首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study the temporal cortex of the tree shrew was subdivided on the basis of cytoarchitectonic criteria, and the connections of each subdivision with the thalamus and midbrain were analyzed with retrograde and anterograde techniques. The results indicate that, with one exception, each subdivision of the medial geniculate body projects to a separate cortical area. The primary auditory cortex receives projections from the ventral nucleus. Surrounding the primary cortex are at least five additional cytoarchitectonically distinct areas which receive projections from the remaining medial geniculate subdivisions. The evidence suggests that there is very little overlap in the projections from each of these geniculate subdivisions. An exception is the projection of the caudal nucleus of the medial division. This subdivision apparently projects to most, if not all, of the cortical target of the medial geniculate body. Although the cortical projections of the caudal nucleus overlap those of the other medial geniculate subdivisions, the laminar distribution of its terminations in cortex is different. The caudal nucleus projects primarily to layer VI whereas the other subdivisions of the medial geniculate body project primarily to layer IV and the adjacent part of layer III. Anterograde techniques were also used to study the projections from the cortex back to the thalamus and to the midbrain. The projections to the thalamus precisely reciprocate the thalamocortical connections. The projections to the midbrain are to the same areas which the preceding study (Oliver and Hall, '78) showed give rise to ascending projections to the medial geniculate body. An exception is the central nucleus of the inferior colliculus which apparently does not receive a projection from the temporal cortex.  相似文献   

2.
The subdivisions of the medial geniculate body in Tupaia recognized in previous connectional and cytoarchitectural studies are identified in Golgi-impregnated material. They may be distinguished by the organization of the neuropil, especially the dendrites, and, in many cases, by differences in the neurons. The ventral nucleus contains tufted cells with disc-shaped dendritic fields which are aligned to form laminae. The caudomarginal and deep dorsal nuclei have less tufted, less precisely arranged cells with longer, thin appendages. Neurons in the suprageniculate and dorsal nuclei are similar except that they apparently are arranged more randomly and tend to have more spherically shaped dendritic fields. The medial division is characterized rostrally by the presence of stellate cells and caudally by large cells which appear to be the neurons, observed in previous studies to have widespread connections. The results of this Golgi study suggest that the subdivisions of the medial geniculate body might be grouped differently than in previous reports. When combined with data from previous studies of connections, the results show that the medial geniculate body of even distantly related species may follow a common plan. The ventral nucleus is the medial geniculate component of the central pathway which extends from the central nucleus of the inferior colliculus to the primary auditory cortex. Most of the other medial geniculate subdivisions participate in either pericentral pathways originating in the cortex and other nuclei which surround the central nucleus of the inferior colliculus or in the pathways of the lateral midbrain tegmentum. Pericentral and lateral tegmental pathways terminate in nonprimary auditory cortex. The widespread pathway involves only the caudal nucleus of the medial division. It receives afferents from most, if not all, of the midbrain regions that give rise to the other pathways and distributes to all parts of the auditory cortex where it terminates in layers other than layer III-IV.  相似文献   

3.
We have correlated the tectal connections and cytoarchitecture of regions in the rabbit's midbrain and caudal thalamus. The inferior colliculus projects ipsilaterally to the central gray, superior colliculus, and via the brachium of the inferior colliculus to its interstitial nucleus and the parabrachial region of the midbrain tegmentum. From the brachium, fibers fan out to the principal and internal divisions of the medial geniculate. A smaller contralateral pathway sweeps into the contralateral inferior colliculus and in its brachium to the interstitial nucleus, the parabrachial region, and the internal and principal divisions of the medial geniculate. The superior collicular projection is mainly ipsilateral. Medially, fibers terminate in the central gray and pretectal area. Laterally, fibers ascend in the superior brachium to parabrachial region, suprageniculate pretectal nucleus, posterior complex, caudodorsal internal division of the medial geniculate, and to a discrete part of the ventral nucleus of later geniculate. A component of the commissure of Gudden originates in the rostral superior colliculus and terminates in the contralateral ventral lateral geniculate, posterior complex, pretectal area and midbrain tegmentum. Interconnections between the colliculi and overlap of their projections in the parabrachial region, the central gray, and the internal division of the medial geniculate are described.  相似文献   

4.
The auditory system of the tree shrew, Tupaia glis, was investigated by identifying axonal degeneration after lesions of the lateral lemniscus, the inferior colliculus, the medial geniculate nucleus and the auditory cortex. The results show that the lateral lemniscus projects to the central nucleus of the inferior colliculus which in turn projects principally to the ventral division of the medial geniculate nucleus but to a lesser extent to the magnocellular division of the medial geniculate nucleus. The final step in the pathway to the cortex is achieved by a projection from the ventral division to the fourth layer of auditory koniocortex. There appear to be several auditory pathways parallel to this primary path. The lateral lemniscus projects to the dorsal division of the medial geniculate nucleus; the deeper layers of the superior colliculus project to the posterior nucleus; and both the dorsal division and the posterior nucleus project to the belt caudal to auditory koniocortex. The caudal division of the medial geniculate nucleus may constitute a relay in still another path from the pericentral division of the inferior colliculus. Finally, the magnocellular division also appears to be distinct insofar as its cortical projections are confined chiefly to the deeper layers. A comparison between the tree shrew and the cat reveals a similar organization in the two species. In the cat the starting point for understanding the organization of the several auditory pathways is the distinction between a core cortical zone which corresponds to koniocortex and to AI and a peripheral belt. The core receives essential projections from the ventral division; the belt receives sustaining projections from the cell groups which surround the ventral division. It is reasonable to hypothesize that this difference between the core and the belt is characteristic of all mammals.  相似文献   

5.
The nucleus sagulum, an area of the midbrain tegmentum, has been considered a component of a lateral tegmental system within the ascending auditory pathway to the thalamus. In this study, connections of the nucleus sagulum within the midbrain were investigated in adult cats. Tracing methods using anterograde and retrograde axonal transport of markers were employed. The nucleus sagulum was identified as a region of principally small neurons (261 +/- 79 micron2) at the margin of the midbrain and neighboring the nuclei of the lateral lemniscus. Injections of tritiated leucine in the nucleus sagulum labeled axons that ended in dense patches within the superficial layers of the caudal portion of the dorsal cortex of the inferior colliculus on the ipsilateral side. Retrograde experiments confirmed this connection. Other axonal projections labeled in the anterograde studies included fibers ending in the dorsomedial nucleus, the superficial layers of the dorsal cortex, and the rostral nucleus of the inferior colliculus with some bilateral distribution. Outside of the inferior colliculus, sagulum injections labeled other axons ending in the ventral intercollicular tegmentum on both sides and in a dorsal and rostral region of the contralateral nucleus sagulum that appeared contiguous with the dorsal nucleus of the lateral lemniscus. The latter region included a population of larger neurons (340-540 micron2) and had different connections with the inferior colliculus. The distribution of axonal labeling after injections in the nucleus sagulum was contrasted with the distribution of projections from several neighboring areas of the lateral tegmentum, including the dorsal nucleus of the lateral lemniscus. None of these areas exhibited connections with the superficial layers of the caudal cortex of the inferior colliculus, which was the major target in the inferior colliculus of the nucleus sagulum. Thus, the results indicated that the nucleus sagulum is distinguished from adjacent regions of the lateral tegmentum by its connectivity. Its association with midbrain auditory pathways is supported by these connections as well as ascending ones to the auditory thalamus.  相似文献   

6.
Connections of the ventral lateral geniculate complex (GLv) in the tree shrew were traced by anterograde and retrograde transport of WGA-HRP. The results buttress earlier findings that GLv in this species is composed of two main divisions, lateral and medial, each of which differs in its connections with the brainstem and cerebral cortex. The connections of the lateral division (GLv) suggest that it participates in visuosensory functions: it receives input from the retina, striate cortex, pretectum, and retino-recipient layers of the superior colliculus. These connections help clarify the identification of the internal and external subdivisions of GLv inasmuch as projections from both the superior colliculus and pretectum terminate in the external subdivision and each, in turn, receives a projection from the internal subdivision. Connections of the medial division suggest that this part of the nucleus is involved with visuomotor functions. Thus, the medio-caudal subdivision projects to the pontine nuclei, the prerubral field and the central lateral nucleus. The medio-caudal subdivision also receives projections from the lateral cerebellar nucleus, so that the GLv-ponto-cerebello-GLv loop involves mainly one subdivision of GLv. The medio-rostral subdivision receives projections from the pretectum and parietal cortex. Its output is directed primarily at the intermediate and deep layers of the superior colliculus. All of these targets of GLv, the pons, prerubral field, and deep layers of the superior colliculus, are known to play a role in the coordination of head and eye movements. Additional connections of GLv with the vestibular nuclei, intralaminar nuclei, hypothalamus, and facial motor nucleus are also described. © 1993 Wiley-Liss, Inc.  相似文献   

7.
The topographic distribution of projections from the ventral nucleus of the lateral lemniscus (VNLL) in the cat was investigated with the autoradiographic tracing method. The origin of minor projections was verified by retrograde tracing methods. Small injections of tritiated leucine were placed in restricted zones of VNLL. A major afferent fiber system to the inferior colliculus was labeled in all cases. From the injection site labeled fibers coursed through and around the nuclei of the lateral lemniscus to enter the ipsilateral inferior colliculus. Regardless of the position or small size of the injection, labeled fibers distributed widely in the inferior colliculus. Fibers ended in the central nucleus and deeper layers of the dorsal cortex in most cases. There was also labeling in the ventrolateral nucleus, but very few fibers ended as lateral as the lateral nucleus. A small number of labeled fibers passed from the inferior colliculus into the nucleus of the brachium of the inferior colliculus and adjacent tegmental areas. Some labeled fibers entered the commissure of the inferior colliculus where they were traced into the dorsal cortex and rostral pole of the inferior colliculus on the side contralateral to the injection site. Though the projections labeled in individual cases were similar in their divergent pattern within the central nucleus of the inferior colliculus, specific variations in the pattern were found. The dorsal zone of VNLL projected more heavily to the deeper layers of the dorsal cortex and an adjacent field in the central nucleus than the other zones. Dorsal injections in the middle zone of VNLL, on the other hand, labeled the medial part of the central nucleus more heavily, whereas ventral injections in the middle zone resulted in heavier lateral labeling. The ventral zone of VNLL projected heavily to a central field in the central nucleus. In addition to this major afferent system of VNLL to the inferior colliculus, a smaller descending projection was found. The descending projection ended mainly in the dorsomedial periolivary region and ventral nucleus of the trapezoid body. However, in some cases a few fibers were traced to the cochlear nuclei. Finally, we observed projections to the medial geniculate body from the dorsal and ventral zones of VNLL that ended diffusely in the medial division of the medial geniculate body. Possibly some fibers from the dorsal zone contribute to a broader projection of the lateral tegmentum to the dorsal division of the medial geniculate body.  相似文献   

8.
The projection from 11 auditory cortical areas onto the subdivisions of the inferior colliculus was studied in adult cats by using two different anterograde tracers to label corticocollicular (CC) axon terminals. The main results were that: 1) a significant CC projection arose from every field; 2) the principal inferior collicular targets were the dorsal cortex, lateral nucleus, caudal cortex, and intercollicular tegmentum, with only a sparse projection to the central nucleus; 3) the input was usually bilateral, with the ipsilateral side by far the most heavily labeled, and the contralateral projection was a symmetrical subset of the ipsilateral input; 4) the CC system is both divergent and convergent, with single cortical areas projecting to six or more collicular subdivisions, and each auditory midbrain subdivision receiving a convergent projection from two to ten cortical areas; 5) cortical areas devoid of tonotopic organization have topographic projections to collicular target nuclei; 6) the heaviest CC projection terminated in the caudal half of the inferior colliculus; and finally, 7) the relative strength of the corticocollicular labeling was far less than that of the corresponding corticothalamic projection in the same experiments. The CC system is strategically placed to influence both descending and ascending pathways arising in the inferior colliculus. Nuclei that participate in the premotor system, like the inferior collicular subdivisions that project to the pons, receive substantial corticofugal input. Both the dorsal (pericentral) and the lateral (external) nuclei of the inferior colliculus project to parts of the medial geniculate body whose closest auditory affiliations are with nontonotopic cortical regions involved in higher order auditory perception. The corticocollicular system may link brainstem and colliculothalamic circuits to coordinate premotor and perceptual aspects of hearing. J. Comp. Neurol. 400:147–174, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
The organization of the medial geniculate body and adjacent posterior thalamus of the Virginia opossum was studied in Nissl-, Golgi-, reduced silver, and myelin-stained preparations. Our chief goals were to define the cytoarchitectonic subdivisions and boundaries in Nissl preparations and to reconcile these with those observed with the Golgi method and in experimental material, to present these results in an atlas of Nissl-stained sections, and to compare the chief nuclear groups in the opossum and the cat medial geniculate body. In the opossum, the ventral division consists chiefly of the ventral nucleus. The ventral nucleus is divided into two main parts: the pars lateralis and the pars ovoidea, the former being relatively smaller in the opossum. The ventral nucleus of both species contains large principal neurons with bushy, tufted dendrites and smaller Golgi type II cells. However, the opossum has far fewer Golgi type II cells, and the texture of the neuropil is correspondingly different, although the primary ascending input from the midbrain arises from the central nucleus of the inferior colliculus in both species. The dorsal division consists of the dorsal nuclei, including the suprageniculate nucleus and the caudal part of the lateral posterior nucleus, the marginal zone, and the posterior limitans nucleus. These nuclei are identified in both species, although they are much smaller in the opossum. The neurons consist of medium-size and small somata with a predominantly radiate mode of dendritic branching and a lower cell concentration than in the ventral division. In both species the afferent brain stem input comes from the inferior colliculus, the lateral tegmental area, the intercollicular tegmentum, and the superior colliculus. The medial division contains several types of cells, which are heterogeneous in form and size, most having radiating dendrites and a low cellular concentration. This division is especially smaller in the opossum, although comparable inputs arise from various auditory and non-auditory sources in the midbrain and spinal cord in both species. A large intralaminar complex of nuclei occurs in the opossum, which have a more extensive distribution than previously appreciated. They not only occupy the intramedullary laminae but form a shell around the medial geniculate nuclei and adjoining main sensory nuclei. The intralaminar complex includes the posterior limitans, posterior intralaminar, posterior, parafascicular, posterior parafascicular, central intralaminar, limitans, and central medial nuclei, and the marginal zone of the medial geniculate body.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Brainstem and forebrain projections to major subdivisions of the rat inferior colliculus were studied by using retrograde and anterograde transport of horseradish peroxidase. Retrograde label from injection into the external cortex of the inferior colliculus appears bilaterally in cells of the inferior colliculus, as well as in other brainstem auditory groups including the ipsilateral dorsal nucleus of the lateral lemniscus and contralateral dorsal cochlear nucleus. The external cortex is the only collicular subdivision where an injection labels cells in the contralateral cuneate nucleus, gracile nucleus, and spinal trigeminal nucleus. Other projecting cells to the external cortex are found in the lateral nucleus of substantia nigra, the parabrachial region, the deep superior colliculus, the midbrain central gray, the periventricular nucleus, and area 39 of auditory cortex. Injection of the dorsal cortex of inferior colliculus heavily labels pyramidal cells of areas 41, 20, and 36 of the ipsilateral neocortex. Anterograde label from a large injection of auditory cortex is densely distributed in the dorsal cortex, lesser so in the external cortex, and only slightly in the central nucleus. Labelled cells appear in the central nucleus, dorsal cortex, and external cortex, primarily ipsilaterally, following dorsal cortex injection. Relatively few cells from other brainstem auditory groups show projections to the dorsal cortex. Injection of the central nucleus of the inferior colliculus results in robust labelling of nuclei of the ascending auditory pathway including the anteroventral, posteroventral, and dorsal cochlear nuclei (mainly contralaterally), and bilaterally the lateral superior olive, lateral nucleus of the trapezoid body, dorsal nucleus of the lateral lemniscus, and the central nucleus, dorsal cortex, and external cortex of the colliculus. The medial superior olive, superior paraolivary nucleus, and ventral nucleus of the trapezoid body essentially show ipsilateral projections to the central nucleus. The differential distribution of afferents to the inferior colliculus provides a substrate for functional parcellation of collicular subdivisions.  相似文献   

11.
The ventral lateral geniculate nucleus is a small extrageniculate visual structure that has a complex cytoarchitecture and diverse connections. In addition to small-celled medial and lateral divisions, we cytoarchitectonically defined a small-celled dorsal division. A large-celled intermediate division intercalated between the three small-celled divisions, which we divided into medial and lateral intermediate subdivisions. In WGA-HRP injection experiments, the different cytoarchitectonic divisions were shown to have connections with different nuclei. The medial division was reciprocally connected to the pretectum and projected to the superficial layers of the superior colliculus and the intralaminar nuclei. The medial intermediate division received projections from the intermediate layer of the superior colliculus and the lateral and interpositus posterior cerebellar nuclei, and projected to the intermediate layer of the superior colliculus, the periaqueductal gray of midbrain, and the intralaminar nuclei. The lateral intermediate divisions received projections from the pretectum, the intermediate layer of the superior colliculus, and the lateral and interpositus posterior cerebellar nuclei, and projected to the pretectum, superficial layers of the superior colliculus, and the pulvinar. The lateral division received projections from superficial layers of the superior colliculus and had reciprocal connections with the pretectum. The dorsal division received projections from the pretectum and had reciprocal connections with the periaqueductal gray of midbrain. The different cytoarchitectonic divisions of the ventral lateral geniculate nucleus are thus suggested to play different functional roles related to vision, eye and head movements, attention, and defensive reactions.  相似文献   

12.
The intergeniculate leaflet (IGL) and the ventral lateral geniculate nucleus (VLG) are ventral thalamic derivatives within the lateral geniculate complex. In this study, IGL and VLG efferent projections were compared by using anterograde transport of Phaseolus vulgaris-leucoagglutinin and retrograde transport of FluoroGold. Projections from the IGL and VLG leave the geniculate in four pathways. A dorsal pathway innervates the thalamic lateral dorsal nucleus (VLG), the reuniens and rhomboid nuclei (VLG and IGL), and the paraventricular nucleus (IGL). A ventral pathway runs through the geniculohypothalamic tract to the suprachiasmatic nucleus and the anterior hypothalamus (IGL). A medial pathway innervates the zona incerta and dorsal hypothalamus (VLG and IGL); the lateral hypothalamus and perifornical area (VLG); and the retrochiasmatic area (RCA), dorsomedial hypothalamic nucleus, and subparaventricular zone (IGL). A caudal pathway projects medially to the posterior hypothalamic area and periaqueductal gray and caudally along the brachium of the superior colliculus to the medial pretectal area and the nucleus of the optic tract (IGL and VLG). Caudal IGL axons also terminate in the olivary pretectal nucleus, the superficial gray of the superior colliculus, and the lateral and dorsal terminal nuclei of the accessory optic system. Caudal VLG projections innervate the lateral posterior nucleus, the anterior pretectal nucleus, the intermediate and deep gray of the superior colliculus, the dorsal terminal nucleus, the midbrain lateral tegmental field, the interpeduncular nucleus, the ventral pontine reticular formation, the medial and lateral pontine gray, the parabrachial region, and the accessory inferior olive. This pattern of IGL and VLG projections is consistent with our understanding of the distinct functions of each of these ventral thalamic derivatives.  相似文献   

13.
The subcortical connections of the four tonotopically organized fields of the auditory cortex of the Mongolian gerbil, namely the primary (AI), the anterior (AAF), the dorsoposterior (DP) and the ventroposterior field (VP), were studied predominantly by anterograde transport of biocytin injected into these fields. In order to allow the localization of connections with respect to subdivisions of subcortical auditory structures, their cyto-, fibre- and chemoarchitecture was characterized using staining methods for cell bodies, myelin and the calcium-binding protein parvalbumin. Each injected auditory cortical field has substantial and reciprocal connections with each of the three subdivision of the medial geniculate body (MGB), namely the ventral (MGv), dorsal (MGd) and medial division (MGm). However, the relative strengths of these connections vary: AI is predominantly connected with MGv, AAF with MGm and MGv, and DP and VP with MGd and MGv. The connections of at least AI and MGv are topographic: injections into caudal low-frequency AI label laterorostral portions of MGv, whereas injections into rostral high-frequency AI label mediocaudal portions of MGv. All investigated auditory fields send axons to the suprageniculate, posterior limitans, laterodorsal and lateral posterior thalamic nuclei, with strongest projections from DP and VP, as well as to the reticular and subgeniculate thalamic nuclei. AI, AAF, DP and VP project to all three subdivisions of the inferior colliculus, namely the dorsal cortex, external cortex and central nucleus ipsilaterally and to the dorsal and external cortex contralaterally. They also project to the deep and intermediate layers of the ipsilateral superior colliculus, with strongest projections from DP and VP to the lateral and basolateral amygdaloid nuclei, the caudate putamen, globus pallidus and the pontine nuclei. In addition, AAF and particularly DP and VP project to paralemniscal regions around the dorsal nucleus of the lateral lemniscus (DNLL), to the DNLL itself and to the rostroventral aspect of the superior olivary complex. Moreover, DP and VP send axons to the dorsal lateral geniculate nucleus. The differences with respect to the existence and/or relative strengths of subcortical connections of the examined auditory cortical fields suggest a somewhat different function of each of these fields in auditory processing.  相似文献   

14.
Although the auditory cortex is believed to be the principal efferent target of the medial geniculate body (MG), our recent behavioral studies indicate that in rats the conditioned coupling of emotional responses to an acoustic stimulus is mediated by subcortical projections of the MG. In the present study we have therefore used WGA-HRP as an anterograde and retrograde axonal marker to (1) define the full range of subcortical efferent projections of the MG; (2) identify the cells of origin within the MG of each projection; and (3) determine whether the subregions of the MG that project to subcortical areas receive inputs from acoustic relay nuclei of the mid-brain, particularly the inferior colliculus. The rat MG was first parcelled into three major cytoarchitectural areas: the ventral, medial, and dorsal divisions. The suprageniculate nucleus, located within the body of the MG just dorsal to the medial division, was also identified. Efferent projections of the MG were determined by combined anterograde and retrograde tracing methods. Injections of WGA-HRP in the MG produced anterograde transport to cortex and several subcortical areas, including the posterior caudate-putamen and amygdala, the ventromedial nucleus of the hypothalamus, and the subparafascicular thalamic nucleus. The cells of origin of the subcortical projections were then mapped retrogradely after injections in the anterogradely labeled areas. Injections in the caudate-putamen or amygdala retrogradely labeled the medial division of the MG and the suprageniculate nucleus, as well as several adjacent areas of the posterior thalamus surrounding the MG. In contrast, injections in the ventromedial nucleus of the hypothalamus or the subparafascicular thalamic nucleus only produced labeling in the areas surrounding MG. Afferents to MG from the inferior colliculus were then identified. The central nucleus of the inferior colliculus, the main lemniscal acoustic relay nucleus in the midbrain, was found to project to the ventral and medial divisions of the MG. In contrast, the dorsal cortex and external nucleus of the inferior colliculus project to each division of the MG and to several additional nuclei in adjacent areas of the posterior thalamus. These data demonstrate that the medial division of MG, the suprageniculate nucleus, and immediately adjacent areas of the posterior thalamus provide a direct linkage between auditory neurons in the inferior colliculus and subcortical areas of the forebrain and thereby support the view that thalamic sensory nuclei relay afferent signals to subcortical as well as cortical areas.  相似文献   

15.
The projections from the central amygdaloid nucleus (Ce) to different subdivisions of the bed nucleus of the stria terminalis (BNST) were investigated using retrograde transport of fluorescent dyes. Iontophoretic injections of either Fast Blue (FB) or bisbenzimide (BB) were applied to the anterior medial, posterior medial, anterior lateral and posterior lateral parts of the bed nucleus of the stria terminalis. The anterior medial BNST receives projections from caudal part of medial Ce (CeM). The posterior medial BNST receives projections specifically from the intermediate subdivision of Ce, though in some cases projections from the ventral subdivision (CeV) of Ce were seen. The anterior lateral BNST receives projections primarily from the caudal lateral Ce (CeL) as well as middle and caudal part of CeM. The posterior lateral BNST receives projection from rostral CeL as well as the CeV and lateral capsular Ce. In general, the results indicate that the major subdivisions of the BNST receive projections from Ce subdivisions having similar connections with diencephalic or brainstem cell groups. Additional evidence is presented suggesting that Ce-BNST projections are part of an extensive system of intrinsic connections linking similar groups of neurons in both the Ce and BNST as well as within Ce.  相似文献   

16.
The efferent projections of the central nucleus of the inferior colliculus (ICC) and the pericentral nucleus of the inferior colliculus (ICP) were examined by placing restricted injections of anterograde tracers at electrophysiologically defined loci in the inferior colliculus (IC) of the cat. It was found that single loci in the ICC projected bilaterally onto the ventral division of the medial geniculate body (MGB) in the form of caudorostrally oriented sheets of terminals. The ICC loci also projected bilaterally onto the MGB In the form of caudorostrally oriented columns of terminals; these columns had their caudal aspects located in the medial division and their rostral aspect of the sheets of terminals in the ventral division was folded and passed though both pars lateralis and pars ovoidea of the ventral division. Every component of the ICC-to-MGB projection was cochleotopically ordered. Periodic discontinuties of two types were noted in the projections of the ICC onto pars lateralis (VI) of the ventral division. The on type of periodic discontinuity sometimes approximated bands oriented caudorostrally in the caudal aspect of VI. The second type of discontinuity was of very thin parallel columns of more intense Labeling oriented roughly discontinuity and oblique or normal to the first type of discontinuity. Injections in the ICP produced autoradiographic labeling in the caudal dorsal nucleus (Dc) of the dorsal division of the MGB. Thus the ICC-to-MGB and ICP-to-MGB projection are segregated. The efferent connections of the IC with other brainstem auditory structures were noted.  相似文献   

17.
The solitary nuclear complex (NST) consists of a number of subdivisions that differ in their cytoarchitectonic features as well as in the amounts of inputs they receive from lingual afferent axons. In this study horseradish peroxidase (HRP) was injected into the parabrachial nucleus (PBN) of the hamster to determine which of these subdivisions contain cells that project to the pons. In the rostral, gustatory division of the NST, the rostral central subdivision contains the greatest number of labelled pontine-projection neurons. The rostral lateral subdivision contains moderate numbers of labelled cells; progressively fewer labelled cells are in the ventral, medial, and dorsal subdivisions. In the caudal, general viscerosensory division of the NST, the caudal central subdivision contains the majority of labelled cells, although fewer than its rostral counterpart. Progressively fewer cells are labelled in the medial, laminar, ventrolateral, and lateral subdivisions; none in the dorsolateral subdivision. Small horseradish peroxidase injections into the pons revealed that cells of the rostral central and rostral lateral subdivisions of the NST project to the medial subdivision of the PBN, predominantly to caudal and ventral parts of the subdivision. Cells of the caudal central and medial subdivisions of the NST project to the central lateral subdivision of the PBN, predominantly to intermediate and rostral-dorsal parts of the subdivision. Outside the NST, cells in the spinal trigeminal nucleus and parvicellular reticular formation were also labelled after PBN injections. Within the rostral central and rostral lateral (gustatory) subdivisions of the NST at least two types of neurons, distinguished on the basis of dendritic and cell body morphology, were labelled after HRP injections that included the medial PBN. Elongate cells have ovoid-fusiform somata and dendrites oriented in the mediolateral plane parallel to primary afferent axons entering from the solitary tract. Stellate cells have triangular or polygonal cell bodies and three to five dendrites oriented in all directions, although one or two often extend mediolaterally. These results indicate that cytoarchitectonic subdivisions of the NST are distinguished by their efferent ascending connections. For each subdivision within the rostral, gustatory NST there is a correlation between the density of lingual inputs it receives and the density of pontine-projection neurons it contains. Within the rostral central subdivision, which contains the densest lingual inputs and the largest collection of PBN-projection neurons, cell types previously identified in studies with the Golgi method were found to send their axons to the PBN. The presence of two types of pontine-projection cells in the rostral central subdivision provides a structural basis for parallel information processing in the ascending gustatory system. Projections to the PBN from regions outside the NST provide opportunities for convergence, at the level of the pons, between inputs arising from gustatory/general viscerosensory subdivisions of the NST and from trigeminal sensory nuclei and the reticular formation.  相似文献   

18.
The nucleus incertus is located caudal to the dorsal raphe and medial to the dorsal tegmentum. It is composed of a pars compacta and a pars dissipata and contains acetylcholinesterase, glutamic acid decarboxylase, and cholecystokinin-positive somata. In the present study, anterograde tracer injections in the nucleus incertus resulted in terminal-like labeling in the perirhinal cortex and the dorsal endopyriform nucleus, the hippocampus, the medial septum diagonal band complex, lateral and triangular septum medial amygdala, the intralaminar thalamic nuclei, and the lateral habenula. The hypothalamus contained dense plexuses of fibers in the medial forebrain bundle that spread in nearly all nuclei. Labeling in the suprachiasmatic nucleus filled specifically the ventral half. In the midbrain, labeled fibers were observed in the interpeduncular nuclei, ventral tegmental area, periaqueductal gray, superior colliculus, pericentral inferior colliculus, pretectal area, the raphe nuclei, and the nucleus reticularis pontis oralis. Retrograde tracer injections were made in areas reached by anterogradely labeled fibers including the medial prefrontal cortex, hippocampus, amygdala, habenula, nucleus reuniens, superior colliculus, periaqueductal gray, and interpeduncular nuclei. All these injections gave rise to retrograde labeling in the nucleus incertus but not in the dorsal tegmental nucleus. These data led us to conclude that there is a system of ascending projections arising from the nucleus incertus to the median raphe, mammillary complex, hypothalamus, lateral habenula, nucleus reuniens, amygdala, entorhinal cortex, medial septum, and hippocampus. Many of the targets of the nucleus incertus were involved in arousal mechanisms including the synchronization and desynchronization of the theta rhythm.  相似文献   

19.
Attempts were made to determine brainstem and cerebellar afferent and efferent projections of the superior vestibular nucleus (SVN) and cell group 'y' ('y') in the cat using axoplasmic tracers. Injections of HRP, WGA-HRP and [3H]amino acids were made into SVN and 'y' using two different infratentorial stereotaxic approaches. Controls were provided by unilateral HRP injections involving the oculomotor nuclear complex (OMC), the interstitial nucleus of Cajal (INC) and the deep cerebellar nuclei (DCN). Large injections of SVN almost invariably involved 'y' and dorsal parts of the lateral vestibular nucleus (LVN). Smaller injections involved central and ventral peripheral parts of SVN. Discrete injections of 'y' involved small dorsal parts of LVN. Afferents to SVN are derived mainly from the vestibular nuclei (VN) and parts of the vestibulocerebellum. SVN receives afferents: bilaterally from caudal portions of the medial (MVN) and inferior (IVN) vestibular nuclei and 'y'; contralaterally from ventral and lateral parts of SVN and rostral MVN; and ipsilaterally from the nodulus, uvula and medial parts of the flocculus. Purkinje cells (PC) in medial parts of the flocculus project to central regions of SVN, while PC in the nodulus and uvula appear to project mainly to dorsal peripheral regions of SVN. SVN receives sparse projections from the ipsilateral INC, the contralateral central cervical nucleus (CCN) and virtually no projections from the reticular formation. SVN projects via the medial longitudinal fasciculus (MLF) to the ipsilateral trochlear nucleus (TN), the inferior rectus subdivision of the OMC, the INC, the nucleus of Darkschewitsch (ND) and the rostral interstitial nucleus of the MLF (RiMLF). Contralateral projections of SVN cross in the ventral tegmentum caudal to most of the decussating fibers of the superior cerebellar peduncle and terminate in the dorsal rim of the TN and the superior rectus and inferior oblique subdivisions of the OMC; sparse crossed projections enter the INC and the ND. Cerebellar projections of SVN end as mossy fibers in the ipsilateral nodulus, uvula and in medial parts of the flocculus bilaterally. Retrograde transport from unilateral injections of the OMC indicate that afferents from SVN arise ipsilaterally from central and dorsal regions and contralaterally from dorsal peripheral regions. Ventral cell group 'y' receives small numbers of afferent fibers from caudal central parts of the ipsilateral flocculus. No fibers from ventral 'y' could be traced to other vestibular nuclei, the OMC or the cerebellum.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
The connections of the precomissural nucleus (PRC) have been examined with anterograde and retrograde axonal tracing methods in the rat. Experiments with cholera toxin B subunit (CTb) indicate that the PRC shares a number of common afferent sources with the dorsolateral periaqueductal gray (PAG). Thus, we have shown that the nucleus receives substantial inputs from the prefrontal cortex, specific domains of the rostral part of the lateral septal nucleus, rostral zona incerta, perifornical region, anterior hypothalamic nucleus, ventromedial hypothalamic nucleus, dorsal premammillary nucleus, medial regions of the intermediate and deep layers of the superior colliculus, and cuneiform nucleus. Moreover, the PRC also receives inputs from several PAG regions and from neural sites involved in the control of attentive or motivational state, including the laterodorsal tegemental nucleus and the ventral tegmental area. The efferent projections of the PRC were analyzed by using the Phaseolus vulgaris-leucoagglutinin (PHA-L) method. Notably, the PRC presents a projection pattern that resembles in many ways the pattern described previously for the rostral dorsolateral PAG in addition to projections to a number of targets that also are innervated by neighboring pretectal nuclei, including the rostrodorsomedial part of the lateral dorsal thalamic nucleus, the ventral part of the lateral geniculate complex, the medial pretectal nucleus, the nucleus of the posterior commissure, and the ventrolateral part of the subcuneiform reticular nucleus. Overall, the results suggest that the PRC might be viewed as a rostral component of the PAG, and the possible functional significance of the nucleus is discussed in terms of its connections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号