首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Steel factor (SLF) and erythropoietin (Epo) play critical roles in erythropoiesis. To evaluate interactive effects of Epo and SLF receptors (R) in erythropoiesis, CD34+ and CD34 cord blood cells were transduced with human EpoR and c-kit cDNAs by retroviral mediated gene transfer. Erythroid (BFU-E) colonies derived from CD34+ or CD34 cells transduced with either the EpoR or c-kit gene were significantly increased in the presence of interleukin (IL)-3, granulocyte-macrophage colony-stimulating factor (GM-CSF), Epo, and different concentrations of SLF compared with that from mock transduced cells. This number was further enhanced by co-transduction of both genes. Enhancement was more apparent in the absence of SLF. Cell numbers in individual erythroid colonies were also significantly increased in cells transduced with both genes compared with cells transduced with a single gene. Short-term liquid culture showed that ex vivo expansion for five days and numbers of CD34+CD71+ cells in expanded cells from single CD34 cells co-transduced with both EpoR and c-kit genes were increased compared with those of EpoR or c-kit-transduced cells. These results demonstrate that co-transduction of both c-kit and EpoR enhances the proliferative capacity of erythroid progenitors under cytokine stimulation above that of single-gene transduced cells.  相似文献   

2.
目的研究血小板第4因子(PF4)对新鲜脐血CD34+细胞及扩增后脐血CD34+细胞黏附功能的影响;PF4对脐血CD34+细胞上的黏附分子CD49d及基质细胞趋化因子(SDF-1)受体CXCR4的作用.方法采用免疫磁珠法(MACS)分选CD34+细胞,结晶紫染色测定细胞总黏附性,免疫荧光标记流式细胞仪测定CD49d及CXCR4的表达.结果①PF4 可使新鲜脐血CD34+细胞总黏附性提高,且与剂量相关.②SDF-1 100 ng/ml可使脐血CD34+细胞总黏附性提高.③脐血CD34+细胞扩增10 d后未加PF4刺激的自发以及经SDF-1诱导的黏附功能开始下降,在扩增脐血CD34+细胞不同时间段加入100ng/ml PF4,脐血CD34+细胞对基质层的黏附能力始终保持较高水平,以0天时脐血CD34+细胞黏附性为100%,扩增14 d时脐血CD34+细胞黏附性PF4组为(262.04±64.81)%,同期对照组为(64.35±8.29)%,经SDF-1诱导下扩增14 d的CD34+细胞的总黏附性PF4组为(138.31±32.39)%,同期对照组为(67.66±12.44)%.④PF4 100 ng/ml作用于CD34+细胞时,CD49d表达增长13.02%,CXCR4表达增长17.33%.结论 PF4可使新鲜及扩增后的脐血CD34+细胞黏附功能增强,并促进CD49d及CXCR4的表达,提示PF4可能有助于脐血干细胞的归巢.  相似文献   

3.
Hematopoietic stem cells transplantation has been successfully used in the treatment of patients with hematological malignances. A better knowledge of the mechanisms beyond their ability to completely repopulate the entire hematopoietic system would help in the treatment of hematological diseases. For this reason we focused our studies on a cell population that has been demonstrated to have some peculiar characteristics among the stem cells: CD34+KDR+ cells. These cells, an extremely rare population among the CD34 (0.1%-0.5%) cells, have been demonstrated from different groups to have the potential to give rise to the hematopoietic and endothelial lineage. By a subtraction library approach we found different sequences more expressed in CD34+KDR+ than their CD34+KDR- counterpart. In particular, we found an open reading frame correspondent to a newly characterized E3 ligase, MARCH-I. This gene is part of a recently described family involved in immune response modulation through the proteosomal mediated degradation. MARCH-I expression in stem cells could be important for their intrinsic immune properties.  相似文献   

4.
5.
Dendritic cells (DCs), the most potent antigen-presenting cells, can be generated from CD34+ hematopoietic stem cells and used for generating therapeutic immune responses. To develop immunotherapy protocols based on genetically modified DCs, we have investigated the conditions for high-level transduction of a large amount of CD34+-derived DCs. Thus, we have used an efficient and clinically applicable protocol for the retroviral transduction of cord blood (CB) or mobilized peripheral blood (MPB) CD34+ cells based on infection with gibbon ape leukemia virus (GALV)-pseudotyped retroviral vectors carrying the nls-LacZ reporter gene. Infected cells have been subsequently cultured under conditions allowing their dendritic differentiation. The results show that using a growth factor combination including granulocyte-macrophage colony-stimulating factor plus tumor necrosis factor alpha plus interleukin 4 plus stem cell factor plus Flt3 ligand, more than 70% of DCs derived from CB or MPB CD34+ cells can be transduced. Semiquantitative PCR indicates that at least two proviral copies per cell were detected. Transduced DCs retain normal immunophenotype and potent T cell stimulatory capacity. Finally, by using a semisolid methylcellulose assay for dendritic progenitors (CFU-DCs), we show that more than 90% of CFU-DCs can be transduced. Such a highly efficient retrovirus-mediated gene transfer into CD34+-derived DCs makes it possible to envision the use of this methodology in clinical trials.  相似文献   

6.
背景:据作者查新检索,国外尚无通过体外诱导干细胞生成具有功能的血细胞并形成产品的报道.目的:体外诱导脐血CD34+细胞向成熟巨核细胞分化,并观察血小板产出情况.设计、时间及地点:细胞学体外观察,于200412006在湘雅医院及湘雅三医院中心实验室完成.材料:脐带来源于足月妊娠健康产妇,由湘雅医院提供.方法:免疫磁珠法分选脐血CD34+细胞,按5×107L-1密度接种于24孔培养板,加入含L-谷氨酰胺、铁饱和的人转铁蛋白、CaCl2、胰岛素、去离子牛血清白蛋白及重组人血小板牛成素的StemPro-34无血清培养基,置于37℃、体积分数为0.05的CO2饱和湿度条件F向巨核细胞诱导培养14~21d.吸取细胞培养液,离心取上清,再次离心弃上清,余下物质即为细胞培养液中比重较小的血小板样颗粒.同法分离正常富血小板血浆中的血小板.主要观察指标:培养细胞与上清液中血小板样颗粒的形态变化、免疫组织化学染色结果、显微及超微结构观察,血小板聚集情况及CD41的表达.结果:培养第10天,巨核细胞诱导培养体系中出现丝状物质,片有血小板样颗粒产生,第16天达高峰:培养细胞强阳性表达血小板特异件抗原GP Ⅱb Ⅲa:光镜观察培养细胞呈成熟巨核细胞形态,但也可见幼稚巨核细胞样,巨核细胞旁可见血小板样颗粒:电镜观察培养细胞大多呈成熟巨核细胞形态,少量呈凋亡状态,上清液中血小板样颗粒与富血小板血浆中的血小板大小、超微结构基本一致,有的血小板表面光滑,有的则呈现不规则表面.上清液中血小板样颗粒与正常富血小板血浆中的血小板均能对凝血酶产生聚集反应,流式细胞仪检测两者具有同样的CD41高表达率.结论:脐血CD34+细胞能在体外诱导生成高纯度且成熟的巨核细胞,并产出血小板.  相似文献   

7.
Most clinical applications of haematopoietic stem/progenitor cells (HSCs) would benefit from their ex vivo expansion to obtain a therapeutically significant amount of cells from the available donor samples. We studied the impact of cellular interactions between umbilical cord blood (UCB) haematopoietic cells and bone marrow (BM)‐derived mesenchymal stem cells (MSCs) on the ex vivo expansion and differentiative potential of UCB CD34+‐enriched cells. UCB cells were cultured: (a) directly in contact with BM MSC‐derived stromal layers (contact); (b) separated by a microporous membrane (non‐contact); or (c) without stroma (no stroma). Highly dynamic culture events occurred in HSC‐MSC co‐cultures, involving cell–cell interactions, which preceded HSC expansion. Throughout the time in culture [18 days], total cell expansion was significantly higher in contact (fold increase of 280 ± 37 at day 18) compared to non‐contact (85 ± 25). No significant cell expansion was observed in stroma‐free cultures. CD34+ cell expansion was also clearly favoured by direct contact with BM MSCs (35 ± 5‐ and 7 ± 3‐fold increases at day 18 for contact and non‐contact, respectively). Moreover, a higher percentage of CD34+CD38? cells was consistently maintained during the time in culture under contact (8.1 ± 1.9% at day 18) compared to non‐contact (5.7 ± 1.6%). Importantly, direct cell interaction with BM MSCs significantly enhanced the expansion of early lymphoid CD7+ cells, yielding considerably higher (×3–10) progenitor numbers compared to non‐contact conditions. These results highlight the importance of dynamic cell–cell interactions between UCB HSCs and BM MSCs, towards the maximization of HSC expansion ex vivo to obtain clinically relevant cell numbers for multiple settings, such as BM transplantation or somatic cell gene therapy. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
BACKGROUND : Ex vivo expansion of HPCs is an attractive approach to overcoming the current limitations of human cord blood transplantation. It is important not only to define the optimal culture conditions but also to know the number of progenitor cells that can be obtained. CD34+ cells have a great variability in their cloning capacity and in their ability to expand HPCs. This study was carried out to assess whether this variability could be due to intrinsic or extrinsic factors.
STUDY DESIGN AND METHODS : CD34+ cells were analyzed for the expression of CD38, CD133, and CD117 and cultured in serum-free culture medium with four cytokine combinations: SCF plus thrombopoietin plus flt3 ligand (STF), STF plus IL-3, STF plus IL-6, and STF plus IL-6 plus IL-3. After a 1-week culture, the numbers of CD34+ cells and CFUs were determined.
RESULTS : The variability observed both in the cloning ability of CD34+ isolated cells and in their expansion capacity was inversely related to the frequency of the more immature CD34+CD38– cells. When more mature CD34+CD38+ cells were present within CD34+-isolated cells, a higher cloning ability, measured as CFUs, and a higher expansion capacity were observed.
CONCLUSION : Enumeration of CD34+CD38– cells is correlated with the number of committed progenitors and the capacity of generating CD34+ cells, an important parameter if expansion protocols must be used in clinical transplantation.  相似文献   

9.
目的 体外大量扩增和纯化具有典型表型、形态和功能的树突状细胞(DC)、以进行相关基础研究和临床应用。方法 采用免疫磁珠江分离脐血CD34^+细胞及外周血去B、去T淋巴细胞的单个核细胞(单核细胞),然后以GM-CSF、IL-4、TNFα、Flt3配基(FL)、SCF等不同的细胞因子配伍分别诱生DC,通过流式细胞仪、电镜、光镜分析其特性,同时检测其刺激同种T细胞增殖的能力。结果 脐民外周血诱生DC的方  相似文献   

10.
Baek EJ  Kim HS  Kim S  Jin H  Choi TY  Kim HO 《Transfusion》2008,48(10):2235-2245
BACKGROUND: There is no appropriate alternative source of red blood cells (RBCs) to relieve the worsening shortage of blood available for transfusion. Therefore, in vitro generation of clinically available RBCs from hematopoietic stem cells could be a promising new source to supplement the blood supply. However, there have been few studies about the generation of clinical‐grade RBCs by coculture on human mesenchymal stem cells (MSCs) and various cytokine supplements, even though the production of pure RBCs requires coculture on stromal cells and proper cytokine supplements. STUDY DESIGN AND METHODS: Umbilical cord blood (CB) CD34+ cells were cultured in serum‐free medium supplemented with two cytokine sets of stem cell factor (SCF) plus interleukin‐3 (IL‐3) plus erythropoietin (EPO) and SCF plus IL‐3 plus EPO plus thrombopoietin (TPO) plus Flt‐3 for 1 week, followed by coculture upon MSCs derived from bone marrow (BM) or CB for 2 weeks. RESULTS: Almost pure clinical‐grade RBCs could be generated by coculturing with CB‐MSCs but not BM‐MSCs. Expansion fold and enucleation rate were significantly higher in coculture with CB‐MSCs than BM‐MSCs. Despite a 2.5‐fold expansion of erythroblasts in the presence of TPO and Flt‐3 for 8 days, the final RBC count was higher without TPO and Flt‐3. CONCLUSIONS: This study is the first report on generating clinical‐grade RBCs by in vitro culture with human MSCs and compared effectiveness of several cytokines for RBC production. This provides a useful basis for future production of clinically available RBCs and a model of erythropoiesis that is analogous to the in vivo system.  相似文献   

11.
脐血CD34^+细胞向肝细胞分化的体内外实验   总被引:1,自引:1,他引:1  
目的:以脐血CD34 细胞为起始细胞,分别在人体外和肝受损的重度联合免疫缺陷小鼠体内诱导CD34 细胞向肝细胞转化。方法:实验于2004-09/2005-06在反应器工程国家重点实验室进行。取健康足月产妇的新鲜脐血,产妇知情同意。采用密度梯度离心法分离脐血单个核细胞。将单个核细胞悬浮于免疫磁珠法缓冲液中,获取CD34 细胞。将CD34 细胞在干细胞因子 白细胞介素3 白细胞介素6细胞因子组合中培养1周,然后在肿瘤抑制素 成纤维细胞因子1 成纤维细胞因子2 白血病抑制因子 肝细胞生长因子 表皮生长因子组合中诱导其向肝细胞分化。将2-乙酰氟氨以0.4mg/只的剂量通过腹腔注射输入到重度联合免疫缺陷小鼠体内。7d后再腹腔注射入0.4mL/kg的CCl4,同时向实验组小鼠尾部静脉注射CD34 细胞,对照组小鼠则仅输注2-乙酰氨芴和CCl4。分别于4,6周后采用流式细胞术检测小鼠肝脏中的人源细胞,并用RT-PCR和免疫组化方法检测人源血清白蛋白基因和抗原的表达。结果:①CD34 细胞体外培养过程中,细胞总数扩增了近30倍,并且在培养21d收获的细胞中可检测到人血清白蛋白基因和抗原的表达,CD34 在体外被诱导成肝样细胞。②采用流式细胞术检测重度联合免疫缺陷小鼠肝脏中的人源细胞,并用RT-PCR和免疫组化的方法检测人源血清白蛋白基因和抗原的表达,4周时发现小鼠肝脏中含有7.66%的人源细胞,但人源细胞不表达血清白蛋白基因和抗原。6周时重度联合免疫缺陷小鼠肝脏中的人源细胞的比例增加至31.10%,并且人源细胞开始表达血清白蛋白基因和抗原。结论:CD34 细胞无论在体外培养还是在肝脏受损的重度联合免疫缺陷小鼠体内均能成功转化为肝实质细胞。  相似文献   

12.
After extensive preclinical work, hematopoietic cellular therapy has recently entered a new era of clinical trials involving ex vivo cultured cells. The evolution of hematopoietic cell culture from clonogenic assays to large-scale static culture systems and bioreactors, and the identification and production of hematopoietic growth factors, have in part made this possible. In addition, murine models have demonstrated encouraging results with regard to the feasibility of infusing cultured cells, as well as to the potential efficacy. Several trials have recently been published utilizing ex vivo generated hematopoietic progenitors and myeloid progenitors, and are reviewed here. The field of clinical hematopoietic cellular therapy, while still in its infancy, is progressing rapidly, and promises to offer improved therapeutic options.  相似文献   

13.
目的 探讨CD34+ 富集细胞和单个核细胞 (MNC)的体外扩增特性。方法 利用Min iMACS系统富集CD34+ 细胞 ,在相同条件下与同批MNC进行对照培养 ;观察了再次富选和MNC培养上清 (MNC SN)对CD34+ 富集细胞扩增的影响 ;并尝试了MNCCD34- 细胞的培养。结果 虽然CD34+ 富集细胞具有很高的扩增潜力 ,但在培养过程中 ,其集落密度和CD34 + 细胞含量却始终呈下降趋势 ,而MNC在培养中却出现了一个上升的趋势 ,集落密度和CD34+ 细胞含量分别由第 0天的 (4 12± 16 7) 10 5细胞和 (1.12± 0 .4 2 ) %增至第 7天的 (116 2± 5 6 6 ) 10 5细胞和 (4 .17± 1.4 4 ) % ;再次富选可以使培养过的CD34+ 富集细胞的总细胞和CD34+ 细胞扩增能力大大提高 ;MNCCD34- 细胞具有集落形成和转化为CD34+ 细胞的能力 ;MNC SN对CD34+ 富集细胞的集落形成有促进作用 ,而同时又对CD34+ 细胞有促分化作用。结论 CD34+ 富集细胞在体外大量扩增的同时存在大量分化 ,其在培养过程中产生的CD34-细胞对CD34+ 细胞的扩增有抑制作用 ;脐血MNC中大量的CD34- 细胞含有造血干 祖细胞 ,其分泌的细胞因子有促进CD34+ 细胞向较为成熟的集落形成祖细胞分化的作用。  相似文献   

14.
15.
GFP在人脐血CD34~+细胞中的表达及意义   总被引:1,自引:0,他引:1  
目的探讨慢病毒载体在CD34+脐血细胞(CBCs)中的基因转导效率,为基因治疗的临床应用提供关键材料。方法应用1型人类免疫缺陷病毒(HIV-1)改造而成的第三代自身失活(self-inactivating,SIN)慢病毒载体(lentiviralvector)系统,通过流式细胞术检测基因导入细胞百分比,评价该载体系统在人CBCs中的基因转导效率。结果 HIV载体的转导效率在95%以上。结论基于慢病毒载体基因转导的高效性,该载体系统可作为CD34+CBCs基因转导的极好工具。  相似文献   

16.
17.
目的 分离脐血干/祖细胞(CD34^ CD38)进行体外长期培养,观察分析其增殖、细胞表面分子标志和染色体核型的特征。方法 用流式细胞仪分选CD34-FITC和CD38-PE标记的CD34^ CD38脐血原始细胞,在含细胞生长因子IL-3、IL-6、GM-CSF、EPO、SCF和胰岛素样生长因子的干细胞培养基中培养6个月,用流式细胞术检测体外培养30d的干/祖细胞表面标记,并用G显带方法分析其染色体核型。结果 在一定培养条件下,经7~12d培养,脐血干/祖细胞(CD34^ CD38)开始增殖。培养6个月后,每孔接种1个细胞,细胞数增殖至250~350个;每孔接种10个细胞,细胞数可增殖至400~500个。每孔接种1个细胞其细胞增殖峰持续时间(8~9代)比接种10个细胞(6~7代)长:经体外长期培养增殖,细胞仍强烈显示十/祖细胞表面分子标记(CD34^ CD38^-);细胞染色体数目、结构未见异常。结论 脐血干/祖细胞(CD34^ CD38^ )经体外特异性培养增殖,可为大量脐血干/祖细胞移植提供细胞来源。  相似文献   

18.
19.
20.
In humans, at least two subsets of dendritic cells (DCs) are identified on the basis of differential surface expression of CD11c antigens. CD11c(+) and CD11c(-) cells are respectively of myeloid and lympholoid origin and functionally distinct, eliciting inflammatory and tolerant T cell responses. We investigated whether 4-1BB ligand (4-1BBL), a member of the tumor necrosis factor (TNF) family, is involved in the maturation process to mature myeloid DCs during in vitro DC differentiation from immature DCs derived from human umbilical cord blood (CB) CD34(+) progenitor cells. Enhanced levels of CD11c as well as immunostimulatory molecules such as CD86, MHC class II, and 4-1BBL were induced in response to 4-1BBL stimulation. These changes were accompanied by noticeable morphological transition from nonadherent to adherent myeloid-like DCs. Stimulation of 4-1BBL on DCs with 4-1BB-Fc or with 4-1BB-transfected Jurkat cells resulted in acquisition of capacity for the immature DCs to produce interleukin-12 (IL-12). This suggests that 4-1BBL may be an important mediator for maturation of CD11c(+) myeloid DCs, information of possible relevance for the design of DC-based vaccines with enhanced activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号