首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Dolastatin 15, a seven-subunit depsipeptide derived from Dolabella auricularia, is a potent antimitotic agent structurally related to the antitubulin agent dolastatin 10, a five-subunit peptide obtained from the same organism. We have compared dolastatin 15 with dolastatin 10 for its effects on cells grown in culture and on biochemical properties of tubulin. The IC50 values for cell growth were obtained for dolastatin 15 with L1210 murine leukemia cells, human Burkitt lymphoma cells, and Chinese hamster ovary (CHO) cells (3, 3, and 5 nM with the three cell lines, respectively). For dolastatin 10, IC50 values of 0.4 and 0.5 nM were obtained with the L1210 and CHO cells, respectively. At toxic concentrations dolastatin 15 caused the leukemia and lymphoma cells to arrest in mitosis. In the CHO cells both dolastatin 15 and dolastatin 10 caused moderate loss of microtubules at the IC50 values and complete disappearance of microtubules at concentrations 10-fold higher. Despite its potency and the loss of microtubules in treated cells, the interaction of dolastatin 15 with tubulin in vitro was weak. Its IC50 value for inhibition of glutamate-induced polymerization of tubulin was 23 microM, as compared to values of 1.2 microM for dolastatin 10 and 1.5 microM for vinblastine. Dolastatin 10 noncompetitively inhibits the binding of vincristine to tubulin, inhibits nucleotide exchange, stabilizes the colchicine binding activity of tubulin, and inhibits tubulin-dependent GTP hydrolysis (Bai et al., Biochem Pharmacol 39: 1941-1949, 1990; Bai et al. J Biol Chem 265: 17141-17149, 1990). Only the latter reaction was inhibited by dolastatin 15. Nevertheless, its structural similarity to dolastatin 10 indicates that dolastatin 15 may bind weakly in the "vinca domain" of tubulin (a region of the protein we postulate to be physically close to but not identical with the specific binding site of vinca alkaloids and maytansinoids), presumably in the same site as dolastatin 10 (the "peptide site").  相似文献   

2.
Dolastatin 10, a cytostatic peptide containing several unique amino acid subunits, was isolated from the marine shell-less mollusk Dolabella auricularia (Pettit GR, Kamano Y, Herald CL, Tuinman AA, Boettner FE, Kizu H, Schmidt JM, Baczynskyj L, Tomer KB and Bontems RJ, J Am Chem Soc 109: 6883-6885, 1987). Since our preliminary studies demonstrated that dolastatin 10 inhibited tubulin polymerization and the binding of radiolabeled vinblastine to tubulin, an initial characterization of the properties of dolastatin 10 included a comparison to other antimitotic drugs interfering with vinca alkaloid binding to tubulin (vinblastine, maytansine, rhizoxin, and phomopsin A). Dolastatin 10 inhibited the growth of L1210 murine leukemia cells in culture, with a concordant rise in the mitotic index, and its IC50 value for cell growth was 0.5 nM. Comparable values for the other drugs were 0.5 nM for maytansine, 1 nM for rhizoxin, 20 nM for vinblastine, and 7 microM for phomopsin A. IC50 values were also obtained for the polymerization of purified tubulin in glutamate: 1.2 microM for dolastatin 10, 1.4 microM for phomopsin A, 1.5 microM for vinblastine, 3.5 microM for maytansine, and 6.8 microM for rhizoxin. Dolastatin 10 and vinblastine were comparable in their effects on microtubule assembly dependent on microtubule-associated proteins. Preliminary studies indicated that dolastatin 10, like vinblastine, causes formation of a cold-stable tubulin aggregate at higher drug concentrations. We confirmed that rhizoxin, phomopsin A, and maytansine also inhibit the binding of radiolabeled vinblastine and vincristine to tubulin. Dolastatin 10 and phomopsin A were the strongest inhibitors of these reactions, and rhizoxin the weakest. Dolastatin 10, phomopsin A, maytansine, vinblastine, and rhizoxin all inhibited tubulin-dependent GTP hydrolysis. The greatest inhibition of hydrolysis was observed with dolastatin 10 and phomopsin A, and the least inhibition with rhizoxin.  相似文献   

3.
Dolastatin 10 is a highly cytotoxic antimitotic peptide in phase II clinical trials. Its cytotoxicity has been as much as 50-fold greater than that of vinblastine, despite quantitatively similar effects of the two drugs on tubulin polymerization. We compared uptake and efflux of radiolabeled dolastatin 10 and vinblastine in human Burkitt lymphoma CA46 cells to gain an understanding of the greater cytotoxicity of the peptide. In the Burkitt cells, dolastatin 10 was 20-fold more cytotoxic than vinblastine (IC(50) values, 50 pM and 1.0 nM). When drug uptake at 24 h was compared at IC(50) values of the two drugs, the intracellular concentrations were almost identical (50-100 nM). The accumulation factor observed for dolastatin 10 was 900 to 1800 versus 60 to 100 for vinblastine. The two drugs showed very divergent uptake kinetics, however. Vinblastine and dolastatin 10 reached maximum intracellular concentrations after 20 min and 6 h, respectively. Depletion of cellular ATP content did not alter the uptake of either drug, indicating passive uptake of both. When drug-preloaded cells were transferred to drug-free medium, there was no loss of dolastatin 10 for at least 2 h, whereas vinblastine exited the cells rapidly (approximate intracellular half-life, 10 min), with less than 10% of the initial drug remaining in the cells after the 2-h incubation. The potency of dolastatin 10 probably derives from its tenacious binding to tubulin, a property that in cells becomes translated into prolonged intracellular retention of the drug. Optimal clinical use of dolastatin 10 may require administration by infusion rather than by bolus.  相似文献   

4.
Dolastatin 10 is an unusual peptide of marine origin which binds to tubulin in the vinblastine/maytansine/phomopsin-binding region and potently inhibits mitosis. Using N,N'-ethylenebis(iodoacetamide) (EBI) and iodo[14C]acetamide as probes for the effects of ligands on the thiol groups of tubulin, we found that dolastatin 10 has effects on the sulfhydryls indistinguishable from those of phomopsin A but quite different from those of vinblastine and maytansine. Using the binding of bis-5,5'-[8-(N-phenyl)aminonaphthalene-1-sulfonic acid] (BisANS) as a measure of tubulin decay, we found that dolastatin 10 resembled phomopsin A in that decay was not detectable by this assay in its presence. Interestingly, both otherwise very different peptides are among the most effective inhibitors of tubulin decay yet discovered.  相似文献   

5.
The successful synthesis of dolastatin 11, a depsipeptide originally isolated from the mollusk Dolabella auricularia, permitted us to study its effects on cells. The compound arrested cells at cytokinesis by causing a rapid and massive rearrangement of the cellular actin filament network. In a dose-and time-dependent manner, F-actin was rearranged into aggregates, and subsequently the cells displayed dramatic cytoplasmic retraction. The effects of dolastatin 11 were most similar to those of the sponge-derived depsipeptide jasplakinolide, but dolastatin 11 was about 3-fold more cytotoxic than jasplakinolide in the cells studied. Like jasplakinolide, dolastatin 11 induced the hyperassembly of purified actin into filaments of apparently normal morphology. Dolastatin 11 was qualitatively more active than jasplakinolide and, in a quantitative assay we developed, dolastatin 11 was twice as active as jasplakinolide and 4-fold more active than phalloidin. However, in contrast to jasplakinolide and phalloidin, dolastatin 11 did not inhibit the binding of a fluorescent phalloidin derivative to actin polymer nor was it able to displace the phalloidin derivative from polymer. Thus, despite its structural similarity to other agents that induce actin assembly (all are peptides or depsipeptides), dolastatin 11 may interact with actin polymers at a distinct drug binding site.  相似文献   

6.
The dolastatins, a family of promising antineoplastic agents   总被引:4,自引:0,他引:4  
The dolastatins and some related compounds are antineoplastic pseudopeptides isolated from the sea hare Dolabella auricularia by the groups of G. R. Pettit and K. Yamada. Several groups including ours have contributed to the development of synthetic routes to most of these compounds. We recently described the synthesis of dolatrienoic acid, the lipidic component of dolastatin 14. Among all these metabolites, dolastatin 10 and dolastatin 15 exhibit the most promising antiproliferative properties and are currently under evaluation in clinical trials. These antimitotic agents seem to exert their activity by interacting with tubulin and inducing apoptosis. Research in this domain could greatly benefit from the recent elucidation of the atomic structure of tubulin. However, other targets cannot be excluded. Elucidation of the structure-activity relationships is an important step in the development of therapeutic agents. Parallel to the studies developed by other groups, our approach to exploring structural requirements for the antineoplastic activity of these compounds involved the determination of their preferred conformations in solution. Our study showed that dolastatin 10 exists in two different conformations corresponding to a cis-trans isomerization of a central amide bond. Such a situation was not demonstrated in the case of dolastatin 15. In view of elucidating the biological relevance of these findings, we elaborated hybrid molecules constituted of parts of both compounds. We also synthesized a cyclic analogue of dolastatin 10 which locked this compound in its cis conformation. Our results as well as those of others could be interpreted in terms of an existing structural model.  相似文献   

7.
Gallium chloride (GaCl3), an antitumor agent with antagonistic action on iron, magnesium and calcium, was tested for its ability to alter the polymerization of purified tubulin (2.2 mg/ml) in a cell-free system in vitro. GaCl3 (250 microM) does not mimic the effect of 10 microM paclitaxel and, therefore, is not a microtubule (MT)-stabilizing agent that can promote tubulin polymerization in the absence of glycerol and block MT disassembly. In contrast, GaCl3 mimics the effect of 1 microM vincristine (VCR) and inhibits glycerol-induced tubulin polymerization in a concentration-dependent manner (IC50: 125 microM), indicating that GaCl3 is a MT de-stabilizing agent that prevents MT assembly. However, 150 microM GaCl3 must be used to match or surpass the inhibitions of tubulin polymerization caused by 0.25 microM of known MT de-stabilizing agents, such as colchicine (CLC), nocodazole, podophyllotoxin, tubulozole-C and VCR. The inhibitory effect of 250 microM GaCl3 persists in the presence of up to 9 mM MgCl2, suggesting that the exogenous Mg2+ cations absolutely required for the binding of GTP to tubulin and MT assembly cannot overcome the antitubulin action of Ga3+ ions of a higher valence. The binding of [3H]vinblastine (VBL) to tubulin (0.5 mg/ml) is inhibited by unlabeled VBL but enhanced by concentrations of GaCl3 > 200 microM. However, increasing concentrations of GaCl3 mimic the ability of cold CLC to reduce the amount of [3H]CLC bound to tubulin, suggesting that GaCl3 may interact with the CLC binding site to inhibit tubulin polymerization. The binding of [3H]GTP to tubulin is decreased by unlabeled GTP but markedly enhanced by GaCl3, especially when concentrations of this metal salt of 32 microM or higher are added to the reaction mixture before rather than after the radiolabeled nucleotide. These data suggest that changes in protein conformation following GaCl3 binding might increase the interactions of tubulin with nucleotides and Vinca alkaloids. After a 24 h delay, the viability of GaCl3-treated L1210 leukemic cells is reduced in a concentration-dependent manner at days 2 (IC50: 175 microM), 3 (IC50: 35 microM) and 4 (IC50: 16 microM). Since GaCl3 (100-625 microM) increases the percentage of mitotic cells at 2-4 days, it might arrest tumor cell progression in M phase, but its antimitotic activity is much weaker than that of 0.25 microM VCR. Because the concentrations of GaCl3 that inhibit tubulin polymerization also increase the mitotic index and decrease the viability of L1210 cells in vitro, the antitubulin and antimitotic effects of GaCl3 might contribute, at least in part, to its antitumor activity.  相似文献   

8.
Three 1-beta-D-arabinofuranosylcytosine 5'-diphosphate-1,2-dipalmitins from L-, D-, and DL-alpha-dipalmitoylphosphatidic acids have been synthesized and their antitumor activity against two ara-C2 resistant L1210 lymphoid leukemia sublines in mice were evaluated. These new prodrugs of ara-C include ara-CDP-L-dipalmitin, ara-CDP-D-dipalmitin, and ara-CDP-DL-dipalmitin. The L and DL isomers produced significant increase in life span (greater than 400%) and four to five long-term survivors (greater than 45 days) out of six animals bearing ip implanted partially ara-C resistant L1210 subline [L1210/ara-C (I)], while the D isomer displayed a marginal activity (ILS 100-121%). In contrast, the L isomer was completely ineffective against deoxycytidine kinase deficient ara-C resistant L1210 subline [L1210/ara-C (II)]. However, the results demonstrate that the L and DL isomers of ara-CDP-dipalmitin are promising new prodrugs of ara-C with improved efficacy.  相似文献   

9.
Five heretofore undescribed analogues of methotrexate (MTX) and aminopterin (AMT) were synthesized and tested as dihydrofolate reductase (DHFR) inhibitors and tumor cell growth inhibitors. The meta isomer of AMT was obtained from 2,4-diamino-6-(bromomethyl)pteridine and m-(aminobenzoyl)-L-glutamic acid, while the ortho isomer was obtained via the same route by using alpha-methyl gamma-tert-butyl o-(aminobenzoyl)-L-glutamate instead of the free acid. Analogues of MTX and AMT containing a double bond in the side chain were prepared from dimethyl D,L-2-amino-4-hexenedioate and 4-amino-4-deoxy-N10-methylpteroic acid and 4-amino-4-deoxy-N10-formylpteroic acid, respectively. Finally, a positional isomer of MTX with the CH2CH2COOH moiety moved from the alpha-carbon to the adjacent carboxamide nitrogen was synthesized from 3-[N-(carboxymethyl)amino]propanoic acid diethyl ester and 4-amino-4-deoxy-N10-methylpteroic acid. The positional isomers of AMT were weak DHFR inhibitors and showed very little growth-inhibitory activity against L1210 murine leukemia cells or the MTX-resistant L1210/R81 mutant line in culture. The MTX and AMT analogues with the CH2CH2COOH moiety replaced by a CH2CH = CHCOOH side chain showed anti-DHFR activity similar to that of the previously described saturated compound N-(4-amino-4-deoxy-N10-methylpteroyl)-L-2-aminoadipic acid, but were less potent than the parent drugs. The MTX analogue with the CH2CH2COOH side chain displaced from C to N was weakly bound to DHFR, confirming the importance of an intact CONH moiety, and showed greatly diminished cell growth inhibitory potency relative to MTX. None of the compounds was a substrate for folylpolyglutamate synthetase (FPGS) from mouse liver. Furthermore, inhibition of folic acid polyglutamylation in vitro at equimolar 500 microM concentrations of drug and substrate was negligible. The structural changes embodied in these five novel compounds are therefore too great for binding to the FPGS active site.  相似文献   

10.
Vitilevuamide, a bicyclic 13 amino acid peptide, was isolated from two marine ascidians, Didemnum cuculiferum and Polysyncranton lithostrotum. Vitilevuamide was cytotoxic in several human tumor cell lines, with LC(50) values ranging from 6 to 311nM, and analysis in a 25-cell line panel revealed a weak correlation with several taxol analogs. Vitilevuamide was strongly positive in a cell-based screen for inhibitors of tubulin polymerization. Vitilevuamide at 9 microg/mL (5.6 microM) had an effect equivalent to the maximal effect of colchicine at 25 microg/mL (62.5 microM). Vitilevuamide was active in vivo against P388 lymphocytic leukemia, increasing the lifespan of leukemic mice 70% at 30 microg/kg. We hypothesized that at least part of the cytotoxic mechanism of vitilevuamide was due to its inhibition of tubulin polymerization. Vitilevuamide was found to inhibit polymerization of purified tubulin in vitro, with an IC(50) value of approximately 2 microM. Cell cycle analysis showed that vitilevuamide arrested cells in the G(2)/M phase with 78% of treated cells tetraploid after 16hr. Therefore, vitilevuamide was tested for its ability to inhibit binding of known tubulin ligands. Vitilevuamide exhibited non-competitive inhibition of vinblastine binding to tubulin. Colchicine binding to tubulin was stabilized in the presence of vitilevuamide in a fashion similar to vinblastine. Dolastatin 10 binding was unaffected by vitilevuamide at low concentrations, but inhibited at higher ones. GTP binding was also found to be weakly affected by the presence of vitilevuamide. These results suggest the possibility that vitilevuamide inhibits tubulin polymerization via an interaction at a unique site.  相似文献   

11.
The marine ascidian Diazona angulata was the source organism for the complex cytotoxic peptide diazonamide A. The molecular structure of this peptide was recently revised after synthesis of a biologically active analog of diazonamide A in which a single nitrogen atom was replaced by an oxygen atom. Diazonamide A causes cells to arrest in mitosis, and, after exposure to the drug, treated cells lose both interphase and spindle microtubules. Both diazonamide A and the oxygen analog are potent inhibitors of microtubule assembly, equivalent in activity to dolastatin 10 and therefore far more potent than dolastatin 15. This inhibition of microtubule assembly is accompanied by potent inhibition of tubulin-dependent GTP hydrolysis, also comparable with the effects observed with dolastatin 10. However, the remaining biochemical properties of diazonamide A and its analog differ markedly from those of dolastatin 10 and closely resemble the properties of dolastatin 15. Neither diazonamide A nor the analog inhibited the binding of [3H]vinblastine, [3H]dolastatin 10, or [8-14C]GTP to tubulin. Nor were they able to stabilize the colchicine binding activity of tubulin. These observations indicate either that diazonamide A and the analog have a unique binding site on tubulin differing from the vinca alkaloid and dolastatin 10 binding sites, or that diazonamide A and the analog bind weakly to unpolymerized tubulin but strongly to microtubule ends. If the latter is correct, diazonamide A and its oxygen analog should have uniquely potent inhibitory effects on the dynamic properties of microtubules.  相似文献   

12.
The 5,6,7,8-tetrahydro derivative (1) of the powerful thymidylate synthase inhibitor N10-propargyl-5,8-dideazafolic acid (PDDF) has been synthesized and evaluated for its antifolate activity. A convenient method for the preparation of the key intermediate 2-amino-6-(bromomethyl)-4-hydroxy-5,6,7,8-tetrahydroquinazoline (18) is described. Two closely related analogues of 1 were also synthesized and evaluated for their antifolate activity and thymidylate synthase inhibition. N10-Propargyl-5,8-dideaza-5,6,7,8-tetrahydrofolate (1) and N10-methyl and N10-hydrogen analogues 2 and 3 were weaker inhibitors of Lactobacillus casei thymidylate synthase compared to PDDF. N10-Methyl-5,8-dideaza-5,6,7,8-tetrahydrofolate (2) exhibited the most potent antifolate activity against L. casei (IC50 = 2.8 nM) and Streptococcus faecium (IC50 = 0.57 nM). In intact and permeabilized murine leukemia L1210 cells, the replacement of the quinazoline moiety with its tetrahydro derivative resulted in a marked decrease in potency and a loss of the contribution of the propargyl substituent to enzyme inhibition, indicating an altered binding mode to thymidylate synthase.  相似文献   

13.
1,4-Anthraquinone (AQ) was synthesized and shown to prevent L1210 leukemic cells from synthesizing macromolecules and growing in vitro. In contrast, its dihydroxy-9,10anthraquinone precursor, quinizarin, was inactive. The antitumor activity of AQ was compared to that of daunorubicin (DAU), which is structurally different from AQ but also contains a quinone moiety. AQ is equipotent to DAU against L1210 tumor cell proliferation (IC50: 25 nM at day 2 and 9 nM at day 4) and viability (IC50: 100 nM at day 2 and 25 nM at day 4), suggesting that its cytostatic and cytotoxic activities are a combination of drug concentration and duration of drug exposure. Since AQ does not increase but rather decreases the mitotic index of L1210 cells at 24 h, it is not an antitubulin drug but might arrest early stages of cell cycle progression. Like DAU, a 1.5-3 h pretreatment with AQ is sufficient to inhibit the rates of DNA, RNA and protein syntheses (IC50: 2 microM) determined over 30-60 min periods of pulse-labeling in L1210 cells in vitro. In contrast to DAU, which is inactive, a 15 min pretreatment with AQ has the advantage of also inhibiting the cellular transport of both purine and pyrimidine nucleosides (IC50: 2.5 microM) over a 30 s period in vitro. Hence, AQ may prevent the incorporation [3H]thymidine into DNA because it rapidly blocks the uptake of these nucleosides by the tumor cells. After 24 h, AQ induces as much DNA cleavage as camptothecin and DAU, two anticancer drugs producing DNA strand breaks and known to, respectively, inhibit topoisomerase I and II activities. However, the concentration-dependent induction of DNA cleavage by AQ, which peaks at 1.6-4 microM and disappears at 10-25 microM, resembles that of DAU. The mechanism by which AQ induces DNA cleavage is inhibited by actinomycin D, cycloheximide and aurintricarboxylic acid, suggesting that AQ activates endonucleases and triggers apoptosis. The abilities of AQ to block nucleoside transport, inhibit DNA synthesis and induce DNA fragmentation are irreversible upon drug removal, suggesting that this compound may rapidly interact with various molecular targets in cell membranes and nuclei to disrupt the functions of nucleoside transporters and nucleic acids, and trigger long-lasting antitumor effects which persist after cessation of drug treatment. Because of its potency and dual effects on nucleoside transport and DNA cleavage, the use of bifunctional AQ with antileukemic activity in the nM range in vitro might provide a considerable advantage in polychemotherapy to potentiate the action of antimetabolites and sensitize multidrug-resistant tumor cells.  相似文献   

14.
A novel series of 7-aroyl-aminoindoline-1-benzenesulfonamides showed excellent activity as inhibitors of tubulin polymerization through binding with the colchicine binding site of microtubules. Compound 15 and 16 display IC50 values of 1.1 and 1.2 microM, respectively. Compound 15 inhibited the human cancer cell growth of KB, MKN45, H460, HT29, and TSGH, as well as one human-resistant cancer line of KB-vin 10, with an IC50 of 9.6, 8.8, 9.4, 8.6, 10.8, and 8.9 nM, respectively.  相似文献   

15.
In contrast to their inactive parent compound triptycene (code name TT0), several triptycene (TT) analogs (code names TT1 to TT13), most of them new compounds, were synthesized and shown to prevent L1210 leukemic cells from synthesizing macromolecules and growing in vitro. The most potent rigid tetracyclic quinones synthesized so far are TT2 and its C2-brominated derivative, TT13. The antitumor activity of TT2 has been compared to that of daunomycin (DAU), a clinically valuable anthracycline antibiotic which is structurally different from TT2 but also contains a quinone moiety. TT2 inhibits the proliferation (IC50: 300 nM at day 2 and 150 nM at day 4) and viability (IC50: 250 nM at day 2 and 100 nM at day 4) of L1210 cells to the same maximal degree as DAU, suggesting that the cytostatic and cytotoxic activities of TT2 are a combination of drug concentration and duration of drug exposure. Since TT2 does not increase the mitotic index of L1210 cells at 24 h like vincristine, it is unlikely to be an antimitotic drug that disrupts microtubule dynamics. Like DAU, a 1.5-3 h pretreatment with TT2 is sufficient to inhibit the rates of DNA, RNA and protein syntheses determined over 30-60 min periods of pulse-labeling in L1210 cells in vitro (IC50: 6 microM). In contrast to DAU, which is inactive, a 15 min pretreatment with TT2 has the advantage of also inhibiting the cellular transport of nucleosides occuring over a 30 s period in vitro (IC50: 6 microM), suggesting that TT2 prevents the incorporation of [3H]thymidine into DNA because it rapidly blocks the uptake of [3H]thymidine by the tumor cells. After 24 h, TT2 induces as much DNA cleavage as camptothecin and DAU, two anti-cancer drugs producing DNA strand breaks and known to respectively inhibit DNA topoisomerase I and II activities. Interestingly, the abilities of TT2 to block nucleoside transport, inhibit DNA synthesis and induce DNA fragmentation are irreversible upon drug removal, suggesting that this compound may rapidly interact with various molecular targets in cell membranes and nuclei to disrupt the functions of nucleoside transporters and nucleic acids, and trigger long-lasting antitumor effects which persist after cessation of drug treatment. Because inhibition of nucleoside transport is highly unusual among DNA-damaging drugs, the use of bifunctional TTs with antileukemic activity in the nM range in vitro might provide a considerable advantage in polychemotherapy to potentiate the action of antimetabolites and sensitize multidrug-resistant tumor cells.  相似文献   

16.
Benzenesulfonate derivatives of naphtho[2,3-b]thiophen-4(9H)-one and 9(10H)-anthracenone were prepared and found to inhibit microtubule formation by an in vitro tubulin polymerization assay. Several analogues showed potent cytotoxic activity in an assay based on K562 leukemia cells with IC50 values of <100 nM. The methylamino analogue 14i was the most active compound in this assay (14i, IC50 K562: 0.05 muM). Antiproliferative activities of selected compounds were additionally evaluated against a panel of 12 tumor cell lines, including multi-drug-resistant phenotypes. All resistant cell lines were sensitive to these compounds. Concentration-dependent flow cytometric studies showed that KB/HeLa cells treated with selected compounds were arrested in the G2/M phases of the cell cycle. In competition experiments, these compounds strongly displaced radiolabeled colchicine from its binding site in the tubulin, showing IC50 values lower than that of colchicine. The results demonstrate that the antiproliferative activity is related to the inhibition of tubulin polymerization.  相似文献   

17.
A total of 53 N-benzoylated phenoxazines and phenothiazines, including their S-oxidized analogues, were synthesized and evaluated for antiproliferative activity, interaction with tubulin, and cell cycle effects. Potent inhibitors of multiple cancer cell lines emerged with the 10-(4-methoxybenzoyl)-10H-phenoxazine-3-carbonitrile (33b, IC(50) values in the range of 2-15 nM) and the isovanillic analogue 33c. Seventeen compounds strongly inhibited tubulin polymerization with activities higher than or comparable to those of the reference compounds such as colchicine. Concentration-dependent flow cytometric studies revealed that inhibition of K562 cell growth was associated with an arrest in the G2/M phases of the cell cycle, indicative of mitotic blockade. Structure-activity relationship studies showed that best potencies were obtained with agents bearing a methoxy group placed para at the terminal phenyl ring and a 3-cyano group in the phenoxazine. A series of analogues highlight not only the phenoxazine but also the phenothiazine structural scaffold as valuable pharmacophores for potent tubulin polymerization inhibitors, worthy of further investigation.  相似文献   

18.
《Drugs in R&D》2011,11(1):85-95
Brentuximab vedotin (cAC10-vcMMAE; SGN 35; SGN-35) is an anticancer antibody-drug conjugate under development by Seattle Genetics Inc. and its licensee Millennium: The Takeda Oncology Company. It comprises the anti-CD30 monoclonal antibody cAC10 conjugated to the cytotoxic agent monomethyl auristatin E, a synthetic analog of the tubulin polymerization inhibitor dolastatin 10. It is under investigation for use in Hodgkin lymphoma and non-Hodgkin lymphoma (specifically anaplastic large cell lymphoma) in North America and Europe. This review discusses the key development milestones and therapeutic trials of this drug.  相似文献   

19.
A new analogue of methotrexate was synthesized from 4-amino-4-deoxy-N10-methylpteroic acid and D,L-homocysteic acid. The product (mAPA-HCysA) was bound tightly to L1210 mouse leukemia dihydrofolate reductase (IC50 = 1 nM), inhibited L1210 cell proliferation in culture (IC50 = 0.3 microM), and prolonged the survival of L1210 leukemic mice (98% increase in lifespan at 120 mg/kg, qdx9). Studies on the interaction of mAPA-HCysA with partially purified mouse liver folyl polyglutamate synthetase revealed that mAPA-HCysA was not a substrate. Hence, the increased dose of mAPA-HCysA required to inhibit tumor growth in vitro and in vivo relative to methotrexate may reflect, in part, the inability of this compound to form non-effluxing polyglutamates. Folyl polyglutamate synthetase was competitively inhibited by mAPA-HCysA (K1 = 190 +/- 70 microM) when folate was the variable substrate. Thus, mAPA-HCysA is the first known compound to inhibit both mammalian dihydrofolate reductase and mammalian folyl polyglutamate synthetase.  相似文献   

20.
A series of eighteen 2,4-diaminoquinazoline analogues of folic, isofolic, pteroic and isopteroic acids having various substituents at position 5 was studied. Each compound was evaluated as an inhibitor of L1210 dihydrofolate reductase, methotrexate influx into L1210 leukemia cells, and growth of methotrexate-sensitive and -resistant L1210 cells in vitro. Bridge reversal at positions 9 and 10 reduced the effectiveness of the classical analogues only with regard to the inhibition of the drug-sensitive cells as compared to methotrexate (MTX). Absence of the glutamate moiety adversely affected the potency of the compounds, particularly when coupled with reversal of the 9,10-bridge. However, the presence of -Cl at position 5 restored significantly the potency of these compounds. The pteroate and isopteroate analogue ethyl esters were generally more effective inhibitors of cell growth than their non-esterified counterparts. Regarding the effects of substituents at position 5, the data suggest that -Cl greater than -CH3 greater than -H for inhibition of methotrexate transport and growth of methotrexate-sensitive L1210 cells. The 5-Cl pteroate analogue and its corresponding ethyl ester were highly effective as growth inhibitors of methotrexate-resistant, transport-defective, L1210 cells in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号