首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
QSAR analyses of matrix metalloproteinase (MMP) inhibitor N-[(substituted phenyl)sulfonyl]-N-4-nitrobenzylglycine hydroxamates, recently reported by Scozzafava and Supuran, have been attempted using linear free energy related (LFER) model of Hansch to explore the contribution patterns of the phenyl ring substitutions (P1' anchoring site of the ligands) to the activities against MMP-1, -2, -8 and -9 (pC1, pC2, pC, and pC9) and C. histolyticum collagenase (pC(ChC)) and also to find out relations among the activities. Multiple regression analyses applied on the data set reveal that electron withdrawing meta substituents and lipophilic ortho and meta substituents are conducive to pC1 while presence of substituents (larger than hydrogen) at vicinal positions on the phenyl ring and bulkier ortho substituents are detrimental to the activity. Again, the electronic and steric parameters of meta substituents (sigmam and MRm) and lipophilicity parameter of ortho substituents (pio) contribute significantly to pC2, pC8 and pC9: sigmam shows parabolic relationships (optimum sigmam values being 0.518, 0.584 and 0.522 respectively) and steric bulk of meta substituents has negative impact while presence of hydrophilic groups at the ortho positions increases the activities. Further, presence of electron withdrawing meta substituents and hydrophilic para substituents is conducive to the C. histolyticum collagenase (pC(ChC)) activity. The study suggests that the structural and physicochemical requirements of the P1' anchoring site for the activities against MMP-2, -8 and -9 are highly intercorrelated and these are comparatively less correlated with those for the activities against MMP-1 and C. histolyticum collagenase.  相似文献   

2.
A series of substituted 2-(2,3,5,6-tetramethylbenzyl)imidazolines and related compounds have been synthesized to study the steric and hydrophobic effects on the vasoactivity of the introduction of four methyl groups on the phenyl moiety. The 2-(2,3,5,6-tetramethylbenzyl)imidazoline (I) showed a high hypertensive activity, whereas the 2-benzylimidazoline possesses an adrenolytic activity. The 2-(2,3,5,6-tetramethylphenoxy)methylimidazoline (XVII) retained the hypertensive activity, whereas the corresponding thioether (XIX) was inactive. Some structure-activity relationships with regard to the presence of substituents in the 4-position of the phenyl moiety and on the benzylic CH2 are reported.  相似文献   

3.

Background and Purpose

There is growing concern over the abuse of certain psychostimulant methcathinone (MCAT) analogues. This study extends an initial quantitative structure–activity relationship (QSAR) investigation that demonstrated important steric considerations of seven 4- (or para-)substituted analogues of MCAT. Specifically, the steric character (Taft''s steric ES) of the 4-position substituent affected in vitro potency to induce monoamine release via dopamine and 5-HT transporters (DAT and SERT) and in vivo modulation of intracranial self-stimulation (ICSS). Here, we have assessed the effects of other steric properties of the 4-position substituents.

Experimental Approach

Definitive steric parameters that more explicitly focus on the volume, width and length of the MCAT 4-position substituents were assessed. In addition, homology models of human DAT and human SERT based upon the crystallized Drosophila DAT were constructed and docking studies were performed, followed by hydropathic interaction (HINT) analysis of the docking results.

Key Results

The potency of seven MCAT analogues at DAT was negatively correlated with the volume and maximal width of their 4-position substituents, whereas potency at SERT increased as substituent volume and length increased. SERT/DAT selectivity, as well as abuse-related drug effects in the ICSS procedure, also correlated with the same parameters. Docking solutions offered a means of visualizing these findings.

Conclusions and Implications

These results suggest that steric aspects of the 4-position substituents of MCAT analogues are key determinants of their action and selectivity, and that the hydrophobic nature of these substituents is involved in their potency at SERT.  相似文献   

4.
Attachment of substituted phenyl side chains at N1 of 6-azauracil caused striking increases in plasma life and anticoccidial potency. The increases were related in part to the acidity of the imide hydrogen. Maximum effects were shown by phenyl rings substituted in both meta positions by compact, electron-withdrawing, lipophilic substituents, as in 1-(3',5'-dichlorophenyl)-6-azauracil, which had plasma half-life of 160 h and a potency 250-fold greater than that of 6-azauracil.  相似文献   

5.
A series of 4-aryl-substituted cis-4a,5,8,8a-tetra- and cis-4a,5,6,7,8,8a-hexahydro-2H-phthalazin-1-ones with high inhibitory activity toward cAMP-specific phosphodiesterase (PDE4) was synthesized. To study structure-activity relationships various substituents were introduced to the 2-, 3-, and 4-positions of the 4-phenyl ring. Substitution at the 4-position of the phenyl ring was restricted to a methoxy group, probably due to unfavorable steric interactions of larger groups with the binding site. The introduction of many alkoxy substituents including distinct ring systems and functional groups was allowed to the 3-position. It was found that in general the cis-4a,5,8,8a-tetrahydro-2H-phthalazin-1-ones are more potent than their hexahydrophthalic counterparts, the best activity residing in (4-imidazol-1-yl-phenoxy)butoxy analogue 16o (pIC(50) = 9.7).  相似文献   

6.
A set of 56 8-phenylxanthines, previously tested for adenosine antagonism (adenosine A1 receptor affinity), was analyzed by quantitative structure-activity relationship (QSAR) techniques. The resulting QSAR revealed that (1) the most potent receptor binders had already been made in this series and thus suggested the termination of synthesis of compounds with additional phenyl substituents to increase potency and (2) potency was much more strongly affected by changes in ortho than para phenyl substitution. On the basis of this study, an additional 20 compounds were synthesized that contained primarily para substituents designed to increase aqueous solubility. High potency was maintained among the resulting sulfonamide derivatives (as predicted by the QSAR), and aqueous solubility was dramatically increased. Furthermore, in vitro antagonism of an adenosine receptor mediated physiological effect was demonstrated.  相似文献   

7.
A series of novel arylfluoroquinolones has been prepared. These derivatives are characterized by having a fluorine atom at the 6-position, substituted amino groups at the 7-position, and substituted phenyl groups at the 1-position. Structure-activity relationship (SAR) studies indicate that the in vitro antibacterial potency is greatest when the 1-substituent is either p-fluorophenyl or p-hydroxyphenyl and the 7-substituent is either 1-piperazinyl, 4-methyl-1-piperazinyl, or 3-amino-1-pyrrolidinyl. The electronic and spatial properties of the 1-substituent, as well as the steric bulk, play important roles in the antimicrobial potency in this class of antibacterials. As a result of this study, compounds 45 and 41 were found to possess excellent in vitro potency and in vivo efficacy.  相似文献   

8.
Replacement of the cimetidine moiety in impromidine (1,N1-[3-(1H-imidazol-4-yl)propyl]-N2-[2-[[(5-methyl-1H-imidazol-4- yl)methyl]thio]ethyl]guanidine) by more lipophilic H2-nonspecific pheniramine-like structures resulted in potent H2 agonists with up to 160 times the activity of histamine in the isolated, spontaneously beating guinea pig right atrium. Additionally, the compounds proved to be moderate H1 antagonists. Highest H2-agonistic potency was found in compounds characterized by a three-membered carbon chain connecting the aromatic rings and the guanidine group. The activity in the atrium was increased 2-4-fold by halogen substituents in the meta or para position of the phenyl ring. Highest H1-antagonistic potency resides in the group of para-halogenated compounds, p-F representing the optimal substituent in both receptor models. The corresponding guanidine 52 (arpromidine, N1-[3-(4-fluorophenyl)-3-pyridin-2-ylpropyl]-N2-[3-(1H-imidazol-4- yl)propyl]guanidine) combines about 100 times the activity of histamine at the H2 receptor with H1-antagonistic potency in the range of pheniramine. Further increase in the activity on the atrium was achieved by disubstitution with halogen on the phenyl ring, such as 3,4-F2, 3,5-F2, and 3,4-Cl2 (63-65). The 2-pyridyl group in arpromidine was replaced by 3-pyridyl without significant change in H2 agonistic activity, whereas the 4-pyridyl and phenyl analogues were less active. The rank order of potency in the atrium was in good agreement with the positive inotropic effects found in isolated, perfused guinea pig hearts, where 63-65 were the most potent compounds as well.  相似文献   

9.
6-(Benzylamino)uracils and substituted 6-anilinouracils have been found to be potent inhibitors of Bacillus subtilis DNA polymerase III by a mechanism identical with that of 6-(phenylhydrazino)uracils. Higher phenylalkylamino homologues are progressively weaker inhibitors of the enzyme. Examination of the effects of substituents on the activity of 6-(benzylamino)uracils against wild-type and mutant enzymes and preliminary results for 6-anilinouracils have permitted further dissection of the mechanism of inhibition. The experimental results indicate that (1) the polymerase inhibitor binding site is compact, accommodating only small alterations in the distance between the uracil and phenyl rings, (2) the phenyl ring, which provides the major contribution to inhibitor-enzyme binding, adopts a specific active conformation, and (3) an enzyme site which interacts with substituents in the phenyl ring forms a part of the active site of DNA polymerase III.  相似文献   

10.
A new series of potential adenosine receptor antagonists with a [1,2,4]-triazolo-[3,4-f]-purine structure bearing at the 1 and 3 position n-propyl groups have been synthesized, and their affinities at the four human adenosine receptor subtypes (A(1), A(2A), A(2B) and A(3)) have been evaluated. In this case the presence of n-propyl groups seems to induce potency at the A(2A) and A(3) adenosine receptor subtypes as opposed to our previously reported series bearing methyl substituents at the 1 and 3 positions. In particular the non-acylated derivative 17 showed affinity at these two receptor subtypes in the micromolar range. Indeed, preliminary molecular modeling investigations according to the experimental binding data indicate a modest steric and electrostatic antagonist-receptor complementarity.  相似文献   

11.
Novel arylfluoro-1,4-dihydro-4-oxo-1,8-naphthyridine-3-carboxylic acids have been prepared and their antibacterial activity evaluated. These derivatives are characterized by having a fluorine atom at the 6-position, substituted amino groups at the 7-position, and substituted phenyl groups at the 1-position. The in vitro antibacterial potency is greatest when the 1-substituent is either p-fluorophenyl or o,p-difluorophenyl and the 7-substituent is a 3-amino-1-pyrrolidinyl group. 1-(2,4-Difluorophenyl)-6-fluoro-7-(3-amino-1-pyrrolidinyl)-1,4-dihydro- 4-oxo-1,8-naphthyridine-3-carboxylic acid (38) was found to possess excellent in vitro potency and in vivo efficacy.  相似文献   

12.
Safinamide, (S)-N2-{4-[(3-fluorobenzyl)oxy]benzyl}alaninamide methanesulfonate, which is in phase III clinical trials as an anti-Parkinson drug, and a library of alkanamidic analogues were prepared through an expeditious solid-phase synthesis and evaluated for their monoamine oxidase B (MAO-B) and monoamine oxidase A (MAO-A) inhibitory activity and selectivity. (S)-3-Chlorobenzyloxyalaninamide (8) and (S)-3-chlorobenzyloxyserinamide (13) derivatives proved to be more potent MAO-B inhibitors than safinamide (IC50 = 33 and 43 nM, respectively, vs 98 nM) but with a lower MAO-B selectivity (SI = 3455 and 1967, respectively, vs 5918). The highest MAO-B inhibitory potency (IC50 = 17 nM) and a good selectivity (SI = 2941) were displayed by (R)-21, a tetrahydroisoquinoline analogue of safinamide. Structure-affinity relationships and docking simulations pointed out strong negative steric effects of alpha-aminoamide side chains and para substituents of the benzyloxy groups and favorable hydrophobic interactions of meta substituents. The significantly diverse MAO-B affinities of a number of R and S alpha-aminoamide enantiomers, including the two rigid analogues (21) of safinamide, indicated likely enantioselective interactions at the enzymatic binding sites.  相似文献   

13.
Ten (E)-and (Z)-isomers of 2-phenylcyclopropylamine (PCA), 1-Me-PCA, 2-Me-PCA, N-Me-PCA, and N, N-diMe-PCA and fifteeno , m, p isomers of (E)-PCA with substituents of Me, Cl, F, OMe, OH were synthesized in this laboratory and tested for the inhibition of rat brain mitochondrial MAO-A and MAO-B. The effects of substituents, their positions, and stereochemistry on the inhibition were assessed for the compounds with substituents at cyclopropyl and amino groups and QSAR analyses were performed using the potency data of ring-substituted compounds. The best correlated QSAR equations are as follows: pI50=0.804 Π2 Blo−1.069 Blm+0.334 Lp−1.709 HDp+7.897 (r=0.945, s=0.211, F=16.691, p=0.000) for the inhibition of MAO-A; pI50=1.815 π-0.825 Π2 R+0.900 Es2+0.869 Es3+0.796 Es4−0.992 HDp+0.562 HAo+3.893 (r=0.982, s=0.178, F=23.351, p=0.000) for the inhibition of MAO-B. Based on the potency difference between stereoisomers of cyclopropylamine-modified compounds and on QSAR results, it is proposed that the active sites of MAO-A are composed of one deep hydrophobic cavity near para position, two hydrophobic cavities interacting with Me group, a hydrophobic area accomodating phenyl and cyclopropyl backbone, steric boundaries, a hydrogen-acceptor site near para position, and an amino group binding site and that in addition to the same two hydrophobic cavities, hydrophobic area, steric boundaries, hydrogen-acceptor site, and amino group binding site, another steric boundary near para position and a hydrogen donating site near ortho position constitute active sites of MAO-B.  相似文献   

14.
We previously reported that 6-(methylamino)-5-nitrosoisocytosine (5) is a potent inhibitor (I50 = 1.6 microM) of Escherichia coli dihydropteroate synthase. It was noted that 6-amino substituents larger than methyl were detrimental to binding, although the adverse steric effect could be overcome by a positive ancillary binding contribution of a phenyl ring attached at the terminus of certain 6-alkylamino substituents. We selected the 6-[[3-(aryloxy)propyl]amino]-5-nitrosoisocytosine structure as a parent system and explored the effects of aromatic substituents on synthase inhibition. The nature of the aryl substitution influences binding, as shown by a 30-fold range of inhibitory potencies observed for the 15 aryl analogues (I50 values = 0.6-18 microM), although there is no apparent correlation between synthase inhibition and the electronic or hydrophobic characteristics of the aryl substituents. To explore the possibility that the aryl ring of these inhibitors might interact with the synthase binding site for the substrate p-aminobenzoic acid (PABA), three compounds were synthesized in which a PABA analogue is bridged to the nitrosoisocytosine moiety by linkage to an amino group at C-6 of the isocytosine. The bridged analogues significantly inhibited the synthase (I50 values = 2.5-8.9 microM) but were of unexceptional potency compared with other members of the (aryloxy)propyl series. Structure-activity considerations and inhibition kinetics did not support the PABA binding site as the synthase region that interacts with the aryl ring of these inhibitors. Despite the potent synthase inhibition exhibited by many of the nitrosoisocytosines studied, none of the 18 new analogues showed significant antibacterial activity.  相似文献   

15.
Analogues of the biaryl pyrazole N-(piperidinyl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR141716; 5) were synthesized to investigate the structure-activity relationship (SAR) of the aminopiperidine region. The structural modifications include the substitution of alkyl hydrazines, amines, and hydroxyalkylamines of varying lengths for the aminopiperidinyl moiety. Proximity and steric requirements at the aminopiperidine region were probed by the synthesis of analogues that substitute alkyl hydrazines of increasing chain length and branching. The corresponding amide analogues were compared to the hydrazides to determine the effect of the second nitrogen on receptor binding affinity. The N-cyclohexyl amide 14 represents a direct methine for nitrogen substitution for 5, reducing the potential for heteroatom interaction, while the morpholino analogue 15 adds the potential for an additional heteroatom interaction. The series of hydroxyalkyl amides of increasing chain length was synthesized to investigate the existence of additional receptor hydrogen binding sites. In displacement assays using the cannabinoid agonist [(3)H](1R,3R,4R)-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-4-(3-hydroxypropyl) cyclohexan-1-ol (CP 55 940; 2) or the antagonist [(3)H]5, 14 exhibited the highest CB(1) affinity. In general, increasing the length and bulk of the substituent was associated with increased receptor affinity and efficacy (as measured in a guanosine 5'-triphosphate-gamma-[(35)S] assay). However, in most instances, receptor affinity and efficacy increases were no longer observed after a certain chain length was reached. A quantitative SAR study was carried out to characterize the pharmacophoric requirements of the aminopiperidine region. This model indicates that ligands that exceed 3 A in length would have reduced potency and affinity with respect to 5 and that substituents with a positive charge density in the aminopiperidine region would be predicted to possess increased pharmacological activity.  相似文献   

16.
A series of new arylfluoroquinolones has been prepared. These derivatives are characterized by having fluorine atoms at the 6- and 8-positions, substituted amino groups at the 7-position, and substituted phenyl groups at the 1-position. The in vitro antibacterial potency is greatest when the 1-substituent is 2,4-difluorophenyl and the 7-substituent is a 3-amino-1-pyrrolidinyl group. 1-(4-Fluorophenyl)-6,8-difluoro-7-piperazin-1-yl-1,4-dihydro-4-oxo quinoline-3- carboxylic acid (22) was found to possess excellent in vitro potency and in vivo efficacy.  相似文献   

17.
4-t-Butyl-1-(4-bromophenyl)-bicycloorthocarboxylate antagonizes gamma-aminobutyric acid (GABA)-mediated relaxation at a functional insect nerve-muscle synapse, mimicking the action of picrotoxinin, suggesting that it causes GABA antagonism through blockade of the chloride ionophore. It is also a potent GABAA receptor antagonist, inhibiting the binding of [35S]t-butyl-bicyclophosphorothionate ([35S]TBPS) to EDTA/water-dialyzed human brain P2 membranes. Structure-activity relationships of 74 1,4-bis-substituted bicycloorthocarboxylates, mostly new compounds, reveal that for high potency as a GABAA receptor antagonist the optimal 4-substituent is a C4 to C6 branched chain alkyl or cycloalkyl group (e.g., t-butyl, s-butyl, or cyclohexyl) and the optimal 1-substituent is a phenyl moiety with one or more electron-withdrawing groups (e.g., 4-cyano, 4-bromo, 4-chloro, 3,4-dichloro, or pentafluoro). Bicycloorthocarboxylate inhibitors of [35S]TBPS binding with IC50 values of 5-10 nM exceed by several-fold the potency of any GABAA receptor antagonist previously reported. The 4-t-butyl-1-(4-azidophenyl) analog, synthesized as a candidate photoaffinity label, gives an IC50 of 315 nM. The potency of bicycloorthocarboxylates for decreasing [35S]TBPS binding generally correlates with their toxicity, i.e., compounds without inhibitory activity in this brain receptor assay are of low toxicity on intraperitoneal administration to mice, and the analogs most potent as inhibitors are generally those most toxic to mice (e.g., IC50 of 5 nM and LD50 of 0.06 mg/kg for 4-t-butyl-1-(4-cyanophenyl)-bicycloorthocarboxylate). The effects of phenyl substituents on the potency of the orthobenzoates as GABAA receptor antagonists are similar to those on toxicity. In contrast to the 1-substituted phenyl compounds, 4-t-butyl-1-ethynyl-bicycloorthocarboxylate and its 4-i-propyl analog are very toxic (LD50 0.4-2 mg/kg) but have only moderate inhibitory potency (IC50 480-2900 nM), a pattern noted for many 1-alkyl-bicycloorthocarboxylates, suggesting that even within this series there may be different types of receptor-inhibitor interactions. 1-(4-Chlorophenyl)-4-cyclohexyl-bicycloorthocarboxylate is particularly sensitive to oxidative detoxification based on its 10-fold synergism of toxicity by piperonyl butoxide and marked potency loss in a coupled [35S]TBPS receptor/microsomal oxidase assay. Some benzodiazepines and phenobarbital protect against poisoning by 1-(4-bromophenyl)- and 1-ethynyl-4-t-butyl-bicycloorthocarboxylates and their 1-(4-bromophenyl)-4-cyclohexyl analog.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Fatty acid amide hydrolase (FAAH) is a promising target for modulating endocannabinoid and fatty acid ethanolamide signaling, which may have important therapeutic potential. We recently described a new class of O-arylcarbamate inhibitors of FAAH, including the cyclohexylcarbamic acid biphenyl-3-yl ester URB524 (half-maximal inhibitory concentration, IC(50) = 63 nM), which have significant anxiolytic-like properties in rats. In the present study, by introducing a selected group of substituents at the meta and para positions of the distal phenyl ring of URB524, we have characterized structure-activity profiles for this series of compounds and shown that introduction of small polar groups in the meta position greatly improves inhibitory potency. Most potent in the series was the m-carbamoyl derivative URB597 (4i, IC(50) = 4.6 nM). Furthermore, quantitative structure-activity relationship (QSAR) analysis of an extended set of meta-substituted derivatives revealed a negative correlation between potency and lipophilicity and suggested that small-sized substituents may undertake polar interactions with the binding pocket of the enzyme. Docking studies and molecular dynamics simulations, using the crystal structure of FAAH, indicated that the O-biphenyl scaffold of the carbamate inhibitors can be accommodated within a lipophilic region of the substrate-binding site, where their folded shape mimics the initial 10-12 carbon atoms of the arachidonyl moiety of anandamide (a natural FAAH substrate) and methyl arachidonyl fluorophosphonate (a nonselective FAAH inhibitor). Moreover, substituents at the meta position of the distal phenyl ring can form hydrogen bonds with atoms located on the polar section of a narrow channel pointing toward the membrane-associated side of the enzyme. The structure-activity characterization reported here should help optimize the pharmacodynamic and pharmacokinetic properties of this class of compounds.  相似文献   

19.
4H-3,1-Benzoxazin-4-ones are alternate substrate inhibitors of the serine proteinase human leukocyte elastase (HL elastase) and form acyl enzyme intermediates during enzyme catalysis. We have synthesized a large variety of benzoxazinones using specific methods that have been adapted to achieve the pattern of ring substitution dictated by theoretical considerations. The results of the inhibition of HL elastase by 175 benzoxazinones are reported herein with reference to hydrophobicity constants D, alkaline hydrolysis rates kOH-, inhibition constants Ki, and their component acylation and deacylation rate constants, kon and koff, respectively. The ranges for the compounds are considerable; alkaline hydrolysis rates and kon span 6, koff covers 5, and ki spans 8 orders of magnitude. Multiple regression on this large data set has been used to isolate the contributions of electronic and steric effects, as well as other factors specific to compound stability and elastase inhibition. Essentially, a simple electronic parameter is sufficient to account for almost all the variance in the alkaline hydrolysis data, indicating that electronic factors are the major determinants of this type of benzoxazinone reactivity. Factors that significantly enhance the potency of benzoxazinones I are R5 alkyl groups and electron withdrawal by R2. Bulk in R7 and R8 and compound hydrophobicity are not significant, but substitution in R6 is highly unfavorable as are substituents linked via carbon to C2. The physiochemical factors that underlie these trends in Ki are further analyzed in terms of equations that describe kon and koff. A conclusion that emerges is that chemically stable, potent benzoxazinone inhibitors of HL elastase with inhibition constants in the nanomolar range can be designed with (1) R5 alkyl groups to inhibit enzyme-catalyzed deacylation, (2) small alkyl substituents linked via heteroatoms to C2 to enhance acylation and limit deacylation rates, and (3) strongly electron-donating groups at C7 to stabilize the oxazinone ring to nucleophilic attack. Thus, 2-(isopropylamino)-5-n-propyl-7-(dimethylamino)benzoxazinone 95 has kOH = 0.01 M-1 s-1, which extrapolates to a half-life at pH 7.4 of over 8.5 years, and 2-ethoxy-5-ethylbenzoxazinone 38 has Ki = 42 pM.  相似文献   

20.
1 Thirty clonidine- and tolazoline-like compounds with differing phenyl ring substituents were tested for agonistic actions at histamine H1-receptors (guinea-pig ileum), histamine H2-receptors (guinea-pig driven right ventricular strips), post-junctional alpha-adrenoceptors (rat desheathed was deferens) and pre-junctional alpha-adrenoceptors (inhibition of sympathetic stimulation in guinea-pig driven left atria). 2 All compounds were inactive at histamine H1-receptors, while 21 of the 30 compounds displayed varying stimulant activity at H2-receptors. 3 At post-junctional alpha-receptors all 30 compounds produced stimulant actions, whereas at prejunctional alpha-receptors the compounds displayed either agonistic or antagonistic actions. 4 Thus structure-activity-relationships (SAR) could only be validated for histamine H2- and post-junctional alpha-receptor effects. These studies show that the most potent compounds are those with 2,6-phenyl substituents in which rotation is restricted so that the two rings are aplanar. Electronic effects of the substituents have a greater influence on activity at H2- than at alpha-receptors. 5 The major difference in SAR involves the influence of substituents in the 3, 4 or 5 positions on the phenyl ring. The presence of these substituents abolish significant activity at H2-receptors, while alpha-receptor stimulant activity is retained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号