首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVES: This study evaluated the effect of three surface conditioning methods on the microtensile bond strength of resin cement to a glass-infiltrated zirconia-reinforced alumina-based core ceramic. METHODS: Thirty blocks (5 x 5 x 4 mm) of In-Ceram Zirconia ceramics (In-Ceram Zirconia-INC-ZR, VITA) were fabricated according to the manufacturer's instructions and duplicated in resin composite. The specimens were polished and assigned to one of the following three treatment conditions (n=10): (1) Airborne particle abrasion with 110 microm Al(2)O(3) particles + silanization, (2) Silica coating with 110 microm SiO(x) particles (Rocatec Pre and Plus, 3M ESPE) + silanization, (3) Silica coating with 30 microm SiO(x) particles (CoJet, 3M ESPE) + silanization. The ceramic-composite blocks were cemented with the resin cement (Panavia F) and stored at 37 degrees C in distilled water for 7 days prior to bond tests. The blocks were cut under coolant water to produce bar specimens with a bonding area of approximately 0.6mm(2). The bond strength tests were performed in a universal testing machine (cross-head speed: 1mm/min). The mean bond strengths of the specimens of each block were statistically analyzed using ANOVA and Tukey's test (alpha相似文献   

2.
The objective of this study was to test two hypotheses: (1) silica coating affects the bond strength between ceramics and a resin cement; (2) bond strength is affected by the type of ceramic. Twelve blocks 5 x 6 x 8 mm of In-Ceram Zirconia (ZR) and twelve Procera AllCeram (PR) ceramics were made and duplicated in composite. Five blocks of each ceramic were treated as follows: (1) ZR + GB (laboratorial airborne particles abrasion with Al2O3 particles) + silane; (2) ZR + SC (chairside tribochemical silica coating system, Cojet); (3) PR + GB; (4) PR + SC. Two treated samples of ceramic were analyzed under SEM. The ceramic-composite blocks were cemented with Panavia F and stored in 37oC distilled water for 7 days. They were then cut to produce bar specimens (n=30) with a bonding area of 0.6±0.1mm2. Specimens were loaded to failure under tension in a universal testing machine (1 mm/min). Bond strength (sigma) values were statistically analyzed using ANOVA (Two-way) and Tukey (alpha = 0.05). Mean sigma (MPa) and standard deviation were as follows: 1) 15.1 ± 5.3; 2) 26.8 ± 7.4; 3) 12.7 ± 2.6; 4) 18.5 ± 4.7. Silica coated surfaces showed statistically higher sigma than the same substrate treated with GB only. In addition, ZR (with vitreous phase) showed higher ó than PR (without vitreous phase).  相似文献   

3.
STATEMENT OF PROBLEM: The ceramic composition and microstructure surface of all-ceramic restorations are important components of an effective bonding substrate. Both hydrofluoric acid etching and airborne aluminum oxide particle abrasion produce irregular surfaces necessary for micromechanical bonding. Although surface treatments of feldspathic and leucite porcelains have been studied previously, the high alumina-containing and lithium disilicate ceramics have not been fully investigated. PURPOSE: The purpose of this study was to assess the surface topography of 6 different ceramics after treatment with either hydrofluoric acid etching or airborne aluminum oxide particle abrasion. MATERIAL AND METHODS: Five copings each of IPS Empress, IPS Empress 2 (0.8 mm thick), Cergogold (0.7 mm thick), In-Ceram Alumina, In-Ceram Zirconia, and Procera (0.8 mm thick) were fabricated following the manufacturer's instructions. Each coping was longitudinally sectioned into 4 equal parts by a diamond disk. The resulting sections were then randomly divided into 3 groups depending on subsequent surface treatments: Group 1, specimens without additional surface treatments, as received from the laboratory (control); Group 2, specimens treated by use of airborne particle abrasion with 50-microm aluminum oxide; and Group 3, specimens treated with 10% hydrofluoric acid etching (20 seconds for IPS Empress 2; 60 seconds for IPS Empress and Cergogold; and 2 minutes for In-Ceram Alumina, In-Ceram Zirconia, and Procera). RESULTS: Airborne particle abrasion changed the morphologic surface of IPS Empress, IPS Empress 2, and Cergogold ceramics. The surface topography of these ceramics exhibited shallow irregularities not evident in the control group. For Procera, the 50-microm aluminum oxide airborne particle abrasion produced a flattened surface. Airborne particle abrasion of In-Ceram Alumina and In-Ceram Zirconia did not change the morphologic characteristics and the same shallows pits found in the control group remained. For IPS Empress 2, 10% hydrofluoric acid etching produced elongated crystals scattered with shallow irregularities. For IPS Empress and Cergogold, the morphologic characteristic was honeycomb-like on the ceramic surface. The surface treatment of In-Ceram Alumina, In-Ceram Zirconia, and Procera did not change their superficial structure. CONCLUSION: Hydrofluoric acid etching and airborne particle abrasion with 50-microm aluminum oxide increased the irregularities on the surface of IPS Empress, IPS Empress 2, and Cergogold ceramics. Similar treatment of In-Ceram Alumina, In-Ceram Zirconia, and Procera did not change their morphologic microstructure.  相似文献   

4.
PURPOSE: This study tested the hypothesis that the tribochemical silica coating on ceramic surfaces increases the bond strength of resin cement to a glass-infiltrated zirconium-based ceramic. MATERIALS AND METHODS: Fifteen blocks of In-Ceram Zirconia from CEREC InLab (5 per group) and 15 composite blocks (Z-250) 5 mm x 5 mm x 4 mm were made. The ceramic surfaces were polished, and the blocks were divided into three groups: (1) airborne abrasion with 110-microm aluminum oxide particles; (2) Rocatec system, tribochemical silica coating; and (3) CoJet system, tribochemical silica coating. The ceramic blocks were cemented to the composite blocks using Panavia F according to the manufacturer's specifications. All samples were stored in 37 degrees C distilled water for 7 days and later sectioned in two axes using a diamond disk under cooling to obtain specimens with a cross-sectional area of approximately 1 mm2 (n = 45). Each specimen was then attached with cyanoacrylate glue to an adapted device for the microtensile test, which was carried out on a universal testing machine. RESULTS: The results were subjected to ANOVA and Tukey's test. Group 2 (23.0+/-6.7 MPa) and group 3 (26.8+/-7.4 MPa) showed greater bond strength than group 1 (15.1+/-5.3 MPa). There was no significant difference between groups 2 and 3. All failures were in the adhesive zone. CONCLUSION: The hypothesis was confirmed--the tribochemical systems increased the bond strength between Panavia F and In-Ceram Zirconia.  相似文献   

5.
OBJECTIVES: This study evaluated the effect of three different surface conditioning methods on the bond strength of a Bis-GMA based luting cement to six commercial dental ceramics. METHODS: Six disc shaped ceramic specimens (glass ceramics, glass infiltrated alumina, glass infiltrated zirconium dioxide reinforced alumina) were used for each test group yielding a total number of 216 specimens. The specimens in each group were randomly assigned to one of the each following treatment conditions: (1) hydrofluoric acid etching, (2) airborne particle abrasion, (3) tribochemical silica coating. The resin composite luting cement was bonded to the conditioned and silanized ceramics using polyethylene molds. All specimens were tested at dry and thermocycled (6.000, 5-55 degrees C, 30 s) conditions. The shear bond strength of luting cement to ceramics was measured in a universal testing machine (1 mm/min). RESULTS: In dry conditions, acid etched glass ceramics exhibited significantly higher results (26.4-29.4 MPa) than those of glass infiltrated alumina ceramics (5.3-18.1 MPa) or zirconium dioxide (8.1 MPa) (ANOVA, P<0.001). Silica coating with silanization increased the bond strength significantly for high-alumina ceramics (8.5-21.8 MPa) and glass infiltrated zirconium dioxide ceramic (17.4 MPa) compared to that of airborne particle abrasion (ANOVA, P<0.001). Thermocycling decreased the bond strengths significantly after all of the conditioning methods tested. SIGNIFICANCE: Bond strengths of the luting cement tested on the dental ceramics following surface conditioning methods varied in accordance with the ceramic types. Hydrofluoric acid gel was effective mostly on the ceramics having glassy matrix in their structures. Roughening the ceramic surfaces with air particle abrasion provided higher bond strengths for high-alumina ceramics and the values increased more significantly after silica coating/silanization.  相似文献   

6.
STATEMENT OF PROBLEM: Ceramic surface treatment is crucial for bonding to resin. High crystalline ceramics are poorly conditioned using traditional procedures. PURPOSE: The purpose of this study was to evaluate the effect of silica coating on a densely sintered alumina ceramic relative to its bond strength to composite, using a resin luting agent. Material and methods Blocks (6 x 6 x 5 mm) of ceramic and composite were made. The ceramic (Procera AllCeram) surfaces were polished, and the blocks were divided into 3 groups (n = 5): SB, airborne-particle abrasion with 110-microm Al 2 O 3 ; RS, silica coating using Rocatec System; and CS, silica coating using CoJet System. The treated ceramic blocks were luted to the composite (W3D Master) blocks using a resin luting agent (Panavia F). Specimens were stored in distilled water at 37 degrees C for 7 days and then cut in 2 axes, x and y, to obtain specimens with a bonding area of approximately 0.6 mm 2 (n = 30). The specimens were loaded to failure in tension in a universal testing machine, and data were statistically analyzed using a randomized complete block design analysis of variance and Tukey's test (alpha=.05). Fractured surfaces were examined using light microscopy and scanning electron microscopy to determine the type of failure. Energy-dispersive spectroscopy was used for surface compositional analysis. RESULTS: Mean bond strength values (MPa) of Groups RS (17.1 +/- 3.9) ( P =.00015) and CS (18.5 +/- 4.7) ( P =.00012) were significantly higher than the values of Group SB (12.7 +/- 2.6). There was no statistical difference between Groups RS and CS. All failures occurred at the adhesive zone. CONCLUSION: Tribochemical silica coating systems increased the tensile bond strength values between Panavia F and Procera AllCeram ceramic.  相似文献   

7.
PURPOSE: The objective of this study was to test the following hypothesis: the silica coating on ceramic surface increases the bond strength of resin cement to a ceramic. MATERIALS AND METHODS: In-Ceram Alumina blocks were made and the ceramic surface was treated: G1--sand-blasting with 110-microm aluminum oxide particles; G2--Rocatec System: tribochemical silica coating (Rocatec-Pre powder + Rocatec-Plus powder + Rocatec-Sil); G3--CoJet System: silica coating (CoJet-Sand) + ESPE-Sil. The ceramic blocks were cemented to composite blocks with Panavia F resin cement (under a load of 750 g/1 min). The cemented blocks were stored in distilled water at 37 degrees C for 7 days and sectioned along the x and y axes with a diamond disk. Samples with an adhesive area of ca 0.8 mm2 (n = 45) were obtained. The samples were attached to an adapted device for the microtensile test, which was performed in a universal testing machine (EMIC) at a crosshead speed of 1 mm/min. RESULTS: The obtained results were submitted to ANOVA and Tukey's test. Mean values of tensile strength (MPa) and standard deviation values were: (G1) 16.8+/-3.2; (G2) 30.6+/-4.5; (G3) 33.0+/-5.0. G2 and G3 presented greater tensile strength than G1. There was no significant difference between G2 and G3. All the failures took place at the ceramic/resin cement interface. CONCLUSION: The silica coating (Rocatec or CoJet systems) of the ceramic surface increased the bond strength between the Panavia F resin cement and alumina-based ceramic.  相似文献   

8.
PURPOSE: To evaluate the fatigue resistance of the bond between dentin and glass-infiltrated alumina ceramic, using different luting protocols. MATERIALS AND METHODS: The null hypothesis is that the fatigue resistance varies with the luting strategy. Forty blocks of In-Ceram Alumina were prepared, and one surface of each block was abraded with 110-microm aluminum oxide particles. Then, the blocks were luted to flat dentin surfaces of 40 human third molars, using 4 different luting strategies (luting system [LS]/ceramic surface conditioning [CSC]) (n=10): (G1) [LS] RelyX-Unicem/[CSC] airborne abrasion with 110-microm Al2O3 particles; (G2) [LS] One-Step + Duo-Link (bis-GMA-based resin)/[CSC] etching with 4% hydrofluoric acid + silane agent; (G3) [LS] ED-Primer + Panavia F (MDP-based resin)/[CSC] Al2O3; (G4) [LS] Scotchbond1+RelyX-ARC (bis-GMA-based resin)/[CSC] chairside tribochemical silica coating (air abrasion with 30-microm SiOx particles + silane). After 24 h of water storage at 37 degrees C, the specimens were subjected to 106 fatigue cycles in shear with a sinusoidal load (0 to 21 N, 8 Hz frequency, 37 degrees C water). A fatigue survivor score was given, considering the number of the fatigue cycles until fracture. The failure modes of failed specimens were observed in a SEM. RESULTS: G3 (score = 5.9, 1 failure) and G4 (score = 6, no failures) were statistically similar (p = 0.33) and had significantly higher fatigue resistance than G1 (score = 3.9, 5 failures) and G2 (score = 3.7, 6 failures) (p < 0.03). SEM analysis of fractured specimens of G1 and G2 showed that almost all the failures were between ceramic and cement. CONCLUSION: The MDP-based resin cement + sandblasting with Al2O3 particles (G3) and bis-GMA-based resin cement + tribochemical silica coating (G4), both using the respective dentin bonding systems, were the best luting protocols for the alumina ceramic. The null hypothesis was confirmed.  相似文献   

9.
This study evaluated the effect of chairside and laboratory types of surface conditioning methods on the adhesion of dual-cure resin cement with MDP functional monomer to zirconia ceramic after thermocycling. Disk-shaped (diameter: 10 mm, thickness: 2 mm) Y-TZP ceramics (Lava, 3M ESPE) were used (N=40) and finished with wet 1200-grit silicon carbide abrasive paper. Specimens were randomly divided into four experimental groups according to the following surface conditioning methods (n=10 per group): Group 1--Chairside airborne particle abrasion with 50-microm Al2O2 + Alloy Primer (Kuraray); Group 2--Airborne particle abrasion with 50-microm Al2O3 + Cesead II Opaque Primer (Kuraray); Group 3--Airborne particle abrasion with 50-microm A12O3 + Silano-Pen + silane coupling agent (Bredent); Group 4--Laboratory tribochemical silica coating (110-microm Al2O3 + 110-microm SiOx) (Rocatec) + silane coupling agent (ESPE-Sil). Adhesive cement, Panavia F 2.0 (Kuraray), was bonded incrementally to the ceramic surfaces using polyethylene molds (diameter: 3.6 mm, height: 5 mm). All specimens were thermocycled (5 and 55 degrees C, 6,000 cycles) and subjected to shear bond strength test (1 mm/min). Data were statistically analyzed (one-way ANOVA, alpha=0.05), whereby no significant differences were found among the four groups (8.43+/-1.3, 8.98+/-3.6, 12.02+/-6.7, and 8.23+/-3.8 MPa) (p=0.1357). Therefore, the performance of chairside conditioning methods used for zirconia was on par with the laboratory alternative tested.  相似文献   

10.
OBJECTIVES: This study investigated the influence of a silica-coating method on the resin bond of two different resin composite cements to the intaglio surface of Procera AllCeram densely sintered, high-purity, alumina ceramic restorations after long-term storage and thermocycling. METHOD AND MATERIALS: Densely sintered alumina ceramic specimens were fabricated with the intaglio surface of the Procera AlICeram coping and randomly divided into five adhesive groups (100 total specimens). Resin composite cylinders were bonded either to the untreated or to the tribochemical silica/silane-coated ceramic surface with either a conventional Bis-GMA resin cement or a resin composite containing an adhesive phosphate monomer (Panavia 21) in combination with their corresponding bonding/silane coupling agents. Panavia was also used without silanization to the untreated ceramic surface (control). Subgroups of 10 specimens were stored in distilled water for either 3 (baseline) or 180 days prior to shear bond strength testing. The 180-day samples were subjected to repeated thermocycling for a total of 12,000 cycles. Data were analyzed with one-way analysis of variance and Tukey's multiple comparison. RESULTS: Silica coating significantly increased overall bond strength to Procera AllCeram. RelyX ARC and silica coating revealed the highest bond strength at baseline. Long-term storage and thermocycling significantly decreased overall bond strength. Two groups revealed the significantly highest bond strength values after artificial aging: Panavia 21 with its silane/bonding agent to the original ceramic surface and Panavia 21 to the silica-coated ceramic surface. CONCLUSION: The use of a resin composite containing an adhesive phosphate monomer either in combination with a silane coupling/bonding agent or after tribochemical silica/silane coating revealed the highest long-term shear bond strength to the intaglio surface of Procera AllCeram restorations.  相似文献   

11.
This study evaluated the effects of 5 different surface conditioning methods on the bond strength of polycarbonate brackets bonded to ceramic surfaces with resin based cement. Six disc-shaped ceramic specimens (feldspathic porcelain) with glazed surfaces were used for each group. The specimens were randomly assigned to 1 of the following treatment conditions of the ceramic surface: (1) orthophosphoric acid + primer + bonding agent, (2) hydrofluoric acid gel + primer + bonding agent, (3) tribochemical silica coating (silicon dioxide, 30microm) + silane, (4) airborne particle abrasion (aluminum trioxide, 30microm) + silane, and (5) airborne particle abrasion (aluminum trioxide, 30microm) + silane + bonding agent. Brackets were bonded to the conditioned ceramic specimens with a light-polymerized resin composite. All specimens were stored in water for 1 week at 37 degrees C and then thermocycled (1000 cycles, 5 degrees C to 55 degrees C, 30 seconds). The shear bond strength values were measured on a universal testing machine at a crosshead speed of 1 mm/min. Brackets treated with silica coating with silanization had significantly greater bond strength values (13.6 MPa, P =.01) than brackets treated with orthophosphoric acid (8.5 MPa). There was no significant difference (P =.97) between the bond strengths obtained after airborne abrasion with aluminium trioxide particles followed by silanization (12 MPa) and hydrofluoric acid application (11.2 MPa) (ANOVA and Tukey test). Although brackets conditioned with orthophosphoric acid exhibited only adhesive failures of the luting cement from the ceramic surface, other conditioning methods showed mixed types of failures. Airborne particle abrasion with aluminium trioxide or silica coating followed by silanization gave the most favorable bond strengths. The types of failures observed after debonding indicated that the critical parameter was the strength of the adhesive joint of the luting cement to both the bracket and the ceramic.  相似文献   

12.
STATEMENT OF PROBLEM: An increasing demand for esthetic restorations has resulted in the development of new ceramic systems, but the fracture of veneering ceramics still remains the primary cause of failure. Porcelain repair frequently involves replacement with composite resin, but the bond strength between composite resin and all-ceramic coping materials has not been studied extensively. PURPOSE: The purpose of this study was to evaluate the tensile bond strength of composite resin to 3 different all-ceramic coping materials with various surface treatments. MATERIAL AND METHODS: Thirty specimens (10 x 10 x 2 mm) each of lithium-disilicate ceramic (IPS Empress2 [E]), alumina ceramic (In-Ceram Alumina [I]), and zirconia ceramic (Zi-Ceram [Z]) were fabricated. Feldspathic ceramic (Duceram Plus [F]) was used as the control. Each material was divided into 3 groups (n=10), and 3 different surface treatments were performed: airborne-particle abrasion with 50-microm alumina particles (Ab); airborne-particle abrasion with 50-microm alumina particles and acid etching with 4% hydrofluoric acid (Ae); or airborne-particle abrasion with 30-microm alumina particles modified with silica acid (Si). After surface treatment of ceramic specimens, composite resin cylinders (5-mm diameter x 10-mm height) were light polymerized onto the ceramic specimens. Each specimen was subjected to a tensile load at a crosshead speed of 2 mm/min until fracture. The fracture sites were examined with scanning electron microscopy to determine the location of failure during debonding and to examine the surface treatment effects. Two-way analysis of variance and the Duncan multiple comparison test (alpha=.05) were used to analyze the bond strength values. RESULTS: There were significant differences in the bond strengths for both ceramics (P<.001) and surface treatments (P<.001) and the interaction (P<.001). The Duncan analysis yielded the following statistical subsets of the bond strength values: (FAe, ISi, EAe, ZSi) > FAb > (FSi, EAb, ESi) (IAb, IAe) > (ZAe, ZAb). The results illustrate no differences within the parentheses but statistically significant differences among the groups. CONCLUSION: Alumina and zirconia ceramic specimens treated with a silica coating technique, and lithium disilicate ceramic specimens treated with airborne-particle abrasion and acid etching yielded the highest tensile bond strength values to a composite resin for the materials tested.  相似文献   

13.
STATEMENT OF PROBLEM: Surface treatment methods used for resin bonding to conventional silica-based dental ceramics are not reliable for zirconium-oxide ceramics. PURPOSE: The aim of this study was to compare the effects of airborne-particle abrasion, silanization, tribochemical silica coating, and a combination of bonding/silane coupling agent surface treatment methods on the bond strength of zirconium-oxide ceramic to a resin luting agent. MATERIAL AND METHODS: Sixty square-shaped (5 x 5 x 1.5 mm) zirconium-oxide ceramic (Cercon) specimens and composite resin (Z-250) cylinders (3 x 3 mm) were prepared. The ceramic surfaces were airborne-particle abraded with 125-microm aluminum-oxide (Al(2)O(3)) particles and then divided into 6 groups (n = 10) that were subsequently treated as follows: Group C, no treatment (control); Group SIL, silanized with a silane coupling agent (Clearfil Porcelain Bond Activator); Group BSIL, application of the adhesive 10-methacryloyloxydecyl dihydrogen phosphate monomer (MDP)-containing bonding/silane coupling agent mixture (Clearfil Liner Bond 2V/ Porcelain Bond Activator); Group SC, silica coating using 30-microm Al(2)O(3) particles modified by silica (CoJet System); Group SCSIL, silica coating and silanization (CoJet System); and Group SCBSIL, silica coating and application of an MDP-containing bonding/silane coupling agent mixture (Clearfil Liner Bond 2V/Porcelain Bond Activator). The composite resin cylinders were bonded to the treated ceramic surfaces using an adhesive phosphate monomer-containing resin luting agent (Panavia F). After the specimens were stored in distilled water at 37 degrees C for 24 hours, their shear bonding strength was tested using a universal testing machine at a crosshead speed of 0.5 mm/min. Debonded specimen surfaces were examined with a stereomicroscope to assess the mode of failure, and the treated surfaces were observed by scanning electron microscopy. Bond strength data were analyzed using 1-way analysis of variance and the Duncan test (alpha = .05). RESULTS: The bond strengths (mean +/- SD; MPa) in the groups were as follows: Group C, 15.7 +/- 2.9; Group SIL, 16.5 +/- 3.4; Group BSIL, 18.8 +/- 2.8; Group SC, 21.6 +/- 3.6; Group SCSIL, 21.9 +/- 3.9; and Group SCBSIL, 22.9 +/- 3.1. The bond strength was significantly higher in Group SCBSIL than in Groups C, SIL, and BSIL (P<.001), but did not differ significantly from those in Groups SC and SCSIL. Failure modes were primarily adhesive at the interface between zirconium and the resin luting agent in Groups C and SIL, and primarily mixed and cohesive in Groups SC, SCSIL, and SCBSIL. CONCLUSION: Tribochemical silica coating (CoJet System) and the application of an MDP-containing bonding/silane coupling agent mixture increased the shear bond strength between zirconium-oxide ceramic and resin luting agent (Panavia F).  相似文献   

14.
OBJECTIVE: This study evaluated the shear bond strength of two resin composite luting cements to zirconium oxide ceramic substrate using two air-particle abrasion methods. METHODS: Two resin composite cements, RelyX Unicem (3M ESPE) and Panavia F (Kuraray), each with an acidic composition, were used in combination with a zirconium oxide (DCS Dental AG) substrate containing Al2O3 and SiO2 (Rocatec system, 3M ESPE) and two air-particle abrasion methods. The shear bond strength of the resin composite cement to the substrate was tested after the samples were either water-stored for one week or thermocycled following 24 hours of water storage. RESULTS: The RelyX Unicem resin composite cement specimens with the Rocatec treatment (20.9 +/- 4.6 Mpa and 20.1 +/- 4.2 MPa, respectively, n = 12) demonstrated the highest shear bond strength. Alternatively, the lowest values were obtained for the Panavia F resin cement samples, with Al2O3 air-particle abrasion in both storage conditions, water storage for one week (17.7 +/- 8.9MPa) or thermocycling after 24 hours of water storage (16.3 +/- 4.9 MPa). Neither storage condition or particle abrasion system significantly affected shear bond strengths (ANOVA, p > 0.05). CONCLUSION: It was concluded that two different surface conditioning methods and storage conditions did not significantly affect the bonding properties of Panavia F and RelyX Unicem resin composite luting cements to Zirconia.  相似文献   

15.
PURPOSE: To assess the effect of the composite surface conditioning on the microtensile bond strength of a resin cement to a composite used for inlay/onlay restorations. MATERIALS AND METHODS: Forty-two blocks (6 x 6 x 4 mm) of a microfilled composite (Vita VMLC) were produced and divided into 3 groups (N = 14) by composite surface conditioning methods: Gr1--etching with 37% phosphoric acid, washing, drying, silanization; Gr2--air abrasion with 50-lm Al203 particles, silanization; Gr3--chairside tribochemical silica coating (CoJet System), silanization. Single-Bond (one-step adhesive) was applied on the conditioned surfaces and the two resin blocks treated with the same method were cemented using RelyX ARC (dual-curing resin cement). The specimens were stored for 7 days in water at 37 degrees C and then sectioned to produce nontrimmed beam samples, which were submitted to microtensile bond strength testing (muTBS). For statistical analysis (one-way ANOVA and Tukey's test, alpha = 0.05), the means of the beam samples from each luted specimen were calculated (n = 7). RESULTS: muTBS values (MPa) of Gr2 (62.0 +/- 3.9a) and Gr3 (60.5 +/- 7.9a) were statistically similar to each other and higher than Gr1 (38.2 +/- 8.9b). The analysis of the fractured surfaces revealed that all failures occurred at the adhesive zone. CONCLUSION: Conditioning methods with 50-lm Al203 or tribochemical silica coating allowed bonding between resin and composite that was statistically similar and stronger than conditioning with acid etching.  相似文献   

16.
STATEMENT OF PROBLEM: Bonded densely sintered aluminum oxide ceramic restorations such as Procera AllCeram laminates rely on a strong and long-term durable resin bond. Air particle abrasion and a phosphate-modified resin luting agent have the potential to provide such bonds to aluminum oxide ceramics, but their efficacy on the Procera AllCeram intaglio surface is unknown. The inherent microroughness of this surface may influence bond strengths, because micromechanical interlocking is a main contributor for adhesion of resins to ceramic materials. PURPOSE: This study evaluated the bond strength of a phosphate-modified resin luting agent with and without silanization to an air particle-abraded Procera AllCeram intaglio surface compared with a conventional resin-bonding system before and after artificial aging. MATERIAL AND METHODS: Sixty square (10 x 10 x 2 mm) specimens of Procera AllCeram alumina ceramic with the Procera intaglio surface were air particle abraded with aluminum oxide. Composite cylinders (2.9 mm in diameter and 3.0 mm in width) were fabricated with Z-250 composite and bonded to the ceramic specimens with either Panavia 21 TC or Rely X ARC (control) and their corresponding bonding/silane coupling agents. In addition, Panavia was used without silanization as suggested in similar studies. Subgroups of 10 specimens were stored in distilled water for either 3 or 180 days before shear bond strength was tested with a universal testing machine (MPa) until fracture. The 180-day specimens were subjected to thermocycling at 2000 cycles every 30 days (12,000 cycles total). Data were analyzed with 1-way analysis of variance and Tukey's multiple comparison (alpha=.05). Failure modes were examined with a light microscope (original magnification x 25). RESULTS: Differences between short-term and long-term groups were highly significant (P=.000). Bond strength with Rely X ARC and its silane coupling agent (22.75 +/- 4 MPa) decreased significantly (P=.000) after artificial aging (3.32 +/- 3.62 MPa). Panavia 21 after silanization revealed significantly different (P=.003) early (21.42 +/- 4.3 MPa) and late (16.09 +/- 2.37 MPa) bond strengths but achieved the highest bond strength after artificial aging. Bond strengths of Panavia without silanization both early (8.06 +/- 2.1 MPa) and late (6.91 +/- 2.49 MPa) were not significantly different. Failure modes were mainly adhesive at the ceramic surface for all groups. CONCLUSION: Panavia 21 in combination with its corresponding bonding/silane coupling agent can achieve an acceptable resin bond to the air particle-abraded intaglio surface of Procera AllCeram restorations after artificial aging, which had mixed effects on the other investigated groups. The conventional resin luting agent revealed the most dramatic decrease in bond strength.  相似文献   

17.
纳米硅涂层对玻璃渗透氧化铝陶瓷粘结强度的影响   总被引:4,自引:0,他引:4  
目的:探讨利用溶胶凝胶法进行纳米硅涂层表面改性对玻璃渗透氧化铝陶瓷粘结强度的影响。方法:3组In-Ceram氧化铝瓷块分别施以“喷砂(P组)”、“喷砂+硅烷偶联(PO组)”、“喷砂+纳米硅涂层+硅烷偶联(PTO)组)”的表面处理。制作陶瓷/复合树脂粘结体,室温下置蒸馏水中浸泡24h,微拉伸法测试各组试件粘结强度。结果:P组与PO组粘结强度较弱且无明显差异(P=0.797),PTO组的粘结强度明显高于其他组(P〈0.05)。结论:通过溶胶凝胶法在喷砂表面制备纳米硅涂层后应用硅烷偶联剂可以显著提高In-Ceram氧化铝陶瓷的粘结强度。  相似文献   

18.
Yttria partially stabilized zirconia (YPSZ) ceramics are suitable for dental and medical use because of their high fracture toughness and chemical durability. The purpose of this study was to examine the bonding behavior of a dental YPSZ ceramic, Denzir. After being subjected to various surface treatments, Denzir specimens were bonded to each other using an adhesive resin composite, glass ionomer, or zinc phosphate cement. Bonding strength was then determined by the shearing test. No significant differences (p>0.05) were observed between SiC- and Al2O3-blasted specimens. In all surface treatments, the shear bond strength significantly (p<0.05) increased in the order of adhesive resin composite cement > glass ionomer cement > zinc phosphate cement. Moreover, silanization with methacryloxy propyl trimethoxysilane slightly increased the bonding strength of the adhesive resin composite cement.  相似文献   

19.
The current study evaluated the influence of a novel surface treatment that uses a low-fusing porcelain glaze for promoting a bond between zirconia-based ceramic and a dual-cure resin luting agent. Bond strengths were compared with those from airborne particle abrasion, hydrofluoric acid etching, and silanization-treated surfaces. Twenty-four yttrium-stabilized tetragonal zirconia (Cercon Smart Ceramics, Degudent, Hanau, Germany) discs were fabricated and received eight surface treatments: group 1: 110 μm aluminum oxide air-borne particle abrasion; group 2: 110 μm aluminum oxide airborne particle abrasion and silane; group 3: 50 μm aluminum oxide airborne particle abrasion; group 4: 50 pm aluminum oxide airborne particle abrasion and silane; group 5: glaze and hydrofluoric acid;group 6: glaze, hydrofluoric acid, and silane;group 7: glaze and 50 pm aluminum oxide airborne particle abrasion; and group 8: glaze,50 pm aluminum oxide airborne particle abrasion and silane. After treatment, Enforce resin cement (Dentsply, Caulk, Milford, DE, USA) was used to fill an iris cut from microbore Tygontubing that was put on the ceramic surface to create 30 cylinders of resin cement in each treatment group (n=30). Micro shear bond test-ing was performed at a cross head speed of 0.5mm/min. One-way analysis of variance, and multiple comparisons were made using Tukey's test (p<0.5). The bond strength was affected only by surface treatments other than silanization. The groups that utilized the low-fusing porcelain glaze with airborne particle abrasion or hydrofluoric acid showed bond strength values statistically superior to groups that utilized conventional airborne particle abrasion treatments with 50 or 110 pm aluminum oxide (p<0.001). The treatment that utilized low-fusing porcelain glaze and hydrofluoric acid showed bond strength values statistically superior to remaining groups (p<0.001). Treatment of zirconia ceramic surfaces with a glaze of low-fusing porcelain significantly increased the bond strength of a dual-cure resin luting agent to the ceramic surface.  相似文献   

20.
OBJECTIVE: Alumina and zirconia are inert to conventional etching and need to be initially conditioned with, for example, silicatization. The aim of the present study was to evaluate the effect of operating air pressure of tribochemical silica-coating method on the shear bond strength of composite resin to ceramic substrates. MATERIAL AND METHODS: Alumina (Procera Alumina, Nobel Biocare) and zirconia (LAVA; 3M ESPE and Procera Zirconia; Nobel Biocare) were airborne particle silica-coated (CoJet; 3M ESPE) using selected, clinically available air pressures of 150, 220, 300, and 450 kPa. The surfaces were silanized with silane coupling agent (ESPE Sil; 3M ESPE) and coated with adhesive resin (3M Multipurpose resin; 3M ESPE). Particulate filler resin composite (Z250; 3M ESPE) stubs (diameter 3.6 mm, height 4.0 mm) were added onto ceramics and light-cured for 40 s. The test specimens (n=18/group) were thermocycled (6000 x 5-55 degrees C) and shear bond strengths were measured with a cross-head speed of 1.0 mm/min. Fracture surfaces were examined with SEM, and an elemental analysis (EDS) was carried out to determine silica content on the substrate surface. RESULTS: The highest bond strengths were obtained with the highest pressures. ANOVA showed significant differences in bond strength between the ceramics (p<0.05) and between the specimens treated at various air pressures (p<0.05). CONCLUSIONS: Clinically, the operating air pressure of silicatization may have a significant effect on bond strength to non-etchable ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号