement by skin full-thickness excision on animal model was examined. The results indicated that NIPAAm-grafted and collagen/chitosan-immobilized polypropylene nonwoven fabric (PP-NIPAAm-collagen-chitosan) showed a better healing effect than AA-grafted and collagen/chitosan-immobilized polypropylene nonwoven fabric (PP-AA-collagen-chitosan). The wound treated with PP-NIPAAm-collagen-chitosan demonstrated the excellent remodeling effect in histological examination with respect to the construction of vein, epidermis, and dermis at 21 days after skin injury. The values of water uptake and water diffusion coefficient for PP-NIPAAm-collagen-chitosan were higher than that for PP-AA-collagen-chitosan under a given solution weight ratio of collagen/chitosan. Both PP-NIPAAm-collagen-chitosan and PP-AA-collagen-chitosan demonstrated antibacterial activity.  相似文献   

4.
Abstract

Silver nanoparticles (AgNPs) and silver ions (Ag+) show growth-inhibitory activity against microorganisms and have been used for decades as antibacterial agents in various fields. To fabricate a nanofibrous scaffold which is antibacterial against bacteria and non-toxic to cells, we electrospun composite poly(L-lactic acid)-co-poly(?-caprolactone) nanofibres containing silver nanoparticles (PLLCL-AgNPs) with different concentrations (0.25, 0.50 and 0.75 wt%) of silver nitrate (AgNO3) in PLLCL. The diameters of the electrospun PLLCL-AgNPs nanofibres decreased with the increase of AgNO3 concentration in PLLCL solutions. Human skin fibroblasts cultured on the scaffolds showed that the PLLCL nanofibres containing lesser amounts of AgNPs (0.25 wt%) had better cell proliferation and retained the cell morphology similar to the phenotype observed on tissue culture plates (control). The antibacterial activity of AgNPs in PLLCL nanofibres was investigated against Staphylococcus aureus and Salmonella enterica and the antimicrobial activity was found to increase with the increasing concentration of nanoparticles present in the scaffold. Based on our studies, we propose that PLLCL nanofibres containing 0.25 wt% AgNO3 or PLLCL-Ag(25), favors cell proliferation and inhibits bacteria and could be a suitable substrate for wound healing.  相似文献   

5.
Fibrin Pad is a hemostatic pad designed to control surgical-related bleeding. It consists of a fully absorbable composite matrix scaffold coated with human-derived active biologics that immediately form a fibrin clot upon contact with targeted bleeding surfaces. Studies were conducted to investigate the effect of Fibrin Pad and its biologics-free composite matrix component (Matrix) on the wound healing process in in vitro and in vivo models. Fibrin Pad was evaluated in solid organ, soft tissue defects, and subcutaneous tissues. Immunocompromised rodents were used to avoid xeno-mediated responses. Extracts created from both materials were evaluated for biological activity using in vitro cell culture assays. Neither Fibrin Pad nor Matrix alone showed any inhibition of the wound healing of treated defect sites. An apparent accelerated healing was noted in the soft tissue and subcutaneous tissue defects with Fibrin Pad as compared to Matrix. Both materials showed desirable properties associated with tissue scaffolds. The in vitro study results show that Fibrin Pad extract can induce dose-dependent increases in fibroblast proliferation and migration. These studies confirm that the biologic components of Fibrin Pad can enhance wound healing processes in in vitro assays and fully support wound healing at the site of in vivo application.  相似文献   

6.
A type of antibacterial silk fibroin (SF) scaffold was developed and characterised as a potential functional wound dressing for acute trauma treatment. To achieve this, SF solution was mixed with previously fabricated vancomycin (Vm)-loaded gelatin (G) microspheres, followed by a freeze-drying step. Some physical and antimicrobial properties of the prepared Vm/G/SF scaffolds were investigated and the results demonstrated that the average pore size and porosity of the composite scaffold were 60–80?μm and 75%, respectively. The compressive stress and compressive modulus of Vm/G/SF scaffold were 140 and 468?KPa, respectively. Compared with Vm/G microspheres and Vm/SF scaffold, the Vm/G/SF scaffold has slower release rate of Vm. In addition, the Vm release rate of Vm/G/SF scaffold matched well with the degradation rate of SF scaffold. With respect to the antimicrobial effect, the results showed that the Vm/G/SF scaffold had good antimicrobial activity against Staphylococcus aureus (gram-positive), which is a gram-positive bacteria commonly found in infected wounds.  相似文献   

7.
New strategies for skin regeneration are needed to address the significant medical burden caused by cutaneous wounds and disease. In this study, pullulan-collagen composite hydrogel matrices were fabricated using a salt-induced phase inversion technique, resulting in a structured yet soft scaffold for skin engineering. Salt crystallization induced interconnected pore formation, and modification of collagen concentration permitted regulation of scaffold pore size. Hydrogel architecture recapitulated the reticular distribution of human dermal matrix while maintaining flexible properties essential for skin applications. In vitro, collagen hydrogel scaffolds retained their open porous architecture and viably sustained human fibroblasts and murine mesenchymal stem cells and endothelial cells. In vivo, hydrogel-treated murine excisional wounds demonstrated improved wound closure, which was associated with increased recruitment of stromal cells and formation of vascularized granulation tissue. In conclusion, salt-induced phase inversion techniques can be used to create modifiable pullulan-collagen composite dermal scaffolds that augment early wound healing. These novel biomatrices can potentially serve as a structured delivery template for cells and biomolecules in regenerative skin applications.  相似文献   

8.
Drug-impregnated polyelectrolyte complex (PEC) sponge composed of chitosan and sodium alginate was prepared for wound dressing application. The morphological structure of this wound dressing was observed to be composed of a dense skin outer layer and a porous cross-section layer by scanning electron microscopy (SEM). Equilibrium water content and release of silver sulfadiazine (AgSD) could be controlled by the number of repeated in situ PEC reactions between chitosan and sodium alginate. The release of AgSD from AgSD-impregnated PEC wound dressing in PBS buffer (PH = 7.4) was dependent on the number of repeated in situ complex formations for the wound dressing. The antibacterial capacity of AgSD-impregnated wound dressing was examined in agar plate against Pseudomonas aeruginosa and Staphylococcus aureus. From the behavior of antimicrobial release and the suppression of bacterial proliferation, it is thought that the PEC wound dressing containing antimicrobial agents could protect the wound surfaces from bacterial invasion and effectively suppress bacterial proliferation. In the cytotoxicity test, cellular damage was reduced by the controlled released of AgSD from the sponge matrix of AgSD-medicated wound dressing. In vivo tests showed that granulation tissue formation and wound contraction for the AgSD plus dihydroepiandrosterone (DHEA) impregnated PEC wound dressing were faster than any other groups.  相似文献   

9.
BACKGROUND: There is no clear understanding on the effects of subcutaneous fat and stem cells on wound healing. OBJECTIVE: To explore the therapeutic effects of skin composite prepared with adipose tissue-derived stem cells on skin defects. METHODS: Epidermal cells, fibroblasts, adipose tissue-derived stem cells as seed cells and bovine collagen gel as a scaffold were used to build a complex with a variety of cells. A 6-mm diameter circular skin defect was made on the both sides of the rat back. The right side as experimental side was implanted with an 8-mm diameter multilayer skin composite, and the left side (control side) was only treated with a simple dressing. RESULTS AND CONCLUSION: For the constructed multi-layer skin composite, the epidermal layer was continuously merged into the multi-layer, the fibroblasts evenly distributed in the corium layer, and lipid droplets existed in the fat layer in which the cells distributed uniformly. Cell aggregation was obviously observed at the junction of different layers. In the experimental side, the rate of wound healing, granulation tissue thickness, the thickness of dermis and the capillary density were significantly higher than those in the control side. Taken together, we can construct multilayer skin composites with a variety of cells as seed cells, such as epidermal cells, fibroblasts and adipose tissue-derived stem cells, and bovine collagen gel as a scaffold, which promote wound healing and increase the thickness of dermis.     相似文献   

10.
Bacterial wound infection is a major problem, which hinders the normal healing process. In this study, a collagen bilayer dressing with ciprofloxacin was prepared from succinylated type-I collagen; FT-IR spectroscopy, SEM analysis, in vitro drug release pattern, antimicrobial activity and in vivo efficacy of the dressing were studied. The healing pattern was analyzed on days 3, 5, 7, 14 and 21 by wound healing rate, bacterial population, biochemical and histological examinations of tissue samples. FT-IR spectra showed the succinylation of collagen and ionic binding of ciprofloxacin to succinylated collagen. SEM analysis showed uniform drug distribution in collagen sponge and in vitro drug release pattern showed a release profile for 3 days with effective drug concentration confirmed by zone of inhibition. Ciprofloxacin counter-acted the effect of invading bacteria, as could be seen by considerable reduction in total bacterial population of the wound. In vivo analysis showed significant wound closure, biochemical analysis, such as protein, DNA, hydroxyproline, SOD, catalase, hexosamine and uronic acid from the granulation tissue, showed enhanced healing in the group treated with collagen bilayer dressing with ciprofloxacin. Histological analysis and wound closure further confirmed proper healing. Our results suggest that sustained release of ciprofloxacin from a collagen bilayer dressing eliminates bacteria at the site of infection, leaving a pathogen-free wound environment, and it can be used as a dressing for an on-site delivery system.  相似文献   

11.
背景:已有很多实验证明,单独高分子材料或生物性材料制备的组织工程支架无法满足组织工程研究。 目的:评价羟基丁酸-羟基辛酸聚合物/胶原组织工程支架的生物学特性及细胞亲和性。 方法:以羟基丁酸-羟基辛酸聚合物作为主体材料,按质量分数复合不同比例(2%,4%,6%,8%,10%)的胶原,采用溶剂浇铸-颗粒沥滤法制备组织工程支架。通过扫描电镜观察材料内部结构及孔径大小,液体位移法测定材料孔隙率。将羟基丁酸-羟基辛酸聚合物/胶原支架、羟基丁酸-羟基辛酸聚合物支架分别与兔软骨细胞复合培养,MTT法测定细胞的生长曲线,扫描电镜观察细胞在材料上的生长黏附情况。 结果与结论:羟基丁酸-羟基辛酸聚合物/胶原复合软骨组织工程支架孔径大小200 μm左右,孔隙率为(85±2)%,细胞亲水性随加入胶原比例的增加而升高。与羟基丁酸-羟基辛酸聚合物支架比较,不同比例的羟基丁酸-羟基辛酸聚合物/胶原支架可明显促进软骨细胞的黏附、增殖。证实羟基丁酸-羟基辛酸聚合物/胶原复合支架具备更好的细胞亲和性。中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程全文链接:  相似文献   

12.
The purpose of this study was to evaluate the biocompatibility and the efficacy in wound healing of a gelatin-based interpenetrating polymer network (IPN) containing poly(ethylene glycol) (PEG)-ylated RGD and soluble KGF-1 (RGD-IPN+KGF). IPNs were applied to full-thickness wounds on a rat model. Wound healing was assessed through histological grading of the host response and percent area contraction at 2 days, 1 week, 2 weeks, and 3 weeks. A control IPN containing unmodified gelatin (unmod-IPN) and a conventional clinical bandage were applied to similar wounds and also evaluated. During the first week of healing, the unmod-IPN and conventional dressing wound showed a greater amount of contraction than that of RGD-IPN+KGF. However, by 3 weeks the extent of wound contraction was comparable between treatments. The RGD-IPN+KGF treated wound demonstrated lower macrophage and fibroblast densities at 3 weeks as compared to unmod-IPN treated wounds. RGD-IPN+KGF acted as a tissue scaffold while preventing the entry of foreign bodies, advantages not seen with the conventional dressing. The extent of cellularity and extracellular matrix organization was higher for wounds healed with RGD-IPN+KGF than those healed with unmod-IPN. These results indicate that both soluble and immobilized bioactive factors can be incorporated into our IPN platform to enhance the rate and the quality of dermal wound healing.  相似文献   

13.
背景:医用敷料作为伤口处的覆盖物,在伤口愈合过程中,可以替代受损的皮肤起到暂时性屏障作用,避免或控制伤口感染,提供有利于创面愈合的环境。如何既能快速固定、有效止血,又可以减轻或避免止血后对伤肢血循环造成的不利影响,加快伤口愈合、减轻伤痛是创伤急救医学亟待解决的难题。 目的:文章综述了医用生物敷料在创伤修复领域中的应用现状及研究进展,揭示其发展前景,为其在创伤修复过程中的应用提供理论基础。 方法:应用计算机检索CNKI和PubMed数据库中1998-01/2008-12关于医用生物敷料的文章,在标题和摘要中以“医用敷料;生物材料,壳聚糖,水凝胶,组织工程”或“medical dressing,chitosan”为检索词进行检索。选择文章内容与创伤修复相关,同一领域文献则选择近期发表或发表在权威杂志文章。初检得到146篇文献,中文107篇,英文39篇,根据纳入标准选择38篇文章进行综述。 结果与结论:就目前临床使用及研究的医用敷料,根据其所用的材料将其分成了天然材料和合成高分子,无机材料和复合材料,并对敷料类产品质量控制中出现的问题进行了讨论,展望了敷料类产品的未来发展方向。为医用敷料类产品的研发提供理论依据。  相似文献   

14.
An experimental study was carried out in an animal (New Zealand white rabbit) wound model to evaluate any effects of a hypotonic, bicarbonate-calcium-magnesium mineral water (Comano thermal water) on skin regeneration, comparing the healing rate of split-thickness skin graft donor sites treated with the thermal water wet dressing versus a standard petrolatum gauze dressing versus a saline solution wet dressing. The study was performed in two steps; an overall of 22 animals were enrolled in the study. The wound healing progress was evaluated both by the surgeons and by the histologists. Sixty-four punch biopsies were examined in all. The histological samples were examined after staining with haematoxylin and eosin, Masson's and orcein staining and under a transmission electron microscope. The data were statistically analysed. The Comano thermal water proved to improve skin regeneration, not only by increasing keratinocyte proliferation and migration but also favourably modulating the regenerated collagen and elastic fibres in the dermis. We propose that the results of the topical treatment with the thermal water could be due to the favourable combination of a local wet environment with an anti-inflammatory action and that the regenerative properties of Comano thermal water observed in rabbits could also be applied for human use.  相似文献   

15.
观察甲基丙烯酸羟乙酯(HEMA)-胶原抗菌药物缓释膜对烧伤创面的促愈合作用。制备包裹有磺胺嘧啶银(SD-Ag)的HEMA-胶原抗菌药物缓释膜,观察测定其对SD大鼠深11度烧伤模型的作用。结果表明,实验组大鼠不同时间点的创面愈合率均高于对照组(P<0.05),愈合时间明显缩短(P<0.05)。组织学观察表明实验组愈合创面上皮化程度好于对照组。HEMA-胶原抗菌药物缓释膜可有效地促进大鼠深Ⅱ度烧伤创面愈合,具有应用前景。  相似文献   

16.
In this study, three kinds of antiseptics which were 0.05% chlorhexidine, 0.2% polyhexamethylene biguanide (PHMB), or 200 ppm silver nanoparticle was introduced to incorporate in the sericin-based scaffold to produce the antimicrobial dressing for the treatment of infected chronic wound. The effects of antiseptic incorporation on the stability, release of sericin, and short-term and long-term (6 months) antimicrobial activity of the sericin dressing against gram-negative and gram-positive bacteria were investigated. We showed that the incorporation of each antiseptic did not have significant effect on the internal morphology (pore size ~ 73–105 μm), elasticity (Young’s modulus ~ 200–500 kPa), and the sericin release behavior of the sericin-based dressing. The release of sericin from the dressing was prolonged over 120 h and thereafter. Comparing among three antiseptics, 0.05% chlorhexidine incorporated in the sericin dressing showed the highest immediate and long-term (6 months) antimicrobial effect (largest inhibition zone) against most bacteria either gram-positive or gram-negative bacteria. The in vivo safety test following ISO10993 standard (Biological evaluation of medical devices – Part 6: Tests for local effects after implantation) confirmed that the sericin dressing incorporating 0.05% chlorhexidine did not irritate to tissue, comparing with the commercial material used generally in clinic (Allevyn®, Smith & Nephew). We suggested the sericin dressing incorporating 0.05% chlorhexidine for the treatment of infected chronic wound. Chlorhexidine would reduce the risk of infection while the sericin may promote wound healing.  相似文献   

17.
We designed bilayer composites composed of an upper layer of titanium dioxide (TiO2)-incorporated chitosan membrane and a sub-layer of human adipose-derived extracellular matrix (ECM) sheet as a wound dressing for full-thickness wound healing. The dense and fibrous top layer, which aims to protect the wound from bacterial infection, was prepared by electrospinning of chitosan solution followed by immersion in TiO2 solution. The sponge-like sub-layer, which aims to promote new tissue regeneration, was prepared with acellular ECM derived from human adipose tissue. Using a modified drop plate method, there was a 33.9 and 69.6% reduction in viable Escherichia coli and Staphylococcus aureus on the bilayer composite, respectively. In an in vivo experiment using rats, the bilayer composites exhibited good biocompatibility and provided proper physicochemical and compositional cues at the wound site. Changes in wound size and histological examination of full-thickness wounds showed that the bilayer composites induced faster regeneration of granulation tissue and epidermis with less scar formation, than control wounds. Overall results suggest that the TiO2-incorporated chitosan/ECM bilayer composite can be a suitable candidate as a wound dressing, with an excellent inhibition of bacterial penetration and wound healing acceleration effects.  相似文献   

18.
In this work, hydrogel membranes were developed based on poly vinyl alcohol (PVA), starch (St), and chitosan (Cs) hydrogels with nano Zinc oxide (nZnO). PVA/St/Cs/nZnO hydrogel membranes were prepared by freezing-thawing cycles, and the aqueous PVA/St solutions were prepared by dissolving PVA in distilled water. After the dissolution of PVA, starch was mixed, and the mixture was stirred. Then, chitosan powder was added into acetic acid, and the mixture was stirred to form a chitosan solution. Subsequently, Cs, St and PVA solutions were blended together to form a homogeneous PVA/St/Cs ternary blend solution. Measurement of Equilibrium Swelling Ratio (ESR), Water Vapor Transmission Test (WVTR), mechanical properties, scanning electron microscopy (SEM), MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide] assay, antibacterial studies, in vivo wound healing effect and histopathology of the hydrogel membranes were then performed. The examination revealed that the hydrogel membranes were more effective as a wound dressing in the early stages of wound healing and that the gel could be used in topic applications requiring a large spectrum of antibacterial activity; namely, as a bandage for wound dressing.  相似文献   

19.
The cellular component of a healing wound consists of many cell types and the environment in which these cells grow is important to the rate and quality of healing which can be influenced by the type of dressing used. The most commonly used dressings are traditional gauze-type dressings. In many cases these dressings may adhere to the wound surface, and subsequent removal is often traumatic, causing pain and tissue reinjury. Some modern gelling dressings have been developed to overcome this adherence problem. In order to evaluate in more detail cell-dressing interactions, an in vitro model has been developed utilising wound fibroblasts and epithelial cells. Quantitative evaluation of adherence of cells cultured with a traditional gauze or a new gelling dressing has been undertaken using radiolabel and manual counting techniques. Scanning electron microscopy has been used to visualise the cells adherent to dressings allowing evaluation of their adhesion-morphology. The results show differential attachment of cells to viscose and gelling fibres of the dressings; considerably reduced cell adhesion to the gelling fibre was evident, and it was apparent that cells adhered predominantly to the viscose component of the dressing. This model can be used to investigate and compare the adhesion of cells to different dressings and their components.  相似文献   

20.
Abstract

Bacterial cellulose (BC), with unique structure and properties, has attracted much attention in the biomedical field, especially in using as wound dressing. However, pure BC lacks the antimicrobial activity, which limits its application in wound healing. To solve this problem, copper nanoparticles (Cu NPs) loaded BC membranes were fabricated by using in situ chemical reduction method. The morphology and chemical composition of the composite membranes were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA). The results showed that Cu NPs evenly distributed and anchored in the three-dimensional (3-D) nanofiber network of BC through physical bonding. Traces of Cu2O were observed on the membranes probably because the Cu2+ was incompletely reduced. The Cu NPs loaded BC membranes showed efficient long-term antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) even after immersion in deionized water for up to 90?days. The composite membranes kept sustained release of copper ion, which may contribute to the long-term antibacterial activity. Furthermore, with controlled Cu concentration, BC/Cu membranes did not show obvious cytotoxicity to normal human dermal fibroblasts (NHDF). In all, the present results reveal that BC/Cu membranes with efficient antibacterial activity are promising to be used as wound dressings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号