首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long-term potentiation (LTP) was examined in the CA1 region of rat hippocampal slices at postnatal day 9 (P9), P15, P30, P60, P90, P120, and P300. A single 100 Hz × 1 sec tetanus failed to induce LTP in P9 slices, while similar degrees of LTP were observed at P15, P30, and P60. At P30, changes in population spike (PS) amplitudes were accurately predicted by changes in dendritic excitatory postsynaptic potentials (EPSPs). However, at P15, the predicted increase in PS calculated from corresponding changes in dendritic EPSPs was significantly less than the observed increase, suggesting that EPSP-PS dissociation (ES-dissociation) plays a substantial role in LTP at P15. Additionally, the corresponding changes in somatic EPSP height measured in the CA1 cell layer did not predict the E-S dissociation at P15, suggesting that the E-S dissociation arises largely from changes in the excitability of the soma. Using a single 100 Hz × 1 sec tetanus, LTP proved difficult to induce in slices from rats ≥ P90, with slices showing initial enhancement that faded over 60 min of monitoring. © 1995 Wiley-Liss, Inc.  相似文献   

2.
A review of the author's studies of properties and mechanisms of long-term potentiation (LTP) is presented. LTP of field potentials and neuronal responses at hippocampal CA1 and CA3 regions of unanaesthetized rabbit was found. Excitatory and inhibitory post-synaptic potentials increased after tetanization. Microiontophoretic and histochemical studies revealed no appropriate changes in acetylcholine sensitivity or in acetylcholinesterase activity to explain LTP. Quantal analysis of EPSP evoked by microstimulation indicated increase in the number of transmitter quanta released by a presynaptic spike. LTP of field potentials evoked by white matter stimulation at neocortical slices and sensorimotor cortex of unanaesthetized rabbit are described. Changes in short-latency neuronal responses and "indirect" component of pyramidal tract response suggest monosynaptic LTP at neocortex. It is concluded that the main mechanism of both hippocampal and neocortical LTP consists of an increase in efficacy of excitatory synapses. It is suggested that these synapses are used in learning and memory processes.  相似文献   

3.
The neocortex in chronically prepared rats is very resistant to the induction of long-term potentiation (LTP). In the first of two experiments described in this paper, we tried unsuccessfully to induce neocortical LTP within one session by coactivating basal forebrain cholinergic and cortical inputs to our neocortical recording site. In the second experiment, we tested a new procedure which involved the application of repeated conditioning sessions over several days. This procedure was suggested by our finding that kindling-induced potentiation (KIP) of cortical field potentials could be reliably triggered but was slow to develop. We administered 30 high frequency trains per day to the corpus callosum for 25 days. LTP in callosal-neocortical field potentials became clear after about 5 days of stimulation and reached asymptotic levels by about 15 days. After the termination of treatment, LTP persisted for at least 4 weeks, the duration of our post-stimulation test period. As in previous experiments on kindling-induced potentiation, the potentiation effects were clear in both early population spike components and in a late (probably disynaptic) component. The monosynaptic EPSP component was often depressed, but this may have been due to competing field currents generated by the enhanced population spike activity. We discuss these results in the context of theories emphasizing slower but more permanent memory storage in neocortex compared to the hippocampus.  相似文献   

4.
The hippocampal synapses display conspicuous ability for long‐term plasticity which is thought to underlie learning and memory. Growing evidence shows that this ability differs along the long axis of the hippocampus, with the ventral CA1 hippocampal synapses displaying remarkably lower ability for long‐term potentiation (LTP) compared with their dorsal counterpart when activated with high‐frequency stimulation. Here, we show that low frequency, 10 Hz stimulation induced LTP more reliably in dorsal than in ventral CA1 field. Blockade of alpha5 subunit‐containing GABAA receptors eliminated the difference between dorsal and ventral hippocampus. We propose that α5GABAA receptor‐mediated activity plays a crucial role in regulating the threshold for induction of LTP especially at the ventral CA1 hippocampal synapses. This might have important implications for the functional specialization along the hippocampus. Synapse, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
During development, in the CA1 hippocampal region, long-term potentiation (LTP) starts appearing at postnatal (P) day 7 and reaches its maximal expression towards the end of the second postnatal week. However, LTP is often preceded by long-term depression (LTD), an activity-dependent and long-lasting reduction of synaptic strength. LTD can be induced by sustained, low-frequency stimulation of the afferent pathway and is dependent on activation of N -methyl-D-aspartate (NMDA) receptors. We report here that, in the CA3 hippocampal region, during a critical period of postnatal development, between P6 and P14, a high-frequency stimulation train (100 Hz, 1 s) to the mossy fibres in the presence of the NMDA receptor antagonist (+)-3-(2-carboxy-piperazin-4-yl)-propyl-1-phosphonic acid (CPP; 20 μM) induced LTD. The depression of the amplitude of the field excitatory postsynaptic potential (EPSP) was 28 ± 7% ( n = 21). This form of LTD was NMDA-independent and synapse-specific. When a tetanus was applied in the presence of CPP and 6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX; 50 μM), which blocked the field EPSP, it failed to induce LTD upon washout of CNQX. LTD was probably postsynaptic in origin since it did not affect paired-pulse facilitation. A rise in extracellular calcium concentration (from 2 to 4 mM) produced LTP instead of LTD. At the end of the second postnatal week, the same high-frequency stimulation train to the mossy fibres induced LTP as in adult neurons. Functional changes in synaptic connections during development may control membrane depolarization and the amount of intracellular calcium necessary to trigger either LTD or LTP.  相似文献   

6.
Immunohistochemical expression in the neocortex, hippocampus and cerebellum of the alpha(1A) or alpha(1E) subunit of the voltage-sensitive Ca(2+) channel was examined in Long-Evans hooded rats on gestational day 18 and postnatal days 1, 4, 7, 10, 14, 21, 90, 360 and 720. On gestational day 18 and postnatal day 1, alpha(1A) immunoreactivity was more dense in the neocortex and hippocampus than the cerebellum. By postnatal day 7, levels of alpha(1A) immunoreactivity increased dramatically in the cerebellum, while in neocortex, alpha(1A) immunoreactivity became more sparse, which approached the more diffuse pattern of cellular staining in the mature brain. Expression of alpha(1E) in the neocortex, hippocampus and cerebellum was much less dense than alpha(1A) between gestational day 18 and postnatal day 4. There was also significant alpha(1E) immunoreactivity in the mossy fibers of the hippocampus and in dendrites of Purkinje cells of the cerebellum. Depolarization-dependent 45Ca(2+) influx was examined in rat brain synaptosomes on postnatal days 4, 7, 10, 14, 21 and >60. In neocortical and hippocampal synaptosomes, 45Ca(2+) influx increased steadily with age and reached adult levels by postnatal day 10. In cerebellar synaptosomes, 45Ca(2+) influx was constant across all ages, except for a spike in activity which was observed on postnatal day 21. In neocortical and hippocampal synaptosomes, 100 nM omega-conotoxin MVIIC significantly inhibited 45Ca(2+) influx on postnatal day 10 and 14, respectively, or after. In cerebellar synaptosomes, influx was inhibited by omega-conotoxin MVIIC only on postnatal day 10 or prior. On postnatal day 7, 45Ca(2+) influx was not inhibited in neocortical and hippocampal synaptosomes by a combination of 10 microM nifedipine, 1 microM omega-conotoxin GVIA and 1 microM omega-conotoxin MVIIC, suggesting that an 'insensitive' flux predominates at this age. Overall, the results suggest that expression of voltage-sensitive Ca(2+) channels during development is dynamic and is important in central nervous system development.  相似文献   

7.
Long-term potentiation (LTP) of excitatory synaptic responses of principal neurons in the hippocampus is accompanied by changes in GABAergic inhibition mediated by interneurons. The impact of inhibition on LTP of excitatory postsynaptic responses in CA1 pyramidal cells was assessed by monitoring changes in field potentials evoked by Schaffer collateral stimulation in hippocampal slices in vitro. First, to determine the effect of inhibition on population EPSPs, slices were exposed to the GABAA receptor antagonist bicuculline (10 μM). Both the slope and amplitude of field EPSPs (fEPSPs) were significantly enhanced by bicuculline indicating that inhibition modulates excitatory postsynaptic responses of pyramidal cells. To assess if stimulation-dependent changes in inhibition influence LTP of excitatory responses of pyramidal cells, LTP was examined in the presence and absence of bicuculline (20 μM) following either 100 Hz tetanization, or theta-patterned stimulation (short bursts delivered at 5 Hz). In normal medium, 100 Hz stimulation produced marked short-term potentiation that decayed 5–10 min post-tetanus and both stimulation paradigms produced similar LTP at 30 min post-tetanus. In comparison, LTP of the fEPSP slope and amplitude was significantly enhanced after theta-patterned stimulation, but not after 100 Hz stimulation, in bicuculline. The greater potentiation of field responses following theta-patterned stimulation in the presence of bicuculline indicates that a larger potentiation of excitatory responses was unmasked during suppression of inhibitory inputs. These results suggest that a long-lasting enhancement of inhibition in pyramidal cells was also induced following theta-patterned stimulation in normal ACSF. Since suppression of inhibition did not uncover a significantly larger potentiation following 100 Hz tetanization, the influence of inhibition on LTP of excitatory responses appears to be stimulation-dependent. In conclusion, theta-patterned stimulation appears to be more effective at inducing plasticity within inhibitory circuits, and this plasticity may partially offset concurrent increases in the excitability of the CA1 network. Hippocampus 1998;8:289–298. © 1998 Wiley-Liss, Inc.  相似文献   

8.
The involvement of brain deoxyribonucleic acid (DNA) synthesis in adaptive neural events was studied in the adult rat during long-term habituation (LTH) or potentiation (LTP) of the perforant path-granule cell synapse. Male Long-Evans rats were given 50 muCi [3H]thymidine intraventricularly under urethane anesthesia. Soon thereafter, field excitatory postsynaptic potential (EPSP) slope and population spike were monitored from the right dentate gyrus before and at various times (5, 10, 15, 60 min) following the delivery to the ipsilateral perforant bundle of a low frequency (LFS: 1.0 Hz, 160 s) or a high-frequency train (HFS: 400 Hz, 200 ms), repeated once after 5 min. Unstimulated implanted rats served as controls. DNA synthesis was evaluated by the incorporation of the radioactive precursor into DNA of several brain areas at the end of a 1 h incorporation period. In CA1, LTH and LTP increased DNA synthesis by 30% on the stimulated side. In the entorhinal cortex, LTH but not LTP increased DNA synthesis (by 30%) on the stimulated side. Conversely, in the frontal cortex, LTP but not LTH increased DNA synthesis (by 100%) on both sides. Long-lasting changes in synaptic efficacy covaried non-linearly with DNA synthesis in mono- and polysynaptically stimulated hippocampal regions, and in functionally associated neocortical areas. The co-variations of population spike amplitude were positive for LTH and negative for LTP in the dentate gyrus and frontal cortex of both sides, and in CA3/CA1 of the stimulated side, indicating higher DNA synthesis at lower values of LTH and LTP, and viceversa. Further, regional cross-correlation analyses revealed a high degree of synchronization among brain sites, following low- or high-frequency train pulses, indicating that (i) extra-target sites participate on the stimulated and on the contralateral side, and (ii) small distributed changes take place across the sampled neural networks. A modulatory role of information flow on brain DNA synthesis is inferred to take place in a diffuse, distributed manner.  相似文献   

9.
U Staubli  G Lynch 《Brain research》1990,513(1):113-118
Adult rats with two chronic stimulating electrodes in the Schaffer collateral/commissural system of the hippocampus and one recording electrode in the stratum radiatum (apical dendrites) of field CA1 were administered high-frequency stimulation (10 brief bursts at theta frequency) to produce long-term potentiation (LTP). 'Low frequency' stimulation (100 pulses at 1 Hz alone or followed by 250 pulses at 5 Hz) delivered 5-15 min later had no effect on LTP in 18% of the rats, caused a transient reversal in 18% of the group, but produced an apparent reversal of LTP for the remainder of a 1 h test session in 64% of the animals. LTP did not recover in animals tested 24 h later, at which point a second episode of high-frequency stimulation but without subsequent low-frequency stimulation was administered. This produced an LTP effect that persisted for a 1 h test session in 94% of the cases and that was still present in 86% of the animals tested 24 h later. Low-frequency stimulation applied prior to induction of LTP had no lasting effects on evoked responses not did it affect responses to a control stimulating electrode in those cases in which it reversed LTP. Possible implications of these results for hypotheses concerning the substrates of LTP and mechanisms of forgetting are discussed.  相似文献   

10.
In area CA1 of the hippocampus, synaptic activation of NMDA receptors during postsynaptic depolarization can generate either a decremental synaptic potentiation termed short-term potentiation (STP) or stable, long-term potentiation (LTP). Examining the relationship between these two forms of synaptic enhancement should provide information about the intracellular processes responsible for the stabilization of LTP. Using the hippocampal slice preparation, initial experiments confirmed that STP can be generated either by a weak tetanus or by pairing a single EPSP with postsynaptic depolarization. Following the generation of submaximal LTP, application of a weak, STP-inducing tetanus resulted in STP (not LTP), suggesting that the processes responsible for stabilizing LTP must be activated during induction and cannot be accessed at later times. To determine the interval over which processes activated during STP can be integrated and result in stable LTP (the "integration time" for the stabilization of LTP), a fixed number of afferent stimuli were given at varying intervals (5-60 sec) during postsynaptic depolarization. Using either extracellular or whole-cell recording, LTP was rarely (11% of experiments) elicited at 1 min intervals and frequently (76% of experiments) elicited at 10 sec intervals. These results indicate that following a single EPSP during postsynaptic depolarization, the processes responsible for the stabilization of LTP decay significantly within approximately 1 min, although this value may depend on the level of activation of the requisite intracellular processes.  相似文献   

11.
Systemic administration of kainic acid (KA), an excitatory amino acid agonist, provides a model of epilepsy due to increased neural excitation. We examined discharges using multi-channel EEG recording and spectral analysis in rats implanted with neocortical and hippocampal electrodes after intravenous infusion of KA (10 mg/kg), until and including the first convulsive seizure. Gamma activity (30-80 Hz) increased in hippocampus from 3-9 min after KA administration. Two types of preconvulsive bilateral rhythmic discharges were observed, both consisting of generalised high voltage sharp waves at low frequencies (<10 Hz) mixed with fast oscillations (<20 Hz): (1) generalised non-convulsive discharges (GNCD) occurred in all animals and (2) spike-wave discharges (SW), predominantly localised in neocortex, occurred in 45% of animals. Convulsive seizure evolved out of a GNCD. Spectral profiles of epileptiform discharges were characterised by an increase in power of low (<10 Hz) and high (beta and gamma range, 20-80 Hz) frequencies which were differently expressed in neocortex and hippocampus. Thus, in this model of convulsive epilepsy caused by increased excitation, there is an early increase in gamma activity, a process that might contribute to synchronisation, and two distinct types of bilateral discharges, hippocampal-neocortical (GNCD) and preferentially neocortical (SW). Neocortical, not hippocampal, changes in EEG power correlated with development of convulsive behaviours.  相似文献   

12.
An earlier study demonstrated changes in synaptic efficacy and seizure susceptibility in adult rat brain slices following extremely low-frequency magnetic field (ELF-MF) exposure. The developing embryonic and early postnatal brain may be even more sensitive to MF exposure. The aim of the present study was to determine the effects of a long-term ELF-MF (0.5 and 3 mT, 50 Hz) exposure on synaptic functions in the developing brain. Rats were treated with chronic exposure to MF during two critical periods of brain development, i.e. in utero during the second gestation week or as newborns for 7 days starting 3 days after birth, respectively. Excitability and plasticity of neocortical and hippocampal areas were tested on brain slices by analyzing extracellular evoked field potentials. We demonstrated that the basic excitability of hippocampal slices (measured as amplitude of population spikes) was increased by both types of treatment (fetal 0.5 mT, newborn 3 mT). Neocortical slices seemed to be responsive mostly to the newborn treatment, the amplitude of excitatory postsynaptic potentials was increased. Fetal ELF-MF exposure significantly inhibited the paired-pulse depression (PPD) and there was a significant decrease in the efficacy of LTP (long-term potentiation induction) in neocortex, but not in hippocampus. On the other hand, neonatal treatment had no significant effect on plasticity phenomena. Results demonstrated that ELF-MF has significant effects on basic neuronal functions and synaptic plasticity in brain slice preparations originating from rats exposed either in fetal or in newborn period.  相似文献   

13.
Ontogenetic development of the frequency potentiation in the entorhinal afferent input of the hippocampus was studied on unanesthetized rabbits 1--15 days after birth. In the fields CA1 and CA3 of the new-born rabbits rhythmical electrical stimulation (1--20 Hz) of the perforant path led to a 20--100% increase in the amplitude of local potentials as compared to the control value and to an increase in the probability of the mass discharge response from 0--0.5 (in control) to 0.8--1.0 (during tetanization). In 1--3-day-old rabbits the potentiation was especially pronounced at frequencies of 4--6 Hz. The frequency optimum of 4--15 Hz appeared on the fifth day after birth. The frequency potentiation of the mass discharge was observed on the 8th--10th day of life. The results show that the frequency potentiation in the cortical afferent connections of the hippocampus can be recorded already in new-born rabbits and achieved the mature pattern at the beginning of the second week of the postnatal life.  相似文献   

14.
Data from several experiments on long-term potentiation (LTP) in the rat hippocampus were examined for circadian influence. Incidence and magnitude of LTP produced in both area CA1 and area dentata were analyzed, and a reciprocal light/dark difference was found in the two areas, with pyramidal cells of area CA1 showing more LTP during the light period and granule cells of area dentata showing more LTP during the dark period. In addition, results from experiments on developing animals, suggested that the circadian influence on LTP in either area was not present before postnatal day 20. All of these experiments were from hippocampal slice preparations; therefore, it is important to note that circadian influences on hippocampal LTP are preserved in the in vitro environment where tonic extrahippocampal input has presumably been removed.  相似文献   

15.
In adult hippocampus, long‐term potentiation (LTP) produces synapse enlargement while preventing the formation of new small dendritic spines. Here, we tested how LTP affects structural synaptic plasticity in hippocampal area CA1 of Long‐Evans rats at postnatal day 15 (P15). P15 is an age of robust synaptogenesis when less than 35% of dendritic spines have formed. We hypothesized that LTP might therefore have a different effect on synapse structure than in adults. Theta‐burst stimulation (TBS) was used to induce LTP at one site and control stimulation was delivered at an independent site, both within s. radiatum of the same hippocampal slice. Slices were rapidly fixed at 5, 30, and 120 min after TBS, and processed for analysis by three‐dimensional reconstruction from serial section electron microscopy (3DEM). All findings were compared to hippocampus that was perfusion‐fixed (PF) in vivo at P15. Excitatory and inhibitory synapses on dendritic spines and shafts were distinguished from synaptic precursors, including filopodia and surface specializations. The potentiated response plateaued between 5 and 30 min and remained potentiated prior to fixation. TBS resulted in more small spines relative to PF by 30 min. This TBS‐related spine increase lasted 120 min, hence, there were substantially more small spines with LTP than in the control or PF conditions. In contrast, control test pulses resulted in spine loss relative to PF by 120 min, but not earlier. The findings provide accurate new measurements of spine and synapse densities and sizes. The added or lost spines had small synapses, took time to form or disappear, and did not result in elevated potentiation or depression at 120 min. Thus, at P15 the spines formed following TBS, or lost with control stimulation, appear to be functionally silent. With TBS, existing synapses were awakened and then new spines formed as potential substrates for subsequent plasticity. © 2015 The Authors Hippocampus Published by Wiley Periodicals, Inc.  相似文献   

16.
Single-pulse stimulation of the perirhinal cortex (PRC) evoked field responses in the dorsal hippocampal CA1 region in urethane-anesthetized rats. In depth profiles conducted by moving the PRC stimulating electrode, the largest amplitude hippocampal potential was generated when the stimulating electrode was located within the perirhinal region. More dorsal (temporal cortex) or more ventral (lateral entorhinal cortex) stimulating sites elicited minimal hippocampal potentials. The hippocampal response was maintained during 100 Hz stimulation of the PRC, suggesting that it was monosynaptic, and high-frequency stimulation (400 Hz) of the PRC produced a significant potentiation of hippocampal CA1 field potentials (46.73 ± 4.14%). When the PRC and the lateral perforant path (LPP) were stimulated separately, the depth/amplitude profiles obtained from a roving recording electrode located within the dorsal hippocampus were similar. In order to determine if fibers from PRC project to the hippocampus via the LPP, the PRC-CA1 and LPP-CA1 potentials were recorded prior to and during procaine (20%, 0.5 μl) blockade of the LPP. A simultaneous loss of both potentials was observed immediately following procaine infusion, while a commissural control potential was unaffected. Both LPP and PRC potentials returned approximately 30–40 min later. Electrolytic lesions of PRC produced a significant decrease in the amplitude of LPP-hippocampal potentials when testing was conducted 4–5 days postlesion. Lesions of lateral entorhinal cortex or temporal cortex did not produce such effects. These data suggest that a direct pathway from perirhinal cortex to the dorsal hippocampal CA1 field can undergo long-term potentiation (LTP) and that this pathway makes a major contribution to the lateral perforant path. © 1996 Wiley-Liss, Inc.  相似文献   

17.
The development of long-term potentiation (LTP), an enduring alteration in synaptic efficacy following afferent activation, was examined in CA1 hippocampus and primary visual cortex of rat. Both regions show little LTP prior to postnatal day 5, demonstrate a maximal potentiated response around postnatal day 15, and a subsequent decline to adult levels. These results are discussed with respect to the underlying mechanism of action and behavioral significance of these critical-period phenomena.  相似文献   

18.
Short, high frequency stimulation bursts (4 pulses at 100 Hz) were applied to Schaffer/commissural projections to the CA1 field of rat hippocampal slices at 0.1, 0.2, 1.0 or 2.0-s intervals to assess their efficacy in eliciting long-term potentiation (LTP). Bursts repeated at 2-s intervals induced very little LTP; shorter repetition intervals reliably elicited LTP, with the 200-ms repetition interval producing the greatest potentiation. A short-term potentiation effect, which was maximal 20 s after the last burst and decayed within 10 min, was affected differently by the stimulation parameters than was LTP, suggesting that the two phenomena are due to different processes. The results indicate that patterns of stimulation resembling spike discharge patterns of hippocampal neurons in animals in exploratory situations are effective in inducing LTP and suggest temporal constraints on the mechanisms involved in triggering synaptic plasticity.  相似文献   

19.
Extracellular recording was used to study the effects of high-frequency (tetanic) stimulation on excitatory synaptic transmission in the CA1 region of rat hippocampal slices in the presence of the γ-aminobutyric acid (GABA) type A antagonist, picrotoxin (50 γM). Under these conditions tetanic stimulation (100 Hz, 1 s) at the test intensity resulted in homosynaptic long-term potentiation (LTP). In contrast, tetanic stimulation of higher intensity (100 Hz, 1 s, double test intensity) resulted in homo- and heterosynaptic depression which recovered within 45 min. A transient (1–3 min) negative shift in DC potential and a transient (5–10 min) depression of the homosynaptic fibre volley occurred immediately following the higher intensity tetanus. The DC shift, induction of homo- and heterosynaptic depression and depression of the fibre volley were reversibly prevented by the N -methyl- d -aspartate (NMDA) receptor antagonist, d -2-amino-5-phosphonopentanoate (AP5; 20 γM) but were not prevented by a variety of L-type calcium channel antagonists. Transient (30 - 45 min) synaptic depression of pharmacologically isolated NMDA receptor-mediated field excitatory postsynaptic potentials also occurred following tetanic stimulation (100 Hz, 1 s) at double test intensity. These results demonstrate an NMDA receptor-dependent form of reversible synaptic depression in the CA1 region of the hippocampus.  相似文献   

20.
Hippocampal synaptic plasticity in the form of long‐term potentiation (LTP) and long‐term depression (LTD) is likely to enable synaptic information storage in support of memory formation. The mouse brain has been subjected to intensive scrutiny in this regard; however, a multitude of studies has examined synaptic plasticity in the hippocampal slice preparation, whereas very few have addressed synaptic plasticity in the freely behaving mouse. Almost nothing is known about the frequency or N‐methyl‐D‐aspartate receptor (NMDAR) dependency of hippocampal synaptic plasticity in the intact mouse brain. Therefore, in this study, we investigated the forms of synaptic plasticity that are elicited at different afferent stimulation frequencies. We also addressed the NMDAR dependency of this phenomenon. Adult male C57BL/6 mice were chronically implanted with a stimulating electrode into the Schaffer collaterals and a recording electrode into the Stratum radiatum of the CA1 region. To examine synaptic plasticity, we chose protocols that were previously shown to produce either LTP or LTD in the hippocampal slice preparation. Low‐frequency stimulation (LFS) at 1 Hz (900 pulses) had no effect on evoked responses. LFS at 3 Hz (ranging from 200 up to 2 × 900 pulses) elicited short‐term depression (STD, <45 min). LFS at 3 Hz (1,200 pulses) elicited slow‐onset potentiation, high‐frequency stimulation (HFS) at 100 Hz (100 or 200 pulses) or at 50 Hz was ineffective, whereas 100 Hz (50 pulses) elicited short‐term potentiation (STP). HFS at 100 Hz given as 2 × 30, 2 × 50, or 4 × 50 pulses elicited LTP (>24 h). Theta‐burst stimulation was ineffective. Antagonism of the NMDAR prevented STD, STP, and LTP. This study shows for the first time that protocols that effectively elicit persistent synaptic plasticity in the slice preparation elicit distinctly different effects in the intact mouse brain. Persistent LTD could not be elicited with any of the protocols tested. Plasticity responses are NMDAR dependent, suggesting that these phenomena are relevant for hippocampus‐dependent learning. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号