首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The pulsed holmium:YAG laser (lambda = 2.12 microm, tau(p) = 250 micros) has been investigated as a method for inducing localized coagulation for medical procedures, yet the dynamics of this process are not well understood. In this study, photocoagulation of albumen (egg white) was analysed experimentally and results compared with optical-thermal simulations to investigate a rate process approach to thermal damage and the role of heat conduction and dynamic changes in absorption. The coagulation threshold was determined using probit analysis, and coagulum dynamics were documented with fast flash photography. The nonlinear computational model, which included a Beer's law optical component, a finite difference heat transfer component and an Arrhenius equation-based damage calculation, was verified against data from the literature. Moderate discrepancies between simulation results and our experimental data probably resulted from the use of a laser beam with an irregular spatial profile. This profile produced a lower than expected coagulation threshold and an irregular damage distribution within a millisecond after laser onset. After 1 ms, heat conduction led to smoothing of the coagulum. Simulations indicated that dynamic changes in absorption led to a reduction in surface temperatures. The Arrhenius equation was shown to be effective for simulating transient albumen coagulation during pulsed holmium:YAG laser irradiation. Greater understanding of pulsed laser-tissue interactions may lead to improved treatment outcome and optimization of laser parameters for a variety of medical procedures.  相似文献   

6.
Ultrashort pulsed lasers in bone ablation show promise for many orthopedic applications. To minimize collateral tissue damage and control the ablation process, the ablation threshold fluence must be well characterized. Using an amplified femtosecond laser (170 fs, 800 nm, 1 kHz), the ablation threshold on unaltered porcine cortical bone was measured using the D(2) method at multiple incident pulse numbers ranging from 25 to 1000 pulses per spot. The lowered threshold at greater pulse numbers indicated an incubation effect. Using a power law model, the incubation coefficient of unaltered porcine cortical bone was found to be 0.89 ± 0.03. Through extrapolation, the single-pulse ablation threshold was found to be 3.29 ± 0.14 J/cm(2).  相似文献   

7.
Hydroxyapatite (HA) coatings generally exhibit very good biocompatibility owing to their compositional resemblance to the natural hard tissue and to bioactive properties that are directly related to surface transformations in physiological fluids. In this study, two types of porous HA coatings produced with pulsed laser deposition were tested with respect to their dissolution/reprecipitation in a semidynamic simulated physiological solution. Coatings with higher porosity produced with a 355-nm wavelength laser exhibited significant reprecipitation earlier than those produced with a 266-nm wavelength laser. The dissolution of the non-HA phases played a major role in the reprecipitation of HA-like material as indicated by X-ray diffraction (XRD). The coatings' Ca/P ratio became closer to the theoretical value of HA. The newly formed HA had imperfect crystal structure and/or small crystal size as suggested by XRD. The reprecipitation resulted in a very dense morphology as shown by scanning electron microscopy, suggesting a mechanically strong structure after reprecipitation. Despite undergoing dissolution and reprecipitation, the coatings showed sufficient stability in the solution, as XRD and energy-dispersive X-ray studies indicated no significant loss of the coatings. The stability of these HA coatings and their ability to cause reprecipitation of HA in the simulated physiological solution showed the potential of these coatings for clinical applications.  相似文献   

8.
Pathomorphological changes in melanoma, basalioma, and squamous cell carcinoma of the human skin caused by impulse neodime laser radiation were studied. Laser radiation was found to exert damaging effects on the tumour of various degrees of intensity, the degenerative changes reaching the highest degree, necrosis, in the zone of the direct effect of the ray. Morphological changes in tissues developing under the influence of laser radiation are in many aspects similar to electrocoagulation necrosis. At the same time, foci of laser lesions have some features distinguishing them from common thermal injuries. Cytological examination was shown to be a highly effective method permitting to determine the degree of radical healing of skin tumors treated with the laser ray.  相似文献   

9.
《Plasmas & Ions》1998,1(1):23-28
The fluence dependence of the absorption of TEA CO2 laser in silicon wafers at various dopant concentrations has been studied. The transmittance decreased with increasing fluence, and the effect of the dopant concentration was found to be small. The time profile of the pulse intensity after transmitting through a sample showed a narrowing of the width. The results indicate a buildup of photo-induced absorbance in the middle of a pulse, leading to the absorption of the later part of the pulse, and also suggest that this effect is insensitive to the ground state absorbance of the silicon samples.  相似文献   

10.
Octacalcium phosphate (OCP) and Mn(2+)-doped carbonate hydroxyapatite (Mn-CHA) thin films were deposited on pure, highly polished and chemically etched Ti substrates with pulsed laser deposition. The coatings exhibit different composition, crystallinity and morphology that might affect their osteoconductivity. Human osteoblasts were cultured on the surfaces of OCP and Mn-CHA thin films, and the cell attachment, proliferation and differentiation were evaluated up to 21 days. The cells showed a normal morphology and a very good rate of proliferation and viability in every experimental time. Alkaline phosphatase activity was always higher than the control and Ti groups. From days 7 to 21 collagen type I production was higher in comparison with control and Ti groups. The level of transforming growth factor beta 1 (TGF-beta1) was lower at 3 and 7 days, but reached the highest values during following experimental times (14 and 21 days). Our data demonstrate that both calcium phosphate coatings favour osteoblasts proliferation, activation of their metabolism and differentiation.  相似文献   

11.
Summary Probabilistic modelling of continuous current sources is applied to the analysis of MEG signals generated by current dipoles implanted in the head of a living human subject. Estimates of the distribution of activity within a circular disk are obtained from signals generated by a single implanted dipole and by a pair of simultaneously active implanted dipoles. The orientation and depth of the disc is determined in advance from the experimental geometry and the measurements. The resulting reconstructions constitute the first in vivo validation of distributed source imaging; they provide a complementary test to earlier works using computer generated data and tests using point source analysis of signals generated by a single implanted dipole. In this work we provide a literal test of spatial resolution by resolving two nearby point-like sources. Temporal resolution is addressed in a de facto manner by imaging at one millisecond intervals. Computer simulations, with controlled amount of noise, are used to demonstrate the robustness of the results, and show the interplay between high spatial accuracy and noise insensitivity.This work was done in part while Robert Muratore held a National Research Council/National Institutes of Health Research Associateship. This work has benefited from research grants from the Science and Engineering Research Council (UK), including an award under the Computational Science initiative. Travel assistance to one of us (AAI) from the Nuffield foundation is also acknowledged.  相似文献   

12.
Sun JJ  Yang JW  Shyu BC 《Neuroscience》2006,140(4):1321-1336
The role of the primary somatosensory cortex in thermal pain perception has been established. However, the cortical circuitry that mediates the thermo-nociceptive information processing has not been elucidated. The aim of present study was to investigate the intracortical synaptic currents in primary somatosensory cortex evoked by short laser pulses and to determine their transmission pathway. Noxious CO2 laser pulse stimuli or innocuous electrical and mechanical stimuli were delivered to the hind paw of halothane-anesthetized rats. Multi-channel field potentials were recorded simultaneously in primary somatosensory cortex and laminar-specific transmembrane currents were analyzed using a current source density method. A distinct spatial–temporal pattern of intra-cortical sink source currents was evoked by laser pulse stimuli. The amplitude of the early component was graded by laser energy output and influenced by contralateral signals, whereas the late components were not intensity-dependent and exhibited bilateral excitation. Intra-cortical current flows revealed that synaptic activation occurred initially at layers IV and VI separately and then was relayed transynaptically to the more superficial and the deeper layers. Latency, amplitude and intracortical distributions of the activated intra-cortical currents evoked by noxious stimuli differed significantly from those evoked by innocuous stimuli. Conduction velocity data together with the results of tetrodotoxin, capsaicin and morphine treatments indicated that the early and late components were mediated separately by A-delta and C fibers. Our results suggest that large and small diameter thermal nociceptive afferents generated laminar-specific intracortical synaptic currents in primary somatosensory cortex and that these excitatory synaptic currents were conveyed separately by lateral and medial thalamic nuclei.  相似文献   

13.
The increased sensitivity of spectral domain optical coherence tomography (OCT) has driven the development of a new generation of technologies in OCT, including rapidly tunable, broad bandwidth swept laser sources and spectral domain OCT interferometer topologies. In this work, the operation of a turnkey 1300-nm swept laser source is demonstrated. This source has a fiber ring cavity with a semiconductor optical amplifier gain medium. Intracavity mode selection is achieved with an in-fiber tunable fiber Fabry-Perot filter. A novel optoelectronic technique that allows for even sampling of the swept source OCT signal in k space also is described. A differential swept source OCT system is presented, and images of in vivo human cornea and skin are presented. Lastly, the effects of analog-to-digital converter aliasing on image quality in swept source OCT are discussed.  相似文献   

14.
A new microSelectron pulsed dose rate source has been designed, containing two active pellets instead of one inactive and one active pellet contained in the old design, to facilitate the incorporation of higher activity up to 74 GBq (2 Ci). In this work, Monte Carlo simulation is used to derive full dosimetric data following the AAPM TG-43 formalism, as well as the dose rate per unit air kerma strength data in Cartesian, "away and along" coordinates for both source designs. The calculated dose rate constant of the new PDR source design was found equal to lambda=(1.121 +/- 0.006) cGy h(-1) U(-1) compared to lambda = (1.124 +/- 0.006) cGy h(-1) U(-1) for the old design. Radial dose functions of the two sources calculated using the point source approximated geometry factors were found in close agreement (within 1%) except for radial distances under 2 mm. At polar angles close to the longitudinal source axis at the sources' distal end, the new design presents increased anisotropy (up to 10%) compared to the old one due to its longer active core. At polar angles close to the longitudinal source axis at the sources' drive wire end however, the old design presents increased anisotropy (up to 18%) due to attenuation of emitted photons through the inactive Ir pellet. These differences, also present in "away and along" dose rate results, necessitate the replacement of treatment planning input data for the new microSelectron pulsed dose rate source.  相似文献   

15.
16.
Arias JL  Mayor MB  Pou J  Leng Y  León B  Pérez-Amor M 《Biomaterials》2003,24(20):3403-3408
Micro- and nano-testing methods have been explored to study the thin calcium phosphate coatings with high adhesive strength. The pulsed laser deposition (PLD) technique was utilised to produce calcium phosphate coatings on metal substrates, because this type of coatings exhibit much higher adhesive strength with substrates than conventional plasma-sprayed coatings. Due to the limitations of the conventional techniques to evaluate the mechanical properties of these thin coatings (1 microm thick), micro-scratch testing has been applied to evaluate the coating-to-substrate adhesion, and nano-indentation to determine the coating hardness and elastic modulus. The test results showed that the PLD produced amorphous and crystalline HA coatings are more ductile than titanium substrates, and the PLD coatings are not delaminated from the substrates by scratch. Also, the results showed that the crystalline HA coating is superior in internal cohesion to the amorphous one, even though the lower elastic modulus of amorphous coating could be more mechanically compatible with natural bone.  相似文献   

17.
We extended for the first time pulsed laser ablation to the deposition of octacalcium phosphate Ca8H2(PO4)6.5H2O (OCP) thin films. The depositions were performed with a pulsed UV laser source (lambda=248 nm, tau> or =20 ns) in a flux of hot water vapors. The targets were sintered from crystalline OCP powder and the laser ablation fluence was set at values of 1.5-2 J/cm2. During depositions the collectors, Si or Ti substrates, were maintained at a constant temperature within the range 20-200 degrees C. The resulting structures were submitted to heat treatment in hot water vapors for up to 6 h. The best results were obtained at a substrate temperature of 150 degrees C during both deposition and post-deposition treatment. High-resolution electron microscopy and XRD at grazing incidence indicated that the coatings obtained were made of nanocrystalline OCP. Cross-section TEM investigations showed that the coatings contained droplets stacked on Ti substrates as well as distributed across the entire thickness of the arborescence-like structure layers. The results of WST-1 assay, cell adherence, DNA replication, and caspase-1 activity confirmed the good biocompatibility of the coatings.  相似文献   

18.
Many techniques have been used to produce calcium phosphate, especially hydroxyapatite (HA), coatings on metallic implant surfaces for improved biocompatibility. Although some techniques have produced coatings used clinically, the long-term stability of the coating/implant is still questionable. As a new technique for making HA coatings, pulsed laser deposition (PLD) shows some advantages in controlling the coatings' crystal structure and composition. In this study, three types of HA target and two wavelengths of laser were used to produce calcium phosphate coatings. Despite PLDs ability to improve the crystal structure by incorporating water vapor into the deposition process, the characterization with EDX and XPS showed that coatings had different Ca/P ratios from that of the pure HA targets, which almost assured the presence of non-HA phases. FTIR spectra also showed differences in phosphate bands of coatings and targets although the difference in data collecting modes might have been a factor. The observed differences might be related to the differences between the surface and bulk chemistries of the coatings. Nevertheless, when evaluating the suitability of the PLD technique for making HA coatings, the possibility of the formation of non-HA phases cannot be excluded, although it may not necessarily be a negative factor.  相似文献   

19.
20.
The deposition of fibronectin (FN) from saline buffer-based cryogenic targets by matrix-assisted pulsed laser evaporation (MAPLE) onto silicon substrates is reported. A uniform distribution of FN was revealed by Ponceau staining after control experiments on nitrocellulose paper. Well-organized particulates with heights from hundreds of nanometers up to more than 1 μm packed in homogeneous layers were evidenced by optical microscopy and profilometry on Si substrates. Atomic force microscopy images showed regions composed of buffer and FN aggregates forming a compact film. Comparison of infrared spectra of drop-cast and MAPLE-deposited FN confirmed the preservation of composition and showed no degradation of the protein. The protein deposition on Si was confirmed by antibody staining. Small aggregates and fluorescent fibrils were visualized by fluorescence microscopy. Superior attachment of human osteoprogenitor cells cultivated for 3 h proved the presence of stable and intact FN molecules after transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号