首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 367 毫秒
1.
The activity of 43 antidromically identified abducens internuclear neurons with conduction velocities ranging from 14 to 54 m/s was analyzed in alert cats during spontaneous and vestibular induced eye movements. The discharge rate of internuclear neurons significantly increased with successive adducting positions of the contralateral eye. Slopes of rate-position (k) relationships ranged from 3.1 to 17.9 spikes/deg (mean 12.01 +/- 3.1). Threshold ranged from -19 degrees to +3 degrees. Frequency saturation was never observed for any internuclear neuron within the oculomotor range. Although straight lines were selected to illustrate the rate-position relationships, exponential curves always provided the best statistical fit demonstrating that an enhancement in frequency potentiation (k) must accompany more eccentric fixations in the on direction. Internuclear neurons showed a low variability in firing rate (less than 3.0%) for fixations less than 1 s. Variability increased with both longer and repeated fixations of the same eye position. Discharge rates were found to depend upon both the direction of the preceding eye movement and the animal's level of alertness. Separate regression lines of rate-position relations following saccades in the on and off directions differed significantly in slope (100%), but not threshold. The observed static hysteresis in an identified non-motoneuron shows this property to be in a central neural circuit prior to the extraocular motoneuron. The slopes (k) of rate-position plots for all internuclear neurons decreased significantly (100%) when level of alertness changed from "alert" (1 +/- 0.2 saccades/s) to "drowsy" (0.5 +/- 0.2 saccades/s). Thresholds, however, were not significantly altered. Discharge rate of abducens internuclear neurons increased abruptly 10.4 +/- 2.5 ms preceding saccades in the on direction, and decreased 20.5 +/- 7.8 ms before saccades in the off direction. Internuclear neuronal activity was not affected by pure vertical saccades. During on direction saccades, firing frequency did not saturate, but increased with velocity in a linear fashion. Exponential functions often fit the data better due to the difference in slopes of rate-velocity plots for on vs off direction saccades. Slopes (rs) of rate-velocity regression lines during spontaneous saccades ranged from 0.99 to 4.10 spikes/s/deg/s (mean 2.16 +/- 0.93). During saccades in the off direction activity always decreased, but it seldom ceased. Rate-velocity regression lines measured during the fast phase of vestibular nystagmus (rsv = 2.09 +/- 0.88) showed no significant differences from rs slopes in 82% of the cases.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The activity of identified abducens motoneurons has been recorded during spontaneous eye movements in the alert cat. Abducens motoneurons showed a burst of activity during saccades in the abducting direction. However, peak frequency during the burst was reached on the 4th-7th intervals. Instantaneous frequency of the first 5 intervals during the burst was linearly related to peak saccadic velocity and to peak frequency. Functional implications of reported findings are discussed in the text. These results favor the view that firing in abducens motoneurons during saccades is predetermined from the beginning of saccades, and do not provide evidence for possible modification of abducens motoneurons firing through internal feedback of motor error signals.  相似文献   

3.
Hysteresis and slow drift in abducens unit activity   总被引:3,自引:0,他引:3  
Two trained monkeys made saccadic eye movements to a small visual target. The activity of 39 isolated abducens units, presumed to be motoneurons or abducens internuclear neurons, was recorded in relation to these eye movements. After a calibration trial, a test trial repeatedly elicited 20 degrees horizontal saccades to primary position from either the left or right. On average, the steady-state firing rate at primary position depended on the direction of the saccade. For saccades where the neuron showed a burst in activity during the saccade (on-saccades) the steady-state firing rates were usually higher than for those saccades that showed a pause in activity during the saccade (off-saccades). For the population of units this hysteresis measured 5.4 spikes/s, which may be compared with an average primary-position rate of 97 spikes/s. The average hysteresis for individual units ranged from -2.1 to 18.5 spikes/s. The steady-state firing rate after equal saccades in the same direction and ending at the same position (primary) varied slowly over time. Across all units the variability (standard deviation) ranged from 0.5 to 11.8 spikes/s with a mean of 4.7 spikes/s. Furthermore, for any one unit the variations following on-saccades generally correlated with the variations following the off-saccades. Hysteresis, doubted by many, does exist. Fortunately, it is small enough, 5.5% of typical primary-position rate, that it can be neglected for many purposes. Nevertheless, it poses the interesting theoretical question of how the oculomotor system compensates for hysteresis. The simplest explanation of slow variations in background rate is cocontractive noise: a slow fluctuation in all abducens neurons so that these variations do not result in fluctuations of eye position.  相似文献   

4.
1. With the use of single-unit recording, the reticular formation immediately caudal to the abducens nucleus was searched for saccadic burst neurons in alert, trained rhesus monkeys. We recorded 80 short- and long-lead burst neurons, investigated their connections, and quantitatively analyzed their discharge characteristics. 2. Like excitatory burst neurons located rostral to the abducens, these caudal burst neurons fire optimally for ipsilaterally directed saccades, fire less for vertical saccades, and fire minimally, if at all, for contralateral saccades. The direction associated with the maximum number of spikes was approximately along the horizontal axis (1 +/- 12 degrees (SD); n = 33). 3. The first spike of the burst led the saccade by 2-120 ms, depending on the unit. Neurons were divided into short lead (45%) and long lead (55%) using a burst-lead criterion of 15 ms. In the on-direction, the discharges of both types exhibited strong correlations between number of spikes in the burst and size of the horizontal saccade component; duration of the burst and duration of the saccade; and peak frequency of the burst and peak velocity of the saccade. These relations were looser for long-lead neurons than for short-lead neurons. 4. Horseradish peroxidase injected into the abducens nucleus retrogradely labeled cells in the contralateral reticular formation where burst neurons were recorded, showing that cells in this region make crossed monosynaptic connections. There was good agreement between the limits of this region, as determined physiologically and anatomically. 5. Microstimulation at the locus of recorded burst neurons elicited EMG potentials in the contralateral lateral rectus muscle of the appropriate sign and latency for a monosynaptic inhibitory projection to abducens motoneurons. Stimulation also elicited eye movements consistent with inhibition of the contralateral lateral rectus. 6. It is argued that these characteristics make it likely that the short-lead neurons are the source of the afference which generate the pause in contralateral abducens motoneuron firing during adducting saccades. These neurons are therefore analogous to the inhibitory burst neurons (IBNs) found in the cat. The characteristics of long-lead burst neurons, particularly their lead, make them less likely to subserve this function. These cells might be better suited to providing input to omnipause neurons or to the short-lead IBNs.  相似文献   

5.
1. We recorded single-unit activity in the caudal central nucleus (CCN) of the oculomotor complex in monkeys trained to make vertical saccadic, smooth-pursuit, and fixation eye movements. We confirmed that our recordings were from motoneurons innervating the upper lid, because small lesions placed at the sites of responsive units were recovered among neurons labeled by horseradish peroxidase (HRP) injections into the levator palpebrae superioris muscle. 2. For fixations above a threshold lid position, levator motoneurons discharged at a steady rate, which increased linearly with upward lid position. The average position sensitivity during fixation was 2.9 spikes/s per deg, and the average lid motoneuron was recruited into steady firing when the eye was looking 10 degrees down. 3. During upward saccades, levator motoneurons discharged a burst of spikes that began, on average, 7.3 ms before the lid movement if the saccade started from a straight-ahead position; the lead time decreased considerably as the initial eye and lid positions shifted downward. The firing rate usually reached its peak (130-280 spikes/s) at the very onset of the burst and declined gradually during the course of the saccade. The steady rate associated with the new fixation position was reached about halfway during the saccade. All units exhibited a pause in firing during the initial half of large downward saccades; during small saccades, the pause was inconspicuous or absent. 4. During vertical sinusoidal smooth pursuit, levator motoneurons exhibited a sinusoidal modulation in firing rate, which led eye position by an average of 23 degrees at 0.3 Hz. The average velocity sensitivity calculated from such data was 0.63 spikes/s per deg/s. 5. Although they exhibit a number of qualitative similarities, the discharge patterns of levator motoneurons and superior rectus motoneurons differ in several respects. First, during a blink, when the lid undergoes a large depression but the eye exhibits only a brief transient displacement, levator motoneurons cease firing completely, whereas superior rectus motoneurons continue to discharge. Second, for all types of coordinated lid and eye movements, levator motoneurons discharge at lower firing rates than do superior rectus motoneurons. Third, during saccades, levator motoneurons have less conspicuous and shorter-lasting bursts and pauses than do motoneurons involved in rotating the eye. 6. During upward gaze, the qualitative similarity of their burst-tonic discharge patterns suggests that levator and superior rectus motoneurons receive input signals that originate from a common source, but that the signals are processed differently to deal with the different loads facing these muscles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
1. The discharge of antidromically identified medial rectus and abducens motoneurons was recorded in restrained unanesthesized goldfish during spontaneous eye movements and in response to vestibular and optokinetic stimulation. 2. All medial rectus and abducens motoneurons exhibited a similar discharge pattern. A burst of spikes accompanied spontaneous saccades and fast phases during vestibular and optokinetic nystagmus in the ON-direction. Firing rate decreased for the same eye movements in the OFF-direction. All units showed a steady firing rate proportional to eye position beyond their recruitment threshold. 3. Motoneuronal position (ks) and velocity (rs) sensitivity for spontaneous eye movements were calculated from the slope of the rate-position and rate-velocity linear regression lines, respectively. The averaged ks and rs values of medial rectus motoneurons were higher than those of abducens motoneurons. The differences in motoneuronal sensitivity coupled with structural variations in the lateral versus the medial rectus muscle suggest that symmetric nasal and temporal eye movements are preserved by different motor unit composition. Although the abducens nucleus consists of distinct rostral and caudal subgroups, mean ks and rs values were not significantly different between the two populations. 4. Every abducens and medial rectus motoneuron fired an intense burst of spikes during its corresponding temporal or nasal activation phase of the "eye blink." This eye movement consisted of a sequential, rather than a synergic, contraction of both vertical and horizontal extraocular muscles. The eye blink could act neither as a protective reflex nor as a goal-directed eye movement because it could not be evoked in response to sensory stimuli. We propose a role for the blink in recentering eye position. 5. Motoneuronal firing rate after ON-directed saccades decreased exponentially before reaching the sustained discharge proportional to the new eye position. Time constants of the exponential decay ranged from 50 to 300 ms. Longer time constants after the saccade were associated with backward drifts of eye position and shorter time constants with onward drifts. These postsaccadic slide signals are suggested to encode the transition of eye position to the new steady level. 6. Motoneurons modulated sinusoidally in response to sinusoidal head rotation in the dark, but for a part of the cycle they went into cutoff, dependent on their eye position recruitment threshold. Eye position (kv) and velocity (rv) sensitivity during vestibular stimulation were measured at frequencies between 1/16 and 2 Hz. Motoneuronal time constants (tau v = rv/kv) decreased on the average by 25% with the frequency of vestibular stimulation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The effects of peripheral and central VIth nerve axotomy on abducens nucleus synaptic potentials of vestibular origin and the ultrastructure of intracellularly labeled abducens motoneurons were examined in the anesthetized cat. Subsequent experiments explored the activity of identified abducens motoneurons during spontaneous and vestibular induced eye movements in alert cats prepared for chronic recordings of eye movements, single units and field potentials. Following axotomy the typical disynaptic inhibition of abducens motoneurons induced by electrical stimulation of the ipsilateral vestibular nerve either disappeared or was reduced for 5-30 days. Disynaptic activation produced by contralateral VIIIth nerve stimulation was apparently not affected. These changes were accompanied at the ultrastructural level by a decrease of axosomatic pleiomorphic synaptic endings. No changes were observed in either the number or distribution of synaptic endings on proximal and distal dendrites. Although not expected by results obtained in acute experiments, axotomized motoneurons showed a decreased excitability in the behavioral paradigm. Amplitude of the abducens antidromic field potential was significantly reduced 4-6 days following axotomy and frequent failures were observed in the antidromic somadendritic invasion of single motoneurons. Somatic invasion was obtained by the simultaneous presentation of appropriate visual and/or vestibular synaptic activity. Chronic recordings of field potentials showed their amplitude to recover in 30-40 days. The spontaneous and vestibular induced activity of identified axotomized motoneurons during this period of time differed in several aspects from controls. Motoneurons could not maintain tonic activity during eye fixations and they showed short, low frequency, bursts of activity that followed, rather than preceded, on-directed saccades. In some cases axotomized motoneurons fired during horizontal off-directed and vertical saccades. Position and velocity gains of axotomized motoneurons were lower than control values. The effects of central axotomy were always larger and of longer duration than those following peripheral axotomy. Structural and functional properties influenced by axotomy seemed to recover in 2-3 months, but with independent time courses. The present results differ in many aspects from those described after axotomy in spinal and hypoglossal motoneurons. In addition, they point out that behavior or axotomized neurons in chronic preparations are not predictable on the basis of those described in acute experiments.  相似文献   

8.
1. The discharge of 255 neurons in the fastigial nuclei of three trained macaque monkeys was investigated during visually guided saccades. Responses of these neurons were examined also during horizontal head rotation and during microstimulation of the oculomotor vermis (lobules VIc and VII). 2. One hundred and two units were characterized by bursts of firing in response to visually guided saccades. Ninety-eight of these (96.1%) were located within the anatomic confines of the fastigial oculomotor region (FOR), on the basis of reconstruction of recording sites. During contralateral saccades, these neurons showed bursts that preceded the onset of saccades (presaccadic burst), whereas, during ipsilateral saccades, they showed bursts associated with the end of saccades (late saccadic burst). They were hence named saccadic burst neurons. Sixty-one saccadic burst neurons (62.2%) were inhibited during microstimulation of the oculomotor vermis with currents less than 10 microA. 3. All saccadic burst neurons were spontaneously active, and the resting firing rate varied considerably among units, ranging from 10 to 50 imp/s. The tonic levels of activity did not correlate significantly with eye position. 4. The presaccadic burst started 18.5 +/- 4.7 (SD) ms (n = 45) before the onset of saccades in the optimal direction (the direction associated with the maximum values of burst lead time, number of spikes per burst, and burst duration). Optimal directions covered the entire contralateral hemifield, although there was a slightly higher incidence in both horizontal and upper-oblique directions in the present sample. The duration of the presaccadic burst was highly correlated with the duration of saccade (0.85 less than or equal to r less than or equal to 0.97). 5. The late saccadic burst was most robust in the direction opposite to the optimal in each unit (the nonoptimal direction). Its onset preceded the completion of ipsilateral saccade by 30.4 +/- 5.9 ms. The lead time to the end of saccade was consistent among different units and was constant also for saccades of various sizes. Thus the late saccadic burst started even before the saccade onset when the saccade duration was less than 30 ms. Unlike the presaccadic burst, its duration was not related to the duration of saccade. 6. Discharge rates of saccadic burst neurons were correlated neither to eye positions during fixation nor to the initial eye positions before saccades. 7. Eye-position units and horizontal head-velocity units were located rostral to the FOR.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
When we look between objects located at different depths the horizontal movement of each eye is different from that of the other, yet temporally synchronized. Traditionally, a vergence-specific neuronal subsystem, independent from other oculomotor subsystems, has been thought to generate all eye movements in depth. However, recent studies have challenged this view by unmasking interactions between vergence and saccadic eye movements during disconjugate saccades. Here, we combined experimental and modeling approaches to address whether the premotor command to generate disconjugate saccades originates exclusively in "vergence centers." We found that the brain stem burst generator, which is commonly assumed to drive only the conjugate component of eye movements, carries substantial vergence-related information during disconjugate saccades. Notably, facilitated vergence velocities during disconjugate saccades were synchronized with the burst onset of excitatory and inhibitory brain stem saccadic burst neurons (SBNs). Furthermore, the time-varying discharge properties of the majority of SBNs (>70%) preferentially encoded the dynamics of an individual eye during disconjugate saccades. When these experimental results were implemented into a computer-based simulation, to further evaluate the contribution of the saccadic burst generator in generating disconjugate saccades, we found that it carries all the vergence drive that is necessary to shape the activity of the abducens motoneurons to which it projects. Taken together, our results provide evidence that the premotor commands from the brain stem saccadic circuitry, to the target motoneurons, are sufficient to ensure the accurate control shifts of gaze in three dimensions.  相似文献   

10.
Previous work suggests that when the eye starts at different orbital initial positions (IPs), the saccade control system is faced with significant nonlinearities. Here we studied the effects of IP on saccade-related firing of monkey abducens neurons by either isolating saccade variables behaviorally or applying a multiple linear regression analysis. Over a 50 degrees range of IPs, we could select 10 degrees horizontal saccades with identical velocity profiles, which would require identical control signals in a linear system. The bursts accompanying ipsiversive saccades for IPs above the threshold for steady firing were quite similar. The excess burst rate above steady firing was either constant or decreased with ipsiversive IP, and both the number of excess spikes in the burst and burst duration were nearly constant. However, for ipsiversive saccades from IPs below threshold, both peak burst rate (6.82 +/- 1.38 spikes.s(-1).deg(-1)) and burst duration (0.67 +/- 0.28 ms/deg) increased substantially with ipsiversive IPs. Moreover, the pause associated with contraversive saccades shortened considerably with ipsiversive IPs (mean 1.2 ms/deg). This pattern of results for pauses and for bursts below threshold suggests the presence of a significant nonlinearity. Abducting saccades are produced by the net force of agonist lateral rectus (LR) and antagonist medial rectus (MR) muscles. We suggest that the decreasing force in the MR muscle with IPs in the abducting direction requires a more vigorous burst in LR motoneurons, which appears to be generated by a combination of saturating and nonsaturating burst commands and the recruitment of additional abducens neurons.  相似文献   

11.
1. To describe in detail the secondary neurons of the horizontal vestibuloocular reflex (VOR), we recorded the extracellular activity of neurons in the rostral medial vestibular nucleus of alert, trained rhesus monkeys. On the basis of their activity during horizontal head and eye movements, neurons were divided into several different types. Position-vestibular-pause (PVP) units discharged in relation to head velocity, eye velocity, eye position, and ceased firing during some saccades. Eye and head velocity (EHV) units discharged in relation to eye velocity and head velocity in the same direction so that the two signals partially canceled during the VOR. Two cell types discharged in relation to eye position and velocity but not head velocity; other types discharged in relation to head velocity only. 2. The position in the neural path from the primary vestibular afferents to abducens motoneurons was examined for each type. Direct input from the vestibular nerve was indicated if the cell could be activated by shocks to the nerve at latencies less than or equal to 1.4 ms. A projection to abducens motoneurons was indicated if spike-triggered averaging of lateral rectus electromyographic (EMG) activity yielded responses with a sharp onset at monosynaptic latencies. 3. PVP neurons were the principal interneuron in the VOR "three-neuron arc." Eighty percent received primary afferent input, and 66% made excitatory connections with contralateral abducens motoneurons. Surprisingly few, approximately 11%, made inhibitory connections with ipsilateral abducens motoneurons. This imbalance in the ipsi- and contralateral projections was confirmed by measuring the EMG activity evoked by electrical microstimulation in regions where PVP neurons were located. 4. EHV neurons whose activity increased during contralaterally directed head or eye movements were also interneurons in the ipsilateral inhibitory pathway. Eighty-nine percent received ipsilateral primary afferent input, and 25% projected to ipsilateral abducens motoneurons. EHV neurons excited during ipsilateral movements received neither direct primary afferent input nor projected to either abducens nucleus. A small proportion of each of two other cell types having sensitivity to contralateral eye position made excitatory connections with contralateral abducens motoneurons. Other types rarely were activated from the eighth nerve or projected to the abducens nucleus. 5. The significance of the connections of VOR interneurons and the signals they convey is discussed for three situations: smooth pursuit of a moving target, suppression of the VOR, and the VOR itself. PVP neurons convey a signal with a ratio of eye position and velocity components that is inappropriate to drive motoneurons during pursuit or the VOR.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The activity of 62 antidromically identified prepositus hypoglossi neurons was recorded in 10 alert cats during spontaneous, vestibular or visually induced eye movements. Neurons were antidromically activated from stimulating electrodes implanted in the ipsilateral medial longitudinal fasciculus (n = 24), the ipsilateral interstitial nucleus of Cajal (n = 6), the ipsilateral parabigeminal nucleus (n = 2), the contralateral superior colliculus (n = 6) and the contralateral cerebellar posterior peduncle (n = 24). Neurons were identified as eye-movement-related when their rate-position and/or rate-velocity plots showed correlation coefficients greater than or equal to 0.6. They were further classified as "position", "position-velocity" and "velocity-position" according to their relative eye position and velocity coefficients. However, they seemed to be distributed as a continuum in which a progressive decrease of eye velocity sensitivity was accompanied by a proportional increase in eye position sensitivity. "Position-velocity" neurons (n = 9) were mainly horizontal type II neurons projecting to the vicinity of the oculomotor complex; two of these neurons with vertical sensitivity were also activated from the interstitial nucleus of Cajal. Mean position and velocity sensitivity of these neurons were 5.2 spikes/s per degree and 0.62 spikes/s per degree per second, respectively. Pure "position" neurons (n = 7) also showed activation during ipsilateral eye fixations; their mean position gain was 7.3 spikes/s per degree and they projected to the ipsilateral oculomotor and Cajal nuclei, and to the contralateral superior colliculus. "Velocity-position" neurons (n = 18) were type I or II neurons with rather irregular tonic firing rates and a mean velocity gain of 0.75 spikes/s per degree per second. Type II "velocity-position" neurons projected mainly to the oculomotor area, while type I neurons projected preferentially to the cerebellum. A special type of "pause" neuron (n = 5), with very low firing rate and pausing mainly for contralateral saccades, was activated exclusively from the contralateral posterior peduncle. Many neurons with weak eye movement sensitivity (n = 22) were activated mainly (73%) from the cerebellum. It can be concluded that the prepositus hyperglossi nucleus distributes specific eye movement related signals to motor and premotor brainstem and cerebellar structures. The variability of interspike intervals of representative prepositus hypoglossi neurons of each class was compared to the discharge variability of identified abducens motoneurons.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The goal of this study was to examine and compare the number and size of motoneurons in the cat and squirrel monkey abducens nucleus. We also examined medial rectus muscle motoneuron compartmentalization in the squirrel monkey oculomotor nucleus and compared those cells to abducens nucleus motoneurons. Retrograde labeling of the motoneurons, using cholera toxin conjugate of horseradish peroxidase (CTHRP) injected into cat and monkey lateral or medial rectus muscles, was observed after 24 h. The CTHRP was histochemically localized with tetramethylbenzidine. The slide-mounted sections were analyzed using a computerized imaging system. Cat abducens nucleus motoneurons showed a wide range of cell sizes (26.0-66.0 microm, mean = 37.2 +/- 6.2 microm), four or more dendrites per cell and an average of 1,418 cells within a relatively loosely packed nucleus. Squirrel monkey abducens nucleus motoneurons were significantly smaller than those in the cat with a narrower range of cell sizes (20.0-44.0 microm, mean = 31.7 +/- 3.8 microm), four or more dendrites per cell and an average of 2,473 cells densely packed within the nucleus. Squirrel monkey medial rectus muscle motoneurons were organized into MRa, MRb and MRc subgroups. MRa motoneurons comprise the primary innervation for the medial rectus muscle and were similar in size to abducens nucleus motoneurons while the MRc subgroup cells were significantly smaller in size. Similar relationships among medial rectus motoneurons have been seen in rhesus monkeys. The relationship of these anatomical findings to previous physiological results regarding the generation of extraocular muscle force in the squirrel monkey is discussed.  相似文献   

14.
1. Monkeys were trained to perform a variety of horizontal eye tracking tasks designed to reveal possible eye movement and vestibular sensitivities of neurons in the medulla. To test eye movement sensitivity, we required stationary monkeys to track a small spot that moved horizontally. To test vestibular sensitivity, we rotated the monkeys about a vertical axis and required them to fixate a target rotating with them to suppress the vestibuloocular reflex (VOR). 2. All of the 100 units described in our study were recorded from regions of the medulla that were prominently labeled after injections of horseradish peroxidase into the abducens nucleus. These regions include the nucleus prepositus hypoglossi (NPH), the medial vestibular nucleus (MVN), and their common border (the "marginal zone"). We report here the activities of three different types of neurons recorded in these regions. 3. Two types responded only during eye movements per se. Their firing rates increased with eye position; 86% had ipsilateral "on" directions. Almost three quarters (73%) of these medullary neurons exhibited a burst-tonic discharge pattern that is qualitatively similar to that of abducens motoneurons. There were, however, quantitative differences in that these medullary burst-position neurons were less sensitive to eye position than were abducens motoneurons and often did not pause completely for saccades in the off direction. The burst of medullary burst position neurons preceded the saccade by an average of 7.6 +/- 1.7 (SD) ms and, on average, lasted the duration of the saccade. The number of spikes in the burst was well correlated with saccade size. The second type of eye movement neuron displayed either no discernible burst or an inconsistent one for on-direction saccades and will be referred to as medullary position neurons. Neither the burst-position nor the position neurons responded when the animals suppressed the VOR; hence, they displayed no vestibular sensitivity. 4. The third type of neuron was sensitive to both eye movement and vestibular stimulation. These neurons increased their firing rates during horizontal head rotation and smooth pursuit eye movements in the same direction; most (76%) preferred ipsilateral head and eye movements. Their firing rates were approximately in phase with eye velocity during sinusoidal smooth pursuit and with head velocity during VOR suppression; on average, their eye velocity sensitivity was 50% greater than their vestibular sensitivity. Sixty percent of these eye/head velocity cells were also sensitive to eye position. 5. The NPH/MVN region contains many neurons that could provide an eye position signal to abducens neurons.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
 The macaque frontal eye field (FEF) is involved in the generation of saccadic eye movements and fixations. To better understand the role of the FEF, we reversibly inactivated a portion of it while a monkey made saccades and fixations in response to visual stimuli. Lidocaine was infused into a FEF and neural inactivation was monitored with a nearby microelectrode. We used two saccadic tasks. In the delay task, a target was presented and then extinguished, but the monkey was not allowed to make a saccade to its location until a cue to move was given. In the step task, the monkey was allowed to look at a target as soon as it appeared. During FEF inactivation, monkeys were severely impaired at making saccades to locations of extinguished contralateral targets in the delay task. They were similarly impaired at making saccades to locations of contralateral targets in the step task if the target was flashed for ≤100 ms, such that it was gone before the saccade was initiated. Deficits included increases in saccadic latency, increases in saccadic error, and increases in the frequency of trials in which a saccade was not made. We varied the initial fixation location and found that the impairment specifically affected contraversive saccades rather than affecting all saccades made into head-centered contralateral space. Monkeys were impaired only slightly at making saccades to contralateral targets in the step task if the target duration was 1000 ms, such that the target was present during the saccade: latency increased, but increases in saccadic error were mild and increases in the frequency of trials in which a saccade was not made were insignificant. During FEF inactivation there usually was a direct correlation between the latency and the error of saccades made in response to contralateral targets. In the delay task, FEF inactivation increased the frequency of making premature saccades to ipsilateral targets. FEF inactivation had inconsistent and mild effects on saccadic peak velocity. FEF inactivation caused impairments in the ability to fixate lights steadily in contralateral space. FEF inactivation always caused an ipsiversive deviation of the eyes in darkness. In summary, our results suggest that the FEF plays major roles in (1) generating contraversive saccades to locations of extinguished or flashed targets, (2) maintaining contralateral fixations, and (3) suppressing inappropriate ipsiversive saccades. Received: 2 February 1996 / Accepted: 26 February 1997  相似文献   

16.
The synaptic organization of the saccade-related neuronal circuit between the superior colliculus (SC) and the brainstem saccade generator was examined in an awake monkey using a saccadic, midflight electrical-stimulation method. When microstimulation (50–100 A, single pulse) was applied to the SC during a saccade, a small, conjugate contraversive eye movement was evoked with latencies much shorter than those obtained by conventional stimulation. Our results may be explained by the tonic inhibition of premotor burst neurons (BNs) by omnipause neurons that ceases during saccades to allow BNs to burst. Thus, during saccades, signals originating from the SC can be transmitted to motoneurons and seen in the saccade trajectory. Based on this hypothesis, we estimated the number of synapses intervening between the SC and motoneurons by applying midflight stimulation to the SC, the BN area, and the abducens nucleus. Eye position signals were electronically differentiated to produce eye velocity to aid in detecting small changes. The mean latencies of the stimulus-evoked eye movements were: 7.9±1.0 ms (SD; ipsilateral eye) and 7.8±0.9 ms (SD; contralateral eye) for SC stimulation; 4.8±0.5 ms (SD; ipsilateral eye) and 5.1±0.7 ms (SD; contralateral eye) for BN stimulation; and 3.6±0.4 ms (SD; ipsilateral eye) and 5.2±0.8 ms (SD; contralateral eye) for abducens nucleus stimulation. The time difference between SC- and BN-evoked eye movements (about 3 ms) was consistent with a disynaptic connection from the SC to the premotor BNs.  相似文献   

17.
1. Single neurons in the abducens nucleus were recorded extracellularly in alert rhesus macaques trained to make a variety of eye movements. An abducens neurons was identified as a motoneuron (MN) if its action potentials triggered an averaged EMG potential in the lateral rectus muscle. Abducens internuclear neurons (INNs) that project to the oculomotor nucleus were identified by collision block of spontaneous with antidromic action potentials evoked with a stimulating electrode placed in the medial rectus subdivision of the contralateral oculomotor nucleus. 2. All abducens MNs and INNs had qualitatively similar discharge patterns consisting of a burst of spikes for lateral saccades and a steady firing whose rate increased with lateral eye position in excess of a certain threshold. 3. For both MNs and INNs the firing rates associated with different, constant eye positions could be described accurately by a straight line with slope, K (the eye position sensitivity in spikes.s-1.deg-1), and intercept, T (the eye position threshold for steady firing). For different MNs, K increased as T varied from more medial to more lateral values. In contrast, the majority of INNs already were active for values of T more medial than 20 degrees and showed little evidence of recruitment according to K. 4. During horizontal sinusoidal smooth-pursuit eye movements, both MNs and INNs exhibited a sinusoidal modulation in firing rate whose peak preceded eye position. From these firing rate patterns, the component of firing rate related to eye velocity, R (the eye velocity sensitivity in spikes.s-1.deg-1.s-1), was determined. The R for INNs was, on average, 78% larger than that for MNs. Furthermore, R increased with T for MNs, whereas INNs showed no evidence of recruitment according to R. If, as in the cat, the INNs of monkeys provide the major input to medial rectus MNs and if simian medial rectus MNs behave like our abducens MNs, then recruitment order, which is absent in INNs, must be established at the MN pool itself. 5. Unexpectedly, the R of MNs decreased with the frequency of the smooth-pursuit movement. Furthermore, the eye position sensitivity, K, obtained during steady fixations was usually less than that determined during smooth pursuit. Therefore, conclusions about the roles of MNs and premotor neurons based on how their R and K values differ must be viewed with caution if the data have been obtained under different tracking conditions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Burst-tonic (BT) neurons in the prepositus hypoglossi and adjacent medial vestibular nuclei are important elements of the neural integrator for horizontal eye movements. While the metrics of their discharges have been studied during conjugate saccades (where the eyes rotate with similar dynamics), their role during disjunctive saccades (where the eyes rotate with markedly different dynamics to account for differences in depths between saccadic targets) remains completely unexplored. In this report, we provide the first detailed quantification of the discharge dynamics of BT neurons during conjugate saccades, disjunctive saccades, and disjunctive fixation. We show that these neurons carry both significant eye position and eye velocity-related signals during conjugate saccades as well as smaller, yet important, "slide" and eye acceleration terms. Further, we demonstrate that a majority of BT neurons, during disjunctive fixation and disjunctive saccades, preferentially encode the position and the velocity of a single eye; only few BT neurons equally encode the movements of both eyes (i.e., have conjugate sensitivities). We argue that BT neurons in the nucleus prepositus hypoglossi/medial vestibular nucleus play an important role in the generation of unequal eye movements during disjunctive saccades, and carry appropriate information to shape the saccadic discharges of the abducens nucleus neurons to which they project.  相似文献   

19.
Saccadic eye movement is a rapid shift of eye position to capture an object in the environment. In this study, we will describe the fundamental properties of spontaneously evoked saccade-like rapid eye movement (SLREM) in mice in order to establish the mouse experimental model for studying saccades. Spontaneous SLREM were recorded and analyzed in C57BL/6 mice in a quantitative manner, using high-speed video-oculography at a high temporal resolution (240 frames/s) under head-fixed conditions. Mice made spontaneous SLREMs in the dark with median amplitude of 14.3+/-2.1 degrees, mainly in the horizontal direction. The peak velocity of SLREM increased almost linearly against its amplitude with slope of 43.6+/-6.1 (degrees/s)/degrees in the upward, 63.3+/-18.0 (degrees/s)/degrees in the downward, 51.3+/-3.9 (degrees/s)/degrees in the nasal, and 31.7+/-3.2 (degrees/s)/degrees in the temporal direction. The duration of SLREM was 56.6+/-23.3 ms in the upward, 57.3+/-18.0 ms in the downward, 52.0+/-5.0 ms in the nasal, and 69.3+/-5.5 ms in the temporal direction. This study provides the basis for analyzing the neural and molecular mechanisms engaged in the control of saccadic eye movements in genetically-engineered mice.  相似文献   

20.
Recent work has shown that humans and monkeys utilize both retinal error and eye position signals to compute the direction and amplitude of saccadic eye movements (Hallett and Lightstone 1976a, b; Mays and Sparks 1980b). The aim of this study was to examine the role the frontal eye fields (FEF) and the superior colliculi (SC) play in this computation. Rhesus monkeys were trained to acquire small, briefly flashed spots of light with saccadic eye movements. During the latency period between target extinction and saccade initiation, their eyes were displaced, in total darkness, by electrical stimulation of either the FEF, the SC or the abducens nucleus area. Under such conditions animals compensated for the electrically induced ocular displacement and correctly reached the visual target area, suggesting that both a retinal error and eye position error signal were computed. The amplitude and direction of the electrically induced saccades depended not only on the site stimulated but also on the amplitude and direction of the eye movement initiated by the animal to acquire the target. When the eye movements initiated by the animal coincided with the saccades initiated by electrical stimulation, the resultant saccade was the weighted average of the two, where one weighing factor was the intensity of the electrical stimulus. Animals did not acquire targets correctly when their eyes were displaced, prior to their intended eye movements, by stimulating in the abducens nucleus area. After bilateral ablation of either the FEF or the SC monkeys were still able to acquire visual targets when their eyes were displaced, prior to saccade initiation, by electrical stimulation of the remaining intact structure. These results suggest that neither the FEF nor the SC is uniquely responsible for the combined computation of the retinal error and the eye position error signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号