首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The authors report a 29-year-old woman with marked atrophy of the cerebellum, medulla oblongata, and spinal cord, dementia, diffuse white matter abnormality on MRI, ragged-red fibers, and R88C mutation in the human glial fibrillary acidic protein (GFAP). Mitochondria DNA (mtDNA) analysis showed a rare polymorphism at A8291G. This mtDNA polymorphism, which has been associated with limb-girdle type mitochondrial myopathy, may modify the clinical symptoms of this juvenile form of Alexander disease with GFAP mutation.  相似文献   

2.
Alexander disease is a degenerative white matter disorder due to mutations in the glial fibrillary acidic protein (GFAP) gene. It has been classified into three forms based on the age of onset and severity: an infantile, a juvenile, and an adult form. In a 6-year-old patient with a relatively mild form of Alexander disease, we detected a common R79H mutation in GFAP, previously only described in the infantile form. These results suggest the need for further studies of the genotype-phenotype correlation.  相似文献   

3.
Alexander disease is a rare neurodegenerative leucoencephalopathy caused by de novo mutations in the GFAP gene. Infantile, juvenile, and adult subtypes have been described and the clinical and radiological phenotypes are broad. Here we report on a single case of juvenile-onset Alexander disease associated with a novel frameshift mutation in the GFAP gene. The 8-year-old male patient had a relatively mild clinical phenotype characterized by dystonia, intermittent episodes of raised intracranial pressure, and characteristic radiological changes. He also presented with the additional and to our knowledge previously unreported, neuroimaging finding of periventricular calcification. We postulate that in children with leucoencephalopathy and periventricular calcification of undetermined aetiology, the diagnosis of Alexander disease should be considered. If the magnetic resonance imaging findings are compatible with Alexander disease, then DNA analysis of the GFAP gene should be performed even if the full criteria for a neuroradiological diagnosis are not met.  相似文献   

4.
5.
6.
Alexander disease is a leukoencephalopathy that usually presents during infancy with developmental delay, macrocephaly and seizures. Several sequencing analyses have identified mutations in the gene encoding glial fibrillary acidic protein (GFAP) of patients with Alexander disease. We described a girl who developed seizures in infancy with atypical CT findings and in whom a novel heterozygous mutation, L90P (283T --> C), was detected in exon 1 of the GFAP gene. The neurological deterioration was mild and appeared relatively late for infantile onset.  相似文献   

7.
Alexander disease is a rare but often fatal disease of the central nervous system. Infantile, juvenile and adult forms have been described that present with different clinical signs, but are unified by the characteristic presence in astrocytes of Rosenthal fibers-protein aggregates that contain glial fibrillary acidic protein (GFAP) and small stress proteins. The chance discovery that mice expressing a human GFAP transgene formed abundant Rosenthal fibers suggested that mutations in the GFAP gene are a cause of Alexander disease. Sequencing results from several laboratories have indeed now identified GFAP coding mutations in most cases of the disease, including both the infantile and juvenile forms. These mutations have been found in the 1A, 2A and 2B segments of the conserved central rod domain of GFAP, and also in the variable tail region. All changes detected are heterozygous missense mutations, and none has been found in any parent of a patient that has been tested. This indicates that most cases of Alexander disease arise through de novo, dominant, GFAP mutations. Many of these mutations are homologous to ones described in other intermediate filament diseases. These other diseases have been attributed to a dominant loss of function, as the intermediate filament network is usually disrupted and a similar phenotype is observed in mice in which the corresponding intermediate filament gene has been inactivated. However, astrocytes of Alexander disease patients have normal appearing intermediate filaments, and GFAP null mice do not display the symptoms or pathology of Alexander disease. Thus, Alexander disease likely results from a dominant gain of function. Drawing upon the homology of many of the Alexander disease mutations to those found in other intermediate filament diseases, it is suggested that the gain of function is due to a partial block of filament assembly that leads to accumulation of an intermediate that participates in toxic interactions.  相似文献   

8.
Alexander's disease is a rare and fatal disorder of the central nervous system. It may appear at any age so three forms are delineated: infantile, juvenile and adult form. Alexander's disease inescapably leads to psychomotor retardation, progressive loss of nervous functions and characteristic changes in neuroimaging studies. The authors present a case of a 6-year-old girl, who was admitted to the Neurology Department after an episode of long-term vomiting, trismus and blurred speech. Computed tomography and magnetic resonance imaging of the brain showed characteristic changes of the white matter in the frontal lobes, which enabled us to make a preliminary diagnosis of Alexander's disease. The diagnosis was subsequently confirmed by molecular genetic testing of the gene encoding glial fibrillary acidic protein (GFAP). This article also presents clinical symptoms and course of this degenerative disorder. The authors point out the important role of neuroimaging and the necessity of molecular examination as a new diagnostic tool.  相似文献   

9.
10.
11.
Alexander's disease, a leukodystrophy characterized by Rosenthal fibers (RFs) in the brain, is categorized into three subtypes: infantile, juvenile, and adult. Although most are sporadic, occasional familial Alexander's disease cases have been reported for each subtype. Hereditary adult-onset Alexander's disease shows progressive spastic paresis, bulbar or pseudobulbar palsy, palatal myoclonus symptomatologically, and prominent atrophy of the medulla oblongata and upper spinal cord on magnetic resonance imaging. Recent identification of GFAP gene mutations in the sporadic infantile- and juvenile-onset Alexander's disease prompted us to examine the GFAP gene in two Japanese hereditary adult-onset Alexander's disease brothers with autopsy in one case. Both had spastic paresis without palatal myoclonus, and magnetic resonance imaging showed marked atrophy of the medulla oblongata and cervicothoracic cord. The autopsy showed severely involved shrunken pyramids, but scarce Rosenthal fibers (RFs). Moderate numbers of Rosenthal fibers (RFs) were observed in the stratum subcallosum and hippocampal fimbria. In both cases, we found a novel missense mutation of a G-to-T transition at nucleotide 841 in the GFAP gene that results in the substitution of arginine for leucine at amino acid residue 276 (R276L). This is the first report of identification of the causative mutation of the GFAP gene for neuropathologically proven hereditary adult-onset Alexander's disease, suggesting a common molecular mechanism underlies the three Alexander's disease subtypes.  相似文献   

12.
Alexander disease is a rare disorder of cerebral white matter due to a dysfunction of astrocytes. The most common infantile form presents as a megalencephalic leukodystrophy. Mutations of the GFAP gene, encoding Glial Fibrillary Acidic Protein, have been recognized as the cause of Alexander disease. Glial Fibrillary Acidic Protein is the major intermediate filament protein in astrocytes, its functional rod domain is conserved in sequence and structure among other intermediate filament proteins. We report here two cases of infantile Alexander disease with early onset and severe course, caused by DE NOVO mutations A364 V and Y366C. Both affected GFAP residues are part of a highly conserved coiled-coil trigger motif in the C-terminal end of segment 2B, probably required for the stability of intermediate filament molecules. Comparable effects are seen with mutations of the corresponding residues of the gene coding for keratin 14, another intermediate filament, this further supports the hypothesis that these positions of the trigger motif are generally critical for a normal function of intermediate filaments.  相似文献   

13.
We report the mutation analysis of a Japanese patient diagnosed with infantile-type Alexander disease. The genetic analysis revealed a new missense mutation, an A to G transition at nucleotide position 1026 in exon 6, leading to the substitution of glycine for glutamic acid at amino acid position 371(E371G). This mutation was not detected in 50 Japanese controls using denaturing high-performance liquid chromatography.  相似文献   

14.
Alexander disease (AD) is a rare disorder of cerebral white matter due to a dysfunction of astrocytes. The most common infantile form presents as a megalencephalic leukodystrophy. Recently, heterozygous de novo mutations in the glial fibrillary acidic protein gene (GFAP) have been demonstrated to be associated with AD. We report heterozygous mutations in GFAP in 5 patients, including a pair of monozygotic twins, with clinical and neuroradiological features of infantile AD. Novel mutations were detected affecting nucleotides 304 T --> C (L97 P) and 730 G --> C (R239 P) in two other patients. None of the parents of our patients carried the mutations stressing dominant de novo mutations as the cause of AD. The presence of an identical mutation 250 G --> A (R79 H) in both monozygotic twins with infantile AD points to the origin of these GFAP mutations in germ cells or very early postzygotic stages.  相似文献   

15.
BACKGROUND: The transmissible spongiform encephalopathies constitute a fascinating and biologically unique group of invariably fatal neurodegenerative disorders that affect both animals and humans. Creutzfeldt-Jakob disease (CJD), Gerstmann-Straussler-Scheinker syndrome, and fatal familial insomnia represent the more common human phenotypes. Excluding the small number of iatrogenically transmitted cases, approximately 85% to 90% of patients develop CJD without identifiable explanation, with an increasing number of different mutations in the prion protein gene (PRNP) recognized as probably causative in the remainder. OBJECTIVE: To report on an 82-year-old woman with pathologically confirmed CJD found unexpectedly to harbor a novel mutation in PRNP. METHODS: Routine clinical investigations were undertaken to elucidate the cause of the rapidly progressive dementia and neurological decline manifested by the patient, including magnetic resonance imaging of the brain, electroencephalography, and cerebrospinal fluid analysis for the 14-3-3 beta protein. Standard postmortem neuropathological examination of the brain was performed, including immunocytochemistry of representative sections to detect the prion protein. Posthumous genetic analysis of the open reading frame of PRNP was performed on frozen brain tissue using polymerase chain reaction and direct sequencing. RESULTS: Concomitant with the exclusion of alternative diagnoses, the presence of characteristic periodic sharp-wave complexes on the electroencephalogram in combination with a positive result for 14-3-3 beta protein in the cerebrospinal fluid led to a confident clinical diagnosis of CJD, confirmed at autopsy. There was no family history of dementia or similar neurological illness, but patrilineal medical information was incomplete. Unexpectedly, full sequencing of the PRNP open reading frame revealed a single novel mutation consisting of an adenine-to-guanine substitution at nucleotide 611, causing alanine to replace threonine at codon 188. CONCLUSIONS: In addition to expanding the range of PRNP mutations associated with human prion diseases, we believe this case is important for the following reasons. First, from an epidemiological perspective, the avoidance of occasional incorrect classification of patients manifesting neurodegenerative disorders that may have a genetic basis requires systematic genotyping, particularly when there are uncertainties regarding the family history. Second, the incidence of spongiform encephalopathy in elderly patients beyond the typical age range may be underestimated and does not preclude a genetic basis. Finally, as a corollary, this case highlights problematic issues in human transmissible spongiform encephalopathies, as illustrated by disease penetrance and age of onset in genotype-phenotype correlations.  相似文献   

16.
17.
Glial fibrillary acidic protein (GFAP) mutation has been reported in Alexander disease. We report a patient with the adult form of Alexander disease who shows a novel mutation in GFAP. This case presented with progressive dysarthria, dysphagia and spastic gait on the right side. Brain and spinal cord MRI showed marked atrophy of the medulla oblongata and spinal cord. Abnormal high signal intensities in the ventral medulla oblongata were detected bilaterally. There were no white matter lesions or contrast enhancing lesions. Recently, there have been reports of patients with a juvenile form of Alexander disease presenting with atrophy or signal abnormalities of the medulla or spinal cord. Atrophy of the medulla and spinal cord have specifically been described as suggestive of Alexander disease [1]. Sequence analysis of the GFAP gene of this patient showed a heterozygous c.221T>C mutation, predicting a p.M74T amino acid change. In all patients suspected of Alexander disease on the basis of MRI findings, GFAP analysis is necessary to confirm the diagnosis.  相似文献   

18.
Alexander disease (AD) is a rare genetic disorder of the central nervous system due to a dysfunction of astrocytes. The most common infantile form presents as a progressive leukodystrophy with macrocephalus. Recently, heterozygous de novo mutations in the gene encoding glial fibrillary acidic protein (GFAP) have been demonstrated to be associated with AD. We used localized proton magnetic resonance spectroscopy (MRS) to assess metabolic abnormalities in grey and white matter, basal ganglia, and cerebellum of 4 patients with infantile AD and GFAP mutations. Strongly elevated concentrations of myo-inositol in conjunction with normal or increased choline-containing compounds in all regions investigated point to astrocytosis and demyelination. Neuroaxonal degeneration, as reflected by a reduction of N-acetylaspartate, was most pronounced in cerebral and cerebellar white matter. The accumulation of lactate in affected white matter is in line with infiltrating macrophages. Metabolic alterations demonstrated by in vivo proton MRS are in excellent agreement with known neuropathological features of AD. Received: 3 May 2002, Received in revised form: 7 October 2002, Accepted: 14 October 2002 Correspondence to Prof. F. Hanefeld  相似文献   

19.
20.
Alexander disease (AxD) is pathologically characterized by the presence of Rosenthal fibers (RF), which are made up of GFAP, αB‐crystallin and heat shock protein 27, in the cytoplasm of perivascular and subpial astrocyte endfeet. Since GFAP mutation has been confirmed in reported cases of AxD, clinical or experimental research is being conducted on the relationship between GFAP mutation and the onset pathology as well as the clinical form. We conducted a nationwide survey and a clinical study, and classified AxD into three types: cerebral AxD (type 1), which primarily has an infantile onset with presence of seizures, psychomotor developmental retardation, macrocephaly, and abnormalities in the superior frontal cerebral white matter observed in a brain MRI; bulbospinal AxD (type 2), which primarily has an adult onset with presence of muscle weakness, hyperreflexia, bulbar or pseudobulbar symptoms, signal abnormalities, and atrophy observed in an MRI of the medulla oblongata and upper cervical spinal cord; and an intermediate form (type 3) which has the characteristics of both. A research on GFAP mutations and aggregate formation concluded that GFAP mutations decreased the solubility of GFAP. According to our cell model experiment, the formation of mutant GFAP aggravates depending on the site of the GFAP mutation. Furthermore, there is a possibility that polymorphism in the GFAP promoter gene regulates the degree to which GFAP is expressed; it may have an effect on clinical heterogeneity. Recent research using cell and animal models suggests that the pathology of AxD involves not only mere functional abnormalities in intermediate filaments but also functional abnormalities in astrocytes as well as in neurons. Clarification of the glia–neuron interactions will prove the disease to be very interesting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号