共查询到20条相似文献,搜索用时 15 毫秒
1.
The volatile anesthetic sevoflurane is degraded in anesthesia machines to the haloalkene fluoromethyl-2,2-difluoro-1-(trifluoromethyl)vinyl ether (FDVE), which can cause renal and hepatic toxicity in rats. FDVE is metabolized to S-[1,1-difluoro-2-fluoromethoxy-2-(trifluoromethyl)ethyl]-L-cysteine (DFEC) and (E) and (Z)-S-[1-fluoro-2-fluoromethoxy-2-(trifluoromethyl)vinyl]-L-cysteine [(E,Z)-FFVC], which are N-acetylated to N-Ac-DFEC and (E,Z)-N-Ac-FFVC S-conjugates. Some haloalkene S-conjugates undergo sulfoxidation. This investigation tested the hypothesis that FDVE S-conjugates can also undergo sulfoxidation, by evaluating sulfoxide formation by human and rat liver and kidney microsomes and expressed P450s and flavin monooxygenases. Rat, and at lower rates human, liver microsomes oxidized (Z)-N-Ac-FFVC and N-Ac-DFEC to the corresponding sulfoxides. Much lower rates of (Z)-N-Ac-FFVC, but not N-Ac-DFEC, sulfoxidation occurred with rat and human kidney microsomes. In human liver microsomes, the P450 inhibitor 1-aminobenzotriazole completely inhibited S-oxidation, while heating to inactivate FMO decreased (Z)-N-Ac-FFVC and N-Ac-DFEC sulfoxidation only 0 and 30%, respectively. Of the various cytochrome P450s examined, P450s 3A4 and 3A5 had the highest S-oxidase activity toward (Z)-N-Ac-FFVC; P450 3A4 was the predominant enzyme forming N-Ac-DFEC-SO. The P450 3A inhibitors troleandomycin and ketoconazole inhibited >95% of (Z)-N-Ac-FFVC sulfoxidation by P450 3A4 and 3A5 and 40-100% of (Z)-N-Ac-FFVC sulfoxidation by human liver microsomes and 15-85% of N-Ac-DFEC sulfoxidation by human liver microsomes. Sulfoxidation of DFEC was also examined in human liver microsomes. Substantial amounts of sulfoxide were observed, even in the absence of NADPH or protein, while enzymatic formation was comparatively minimal. These results show that FDVE S-conjugates undergo P450-catalyzed and nonenzymatic sulfoxidation and that enzymatic sulfoxidation of (Z)-N-Ac-FFVC and N-Ac-DFEC is catalyzed predominantly by P450 3A. The extent of FDVE sulfoxidation in vivo and the toxicologic significance of FDVE sulfoxides remain unknown and merit further investigation. 相似文献
2.
Sheffels P Schroeder JL Altuntas TG Liggitt HD Kharasch ED 《Chemical research in toxicology》2004,17(9):1177-1189
The volatile anesthetic sevoflurane is degraded to fluoromethyl-2,2-difluoro-1-(trifluoromethyl)vinyl ether (FDVE) in anesthesia machines. FDVE is nephrotoxic in rats. FDVE undergoes glutathione conjugation, subsequent conversion to cysteine and mercapturic acid conjugates, and cysteine conjugate metabolism by renal beta-lyase, which is a bioactivation pathway mediating nephrotoxicity in rats. Recent in vitro studies revealed cytochrome P4503A-catalyzed formation of novel sulfoxide metabolites of FDVE cysteine-S and mercapturic acid conjugates in rat liver and kidney microsomes. FDVE-mercapturic acid sulfoxides were more toxic than other FDVE conjugates to renal proximal tubular cells in culture. Nevertheless, the occurrence and toxicological significance of FDVE sulfoxides formation in vivo remain unknown. This investigation determined, in rats in vivo, the existence, role of P4503A, and nephrotoxic consequence of FDVE conjugates sulfoxidation. Rats were pretreated with dexamethasone, phenobarbital, troleandomycin, or nothing (controls) before FDVE, and then, nephrotoxicity, FDVE-mercapturate sulfoxide urinary excretion, and FDVE-mercapturate sulfoxidation by liver microsomes were assessed. The formation of FDVE-mercapturic acid sulfoxide metabolites in vivo and their urinary excretion were unambiguously established by mass spectrometry. Dexamethasone and phenobarbital increased, and troleandomycin decreased (i) liver microsomal FDVE-mercapturic acid sulfoxidation in vitro, (ii) FDVE-mercapturic acid sulfoxide urinary excretion in vivo, and (iii) FDVE nephrotoxicity in vivo assessed by renal histology, blood urea nitrogen concentrations, and urine volume and protein excretion. Urine 3,3,3-trifluoro-2-(fluoromethoxy)propanoic acid, reflecting beta-lyase-dependent FDVE-cysteine S-conjugates metabolism, was minimally affected by the pretreatments. These results demonstrate that FDVE S-conjugates undergo P4503A-catalyzed sulfoxidation in rats in vivo, and this sulfoxidation pathway contributes to nephrotoxicity. FDVE S-conjugates sulfoxidation constitutes a newly discovered mechanism of FDVE bioactivation and toxicification in rats, in addition to beta-lyase-catalyzed metabolism of FDVE-cysteine S-conjugates. 相似文献
3.
Evan D Kharasch Jesara L Schroeder Theo Bammler Richard Beyer Sengkeo Srinouanprachanh 《Toxicological sciences》2006,90(2):419-431
The major degradation product of the volatile anesthetic sevoflurane, the haloalkene fluoromethyl-2,2-difluoro-1-(trifluoromethyl)vinyl ether (FDVE or "compound A"), is nephrotoxic in rats. FDVE undergoes complex metabolism and bioactivation, which mediates the nephrotoxicity. Nevertheless, the molecular and cellular mechanisms of FDVE toxification are unknown. This investigation evaluated the gene expression profile of kidneys in rats administered a nephrotoxic dose of FDVE. Male Fischer 344 rats (five per group) received 0.25 mmol/kg intraperitoneal FDVE or corn oil (controls) and were sacrificed after 24 or 72 h. Urine output and kidney histological changes were quantified. Kidney RNA was extracted for microarray analysis using Affymetrix GeneChip Rat Expression Array 230A arrays. Quantitative real-time PCR confirmed the modulation of several genes. FDVE caused significant diuresis and necrosis at 24 h, with normal urine output and evidence of tubular regeneration at 72 h. There were 517 informative genes that were differentially expressed >1.5-fold (p < 0.05) versus control at 24 h, of which 283 and 234 were upregulated and downregulated, respectively. Major classes of upregulated genes included those involved in apoptosis, oxidative stress, and inflammatory response (mostly at 24 h), and regeneration and repair; downregulated genes were generally associated with transporters and intermediary metabolism. Among the quantitatively most upregulated genes were kidney injury molecule, osteopontin, clusterin, tissue inhibitor of metalloproteinase 1, and TNF receptor 12, which have been associated with other forms of nephrotoxicity, and angiopoietin-like protein 4, glycoprotein nmb, ubiquitin hydrolase, and HSP70. Microarray results were confirmed by quantitative real-time PCR. FDVE causes rapid and brisk changes in gene expression, providing potential insights into the mechanism of FDVE toxification, and potential biomarkers for FDVE nephrotoxicity which are more sensitive than conventional measures of renal function. 相似文献
4.
Fluoromethyl-2,2-difluoro-1-(trifluoromethyl)vinyl ether (FDVE; 1) is a fluoroalkene formed by the base-catalyzed degradation of the anesthetic sevoflurane. FDVE is nephrotoxic in rats. In both rats and humans, FDVE undergoes glutathione-dependent conjugation, cleavage to cysteine S-conjugates, and renal beta-lyase-catalyzed metabolism to reactive intermediates, which may cause nephrotoxicity. Interindividual variability in renal metabolism of FDVE is unknown. Therefore, this investigation quantified beta-lyase-catalyzed bioactivation and N-acetyltransferase-catalyzed inactivation of FDVE cysteine S-conjugates and reactivation of mercapturates by N-deacetylase in cytosol and microsomes from 20 human kidneys. In cytosol, N-acetylation ranged from 0.008 to 0.045 (0.024 +/- 0.01) nmol of mercapturate/mg/min and 0.001 to 0.07 (0.024 +/- 0.02) nmol of mercapturate/mg/min for alkane and alkene cysteine S-conjugates, respectively. Similar results for microsomal N-acetylation were obtained; N-acetylation ranged from 0.005 to 0.055 (0.025 +/- 0.02) nmol of mercapturate/mg/min and 0.001 to 0.06 (0.030 +/- 0.02) nmol of mercapturate/mg/min for alkane and alkene cysteine S-conjugates, respectively. Beta-lyase-catalyzed metabolism to pyruvate varied from 0.004 to 0.14 (0.051 +/- 0.04) nmol/mg/min and from 0.10 to 0.40 (0.26 +/- 0.08) nmol/mg/min for alkane and alkene cysteine-S-conjugates, respectively. N-deacetylation of mercapturates ranged from 0.8 to 2.5 (1.25 +/- 0.57) nmol of cysteine S-conjugate formed/mg/min and 0.05 to 0.37 (0.17 +/- 0.10) nmol of cysteine S-conjugate formed/mg/min for alkane and alkene FDVE mercapturates. Cytosolic cysteine S-conjugates metabolism by renal beta-lyase predominated over N-acetylation (ratio of activities was 0.2-6 and 3-146 for the alkane and alkene cysteine S-conjugates). N-deacetylation predominated over N-acetylation (ratio of activities was 20-205 and 2-54 for alkane and alkene S-conjugates). There was considerable (up to 50-fold) interindividual variability in rates of FDVE toxication (beta-lyase metabolism and N-deacetylation) and detoxication. This interindividual variability may effect individual susceptibility to the nephrotoxicity of FDVE and other haloalkenes. 相似文献
5.
E D Kharasch C Jubert D K Spracklin G M Hoffman 《Toxicology and applied pharmacology》1999,160(1):49-59
The volatile anesthetic sevoflurane is degraded in anesthesia machines to fluoromethyl-2,2-difluoro-1-(trifluoromethyl)vinyl ether (FDVE), to which humans are exposed. FDVE is metabolized in rats and humans to two alkane and two alkene glutathione S-conjugates that are hydrolyzed to the corresponding cysteine S-conjugates. The latter are N-acetylated to mercapturic acids, or bioactivated by renal cysteine conjugate beta-lyase to metabolites which may react with cellular macromolecules or hydrolyze to 3,3,3-trifluoro-2-(fluoromethoxy)propanoic acid. FDVE causes nephrotoxicity in rats, which evidence suggests is mediated by renal uptake of FDVE S-conjugates and metabolism by beta-lyase. Although pathways of FDVE metabolism have been described qualitatively, the purpose of this investigation was to quantify FDVE metabolism via mercapturic acid and beta-lyase pathways. Fischer 344 rats underwent 3-h nose-only exposure to FDVE (0 +/- 0, 46 +/- 19, 98 +/- 7, 150 +/- 29, and 220 +/- 40 ppm), and urine was collected for 24 h. Urine concentrations of the mercapturates, N-acetyl-S-(1,1,3,3, 3-pentafluoro-2-fluoromethoxypropyl)-L-cysteine and N-acetyl-S-(1-fluoro-2-fluoromethoxy-2-(trifluoromethyl)vinyl)-L- cysteine, the beta-lyase-dependent metabolite 3,3, 3-trifluoro-2-(fluoromethoxy)propanoic acid, and its degradation product trifluorolactic acid, were determined by GC/MS. There was dose-dependent urinary excretion of the alkane mercapturate N-acetyl-S-(1,1,3,3,3-pentafluoro-2-fluoromethoxypropyl)-L- cysteine and 3,3,3-trifluoro-2-(fluoromethoxy)propanoic acid, while excretion of the alkene mercapturate N-acetyl-S-(1-fluoro-2-fluoromethoxy-2-(trifluoromethyl)vinyl)-L- cysteine plateaued at higher FDVE exposures. The alkane:alkene mercapturic acid excretion ratio was between 2:1 and 4:1. Trifluorolactic acid was only rarely observed. Urine excretion of the beta-lyase-dependent metabolite 3,3, 3-trifluoro-2-(fluoromethoxy)propanoic acid was 10-fold greater than that of the combined mercapturates. Results show that FDVE cysteine S-conjugates undergo facile metabolism via renal beta-lyase, particularly in comparison with detoxication by mercapturic acid formation. The quantitative assay developed herein may provide a biomarker for FDVE exposure and relative metabolism via toxification and detoxifying pathways, applicable to animal and human investigations. 相似文献
6.
Mahipal SV Subhashini J Reddy MC Reddy MM Anilkumar K Roy KR Reddy GV Reddanna P 《Biochemical pharmacology》2007,74(2):202-214
Growth inhibitory effects of 15-lipoxygenase-1 [13-(S)-HPODE and 13-(S)-HODE] and 15-lipoxygenase-2 [15-(S)-HPETE and 15-(S)-HETE] (15-LOX-1 and LOX-2) metabolites and the underlying mechanisms were studied on chronic myeloid leukemia cell line (K-562). The hydroperoxy metabolites, 15-(S)-HPETE and 13-(S)-HPODE rapidly inhibited the growth of K-562 cells by 3h with IC(50) values, 10 and 15microM, respectively. In contrast, the hydroxy metabolite of 15-LOX-2, 15-(S)-HETE, showed 50% inhibition only at 40microM by 6h and 13-(S)-HODE, hydroxy metabolite of 15-LOX-1, showed no significant effect up to 160microM. The cells exposed to 10microM of 15-(S)-HPETE and 40microM of 15-(S)-HETE showed typical apoptotic features like release of cytochrome c, caspase-3 activation and PARP-1 (poly(ADP) ribose polymerase-1) cleavage. A flow cytometry based DCFH-DA analysis and inhibitory studies with DPI, a pharmacological inhibitor of NADPH oxidase, NAC (N-acetyl cysteine) and GSH revealed that NADPH oxidase-mediated generation of ROS is responsible for caspase-3 activation and subsequent induction of apoptosis in the K-562 cell line. 相似文献
7.
Mohd Fadzelly Abu Bakar Maryati Mohamad Asmah Rahmat Steven A. Burr Jeffrey R. Fry 《Food and chemical toxicology》2010
An extract of Mangifera pajang kernel has been previously found to contain a high content of antioxidant phytochemicals. The present research was conducted to investigate the anticancer potential of this kernel extract. The results showed that the kernel crude extract induced cytotoxicity in MCF-7 (hormone-dependent breast cancer) cells and MDA-MB-231 (non-hormone dependent breast cancer) cells with IC50 values of 23 and 30.5 μg/ml, respectively. The kernel extract induced cell cycle arrest in MCF-7 cells at the sub-G1 (apoptosis) phase of the cell cycle in a time-dependent manner. For MDA-MB-231 cells, the kernel extract induced strong G2-M arrest in cell cycle progression at 24 h, resulting in substantial sub-G1 (apoptosis) arrest after 48 and 72 h of incubation. Staining with Annexin V-FITC and propidium iodide revealed that this apoptosis occurred early in both cell types, 36 h for MCF-7 cells and 24 h for MDA-MB-231cells, with 14.0% and 16.5% of the cells respectively undergoing apoptosis at these times. This apoptosis appeared to be dependent on caspase-2 and -3 in MCF-7 cells, and on caspase-2, -3 and -9 in MDA-MB-231 cells. These findings suggest that M. pajang kernel extract has potential as a potent cytotoxic agent against breast cancer cell lines. 相似文献
8.
Xiang Meng Xiaoxia Xu Junjie HuFengliang Jin Qiongbo HuQiang Sun Xiaoqiang YuShunxiang Ren 《Toxicon》2011,58(4):327-335
The cytotoxicity of a destruxin A (DA) treatment of Spodoptera litura SL-1 cells was investigated. An MTT assay showed that DA was highly toxic to SL-1 cells in a concentration- and time-dependent manner. The IC50 values of DA, after 24 h and 48 h of treatment, were 17.86 μg/mL and 7.80 μg/mL, respectively. Under inverted phase contrast microscopy (IPCM), it was found that prolonged treatment with DA could induce cell rounding, cellular membrane shrinking, formation of apoptotic bodies, vacuole appearance and cytoplasm leak out. Apoptosis induced by DA was further confirmed by fluorescence microscopy (FM) and flow cytometry (FCM) studies. SL-1 cells entered early apoptosis following a treatment with 2.5 μg/mL DA and entered late apoptosis following a treatment with increasing concentrations of DA. Furthermore, two-dimensional gel electrophoresis (2-DE) analysis was used to identify 22 proteins which were differentially expressed (≥2-fold difference) between control cells and DA-treated cells, and the expression level of these proteins was significantly different between the treated and untreated cells. Our results suggest that these differentially expressed proteins may help explain the diverse biological effects caused by the destruxin A treatment of cells; additionally, some of the identified proteins may have roles in SL-1 cellular proliferation and apoptosis. 相似文献
9.
10.
Rodrigo Mora Berta Valverde Cecilia Díaz Bruno Lomonte José María Gutiérrez 《Toxicon》2005,45(5):651-660
Lys49 phospholipase A(2) homologues are abundant in viperid snake venoms. These proteins have substitutions at the calcium-binding loop and catalytic center which render them enzymatically inactive; however, they display a series of toxic activities, particularly cytotoxicity upon various cell lines in vitro. In this study we explored whether myotoxin II (MT-II), a Lys49 phospholipase A(2) homologue from the venom of the snake Bothrops asper, is capable of inducing various effects in a single cell type, using the lymphoblastoid B cell line CRL-8062 as a model. Cells were incubated with varying concentrations of MT-II for 24 and 48 h, time intervals that are more prolonged than the usual incubation times previously used in the characterization of this toxin. Results indicate that MT-II induces proliferation at low concentrations (0.5-5.0 microg/mL). Apoptosis was predominant at higher toxin levels (5-25 microg/mL), whereas necrosis, associated with overt plasma membrane disruption, occurred at concentrations > or =25 microg/mL, and was the predominant effect at higher MT-II concentrations (50 microg/mL). It is concluded that a single phospholipase A(2) homologue can induce markedly different effects on a single cell line, depending on the concentration used, an observation that may have implications for the action of this type of venom component in vivo. 相似文献
11.
12.
Annalisa Bruno Luigia Di Francesco Isabella Coletta Maria Alessandra Alisi Claudio Milanese Emanuela Ricciotti Melania Dovizio Stefania Tacconelli Paola Patrignani 《Biochemical pharmacology》2010,79(7):974-981
Inhibitors of microsomal prostaglandin (PG) E synthase-1 (mPGES-1) are being developed for the relief of pain. Redirection of the PGH2 substrate to other PG synthases, found both in vitro and in vivo, in mPGES-1 knockout mice, may influence their efficacy and safety. We characterized the contribution of mPGES-1 to PGH2 metabolism in lipopolysaccharide (LPS)-stimulated isolated human monocytes and whole blood by studying the synthesis of prostanoids [PGE2, thromboxane (TX)B2, PGF2α and 6-keto-PGF1α] and expression of cyclooxygenase (COX)-isozymes and down-stream synthases in the presence of pharmacological inhibition by the novel mPGES-1 inhibitor AF3442 [N-(9-ethyl-9H-carbazol-3-yl)-2-(trifluoromethyl)benzamide]. AF3442 caused a concentration-dependent inhibition of PGE2 in human recombinant mPGES-1 with an IC50 of 0.06 μM. In LPS-stimulated monocytes, AF3442 caused a concentration-dependent reduction of PGE2 biosynthesis with an IC50 of 0.41 μM. At 1 μM, AF3442 caused maximal selective inhibitory effect of PGE2 biosynthesis by 61 ± 3.3% (mean ± SEM, P < 0.01 versus DMSO vehicle) without significantly affecting other prostanoids (i.e. TXB2, PGF2α and 6-keto-PGF1α). In LPS-stimulated whole blood, AF3442 inhibited in a concentration-dependent fashion inducible PGE2 biosynthesis with an IC50 of 29 μM. A statistically significant inhibition of mPGES-1 activity was detected at 10 and 100 μM (38 ± 14%, P < 0.05, and 69 ± 5%, P < 0.01, respectively). Up to 100 μM, the other prostanoids were not significantly affected. In conclusion, AF3442 is a selective mPGES-1 inhibitor which reduced monocyte PGE2 generation also in the presence of plasma proteins. Pharmacological inhibition of mPGES-1 did not translate into redirection of PGH2 metabolism towards other terminal PG synthases in monocytes. The functional relevance of this observation deserves to be investigated in vivo. 相似文献
13.
The HMC-1 mast cell line has both adenosine A(3) and A(2b) receptors on its surface, but only agonists of the A(2b) receptor are effective at releasing interleukin 8. Object of this study was to look for co-factors for adenosine A(2b) receptor activation. There was a powerful and statistically significant synergy for release of IL-8, both at the mRNA level (measured after 4 hr) and protein level (measured after 24 hr), between adenosine A(2b) receptor agonists and stem cell factor (SCF). Suitable concentrations for showing synergy were 100 ng/mL SCF and 3 microM 5'-N-ethylcarboxamidoadenosine (NECA). At these concentrations, the IL-8 released into the culture medium after SCF and NECA together was typically 3-5-fold greater in amount than the sum of the amounts of IL-8 released after exposure to the same concentrations of NECA and SCF separately. Since mast cells may be exposed to both adenosine and stem cell factor in the diseased lung, the synergy observed in this model system may have implications for asthma. 相似文献
14.
Ribonnet L Callebaut A Nobels I Scippo ML Schneider YJ De Saeger S Pussemier L Larondelle Y 《Toxicology letters》2011,202(3):193-202
Ginkgo biloba is a widely consumed dietary supplement. Some dietary active compounds modulate the activity of biotransformation enzymes inside the enterocytes and more interestingly of cytochrome P-450 1A1 (CYP1A1). This enzyme is of a particular interest because of its implication in the metabolism of some exogenous pro-carcinogens or endogenous molecules. In the present work, we have used Caco-2 cells to study the effect of a standard reference material of a Ginkgo biloba extract (GBE) (10-400 μg/ml), as well as of its major individual active compounds (kaempferol, quercetin, isorhamnetin, ginkgolides and bilobalide), alone or in mixtures, at realistic intestinal concentrations, on the induction of CYP1A1 activity, in the presence or absence of benzo[a]pyrene (B[a]P) (0.1 μg/ml), a well-known CYP1A1 inducer. 3-O-rutinosides of kaempferol, quercetin and isorhamnetin were also tested. We have demonstrated a strong induction (p < 0.005) of CYP1A1 activity and a slight, but significant (p < 0.005), decrease of this activity in the presence of B[a]P by the GBE at the realistic exposure level of 100 μg/ml. The inductive effect was explained, in part, by quercetin and kaempferol after 24 h exposure while unknown compounds seem to be responsible for the strong CYP1A1 induction observed after 6 h exposure. The inhibitory potency of flavonols on CYP1A1 activity in presence of B[a]P was much stronger for the aglycones than for the 3-O-rutinosides, explaining the slight effect observed with the GBE, mainly composed of glycosylated flavonoids. These results indicate that GBEs may disturb intestinal CYP1A1 activity and, in turn, affect the metabolism of other compounds. The present paper thus highlights the necessity to take these side effects into account when administrating Ginkgo biloba herbal supplements. 相似文献
15.
Defraiteur C Plenevaux A Scuvée-Moreau J Rouchet N Goblet D Luxen A Seutin V 《British journal of pharmacology》2007,152(6):952-958
BACKGROUND AND PURPOSE: The identification of potent and selective radioligands for the mapping of 5-HT receptors is interesting both for clinical and experimental research. The aim of this study was to compare the potency of a new putative 5-HT(1A) receptor antagonist, p-DMPPF, (4-(2-hydroxyphenyl)-1-[2'-[N-(2'-pyridinyl)-p-fluorobenzamido]ethyl]piperazine) with that of the well-known 5-HT(1A) antagonists, WAY-100635 (N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]-ethyl]-N-(2-pyridinyl) cyclohexanecarboxamide) and its fluorobenzoyl analogue, p-MPPF (4-(2-methoxyphenyl)-1-[2'-[N-(2'-pyridinyl)-p-fluorobenzamido]ethyl]piperazine). EXPERIMENTAL APPROACH: Single cell extracellular recordings of dorsal raphe (DR) neurones were performed in rat brain slices. The potency of each compound at antagonizing the effect of the 5-HT(1A) agonist, 8-OH-DPAT [8-hydroxy-2-(di-n-propylamino)-tetraline], was quantified using the Schild equation. The pharmacological profile of p-DMPPF was defined using competition binding assays. KEY RESULTS: Consistently with a 5-HT(1A) receptor antagonist profile, incubation of slices with an equimolar (10 nM) concentration of each compound markedly reduced the inhibitory effect of 8-OH-DPAT on the firing rate of DR neurones, causing a significant rightward shift in its concentration-response curve. The rank order of potency of the antagonists was WAY-100635>p-DMPPF>or=p-MPPF. The sensitivity of DR neurones to the inhibitory effect of 8-OH-DPAT was found to be heterogeneous. The binding experiments demonstrated that p-DMPPF is highly selective for 5-HT(1A) receptors, with a K(i) value of 7 nM on these receptors. CONCLUSIONS AND IMPLICATIONS: The potency of the new compound, p-DMPPF, as a 5-HT(1A) antagonist is similar to that of p-MPPF in our electrophysiological assay. Its selectivity towards 5-HT(1A) receptors makes it a good candidate for clinical development. 相似文献
16.
Zhang L Gan J Ke C Liu X Zhao J You L Yu J Wu H 《Environmental toxicology and pharmacology》2012,33(1):85-91
With the objective to identify promising molecular biomarkers for marine pollution monitoring, a new cytochrome P450 gene was identified from Venerupis (Ruditapes) philippinarum and classified as a member of a new subfamily, CYP414A1. Phylogenetic analysis showed that CYP414A1 was closely related to members of the CYP2 family. CYP414A1 mRNA expression was significantly induced by 50 μg/L B[a]P at 96 h, while no significant change was found in 5 μg/L B[a]P-exposed samples. For heavy metals exposure, the expression of CYP414A1 was significantly up-regulated by Cd but sharply depressed by Cu exposure. These results suggested that CYP414A1 responded to various xenobiotics stresses, and could be used as a candidate biomarker of heavy metals and B[a]P. 相似文献
17.
Patricia Marqués-Gallego Jaap Brouwer Ilpo Mutikainen Jan Reedijk 《Biochemical pharmacology》2009,78(4):365-11849
A new fluorescent platinum(II) compound containing the N,N′-bis-(anthracen-9-ylmethyl)propane-1,3-diamine as a carrier ligand has been designed, synthesized and characterized. High cytotoxic activity of cis-[Pt(bapda)Cl2] is observed in A2780 and A2780R cells (human ovarian carcinoma sensitive and cisplatin-resistant, respectively). Nevertheless, cross-resistance to platinum from cis-[Pt(bapda)Cl2] in the A2780R cells was found. To study the role of GSH towards inactivation of cis-[Pt(bapda)Cl2], GSH-depleted and non-depleted A2780R cells were used in several in vitro studies. The results suggest that cis-[Pt(bapda)Cl2] is not susceptible to the inactivation by GSH. Cellular processing of bapda and cis-[Pt(bapda)Cl2] was followed using fluorescence microscopy in the A2780, the A2780R and GSH-depleted A2780R cells. Interestingly, differences in the cellular processing followed by fluorescence microscopy between normal and GSH-depleted A2780R cells have been observed for the carrier ligand. Sequestration of these compounds in acidic lysosomes is visible after incubation in most cases, and no fluorescence was observed in the nucleus. Interaction of cis-[Pt(bapda)Cl2] with calf thymus DNA strongly suggests that the this new platinum(II) compound intercalates between the DNA base pairs. Additionally, the reaction of cis-[Pt(bapda)Cl2] with 9-ethylguanine appears to be very slow, as studied by 1H and 195Pt NMR spectroscopy. 相似文献
18.
Spink DC Wu SJ Spink BC Hussain MM Vakharia DD Pentecost BT Kaminsky LS 《Toxicology and applied pharmacology》2008,226(3):213-224
The interactions of polycyclic aromatic hydrocarbons (PAH) and cytochromes P450 (CYP) are complex; PAHs are enzyme inducers, substrates, and inhibitors. In T-47D breast cancer cells, exposure to 0.1 to 1 microM benzo(k)fluoranthene (BKF) induced CYP1A1/1B1-catalyzed 17beta-estradiol (E(2)) metabolism, whereas BKF levels greater than 1 muM inhibited E(2) metabolism. Time course studies showed that induction of CYP1-catalyzed E(2) metabolism persisted after the disappearance of BKF or co-exposed benzo(a)pyrene, suggesting that BKF metabolites retaining Ah receptor agonist activity were responsible for prolonged CYP1 induction. BKF metabolites were shown, through the use of ethoxyresorufin O-deethylase and CYP1A1-promoter-luciferase reporter assays to induce CYP1A1/1B1 in T-47D cells. Metabolites formed by oxidation at the C-2/C-3 region of BKF had potencies for CYP1 induction exceeding those of BKF, whereas C-8/C-9 oxidative metabolites were somewhat less potent than BKF. The activities of expressed human CYP1A1 and 1B1 with BKF as substrate were investigated by use of HPLC with fluorescence detection, and by GC/MS. The results showed that both enzymes efficiently catalyzed the formation of 3-, 8-, and 9-OHBKF from BKF. These studies indicate that the inductive effects of PAH metabolites as potent CYP1 inducers are likely to be additional important factors in PAH-CYP interactions that affect metabolism and bioactivation of other PAHs, ultimately modulating PAH toxicity and carcinogenicity. 相似文献
19.
The present study was undertaken to determine the involvement of calcium-protein kinase C pathway in the mechanism of action of Escherichia coli heat stable enterotoxin (STa) apart from STa-induced activation of guanylate cyclase in human colonic carcinoma cell line COLO-205, which was used as a model cultured cell line to study the mechanism of action of E. coli STa. In response to E. coli STa, protein kinase C (PKC) activity was increased in a time-dependent manner with its physical translocation from cytosol to membrane. Inhibition of the PKC activity in membrane fraction and inhibition of its physical translocation in response to IP3-mediated calcium release inhibitor dantrolene suggested the involvement of intracellular store depletion in the regulation of PKC activity. Among different PKC isoforms, predominant involvement of calcium-dependent protein kinase C (PKC(alpha)) was specified using isotype-specific pseudosubstrate, which showed pronounce enzyme activity. Inhibition of enzyme activity by PKC(alpha)-specific inhibitor G?6976 and immunoblott study employing isotype-specific antibody further demonstrated the involvement of calcium-dependent isoform of PKC in the mechanism of action of E. coli STa. Moreover, inhibition of guanylate cyclase activity by PKC(alpha)-specific inhibitor G?6976 suggested the involvement of PKC(alpha) in the regulation of guanylate cyclase activity. 相似文献
20.
Etsuko Oyama 《Toxicon》2008,52(5):651-654
The amino acid sequence of a bradykinin-releasing enzyme, named KR-E-1, isolated from the venom of Agkistrodon caliginosus (Kankoku-mamushi) was determined by Edman sequencing of the peptides which was derived from digests with cyanogen bromide, hydroxylamine, achromobacter protease I, trypsin, V8 protease, arginine endopeptidase, and endoproteinase Asp-N. KR-E-1 consisted of 235 amino acids and showed conservation of the catalytic amino acid residues (His57, Asp102, and Ser195) of the chymotrypsin family of serine protease in its amino acid sequence. The carboxy-terminal amino acid, Phe, was determined using carboxypeptidase Y. This enzyme contains glucosamine and an N-linked glycosylation site. KR-E-1 showed 32, 31, 65, 65, and 67% sequence homology to human kallikrein, bovine thrombin, KN-BJ 2, elegaxobin, and elegaxobin II, respectively. The characteristic of structure of KR-E-1 was found to involve hydrophobic amino acid residues abundantly localizing in positions 1-50, with lysine residues abundantly localizing in positions 73-101. 相似文献