首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of modifying early neutrophil-mediated inflammation on the development of airway hyperresponsiveness (AHR) was investigated using an interleukin (IL)-1 receptor antagonist (IL-1Ra), an anti-IL-18 antibody (anti-IL-18) or a p38 mitogen-activated protein kinase (MAPK) inhibitor (M39). Balb/c mice were sensitized to ovalbumin (OVA) and challenged with a single intranasal dose of OVA. Treatment with the IL-1Ra or anti-IL-18 was initiated 20 min before challenge, whereas M39 was administered 4 h before the challenge. Eight hours after challenge, sensitized mice showed significantly higher numbers of neutrophils in bronchoalveolar lavage (BAL) fluid; treatment with IL-1Ra, anti-IL-18, or M39 significantly decreased the influx of neutrophils. At 48 h, none of the treatments affected eosinophil inflammation in BAL fluid and lung tissue, goblet cell hyperplasia, or cytokine levels (IL-4, IL-5, IL-12, IL-13, interferon-gamma) in BAL fluid. Anti-IL-18 or IL-1Ra had no effect on the development of AHR, whereas M39-treated mice showed a decrease in methacholine responsiveness. These results demonstrate that early neutrophil influx following allergen challenge is mediated by IL-1, IL-18, and p38 MAPK. However, neutralization of IL-1 and IL-18 did not affect the later development of AHR and eosinophilic airway inflammation. The effects of inhibiting p38 MAPK in decreasing AHR indicate activities independent of its prevention of neutrophil accumulation.  相似文献   

2.
Hepatocyte growth factor (HGF) is known to influence a number of cell types and their production of regulatory cytokines. We investigated the potential of recombinant HGF to regulate not only the development of allergic airway inflammation and airway hyperresponsiveness (AHR), but also airway remodeling in a murine model. Administration of exogenous HGF after sensitization but during ovalbumin challenge significantly prevented AHR, as well as eosinophil and lymphocyte accumulation in the airways; interleukin (IL)-4, IL-5, and IL-13 levels in bronchoalveolar lavage (BAL) fluid were also significantly reduced. Further, treatment with HGF significantly suppressed transforming growth factor-beta (TGF-beta), platelet-derived growth factor, and nerve growth factor levels in BAL fluid. The expression of TGF-beta, the development of goblet cell hyperplasia and subepithelial collagenization, and the increases in contractile elements in the lung were also reduced by recombinant HGF. Neutralization of endogenous HGF resulted in increased AHR as well as the number of eosinophils, levels of Th2 cytokines (IL-4, IL-5, and IL-13) and TGF-beta in BAL fluid. These data indicate that HGF may play an important role in the regulation of allergic airway inflammation, hyperresponsiveness, and remodeling.  相似文献   

3.
We evaluated the role of Syk, using an inhibitor, on allergen-induced airway hyperresponsiveness (AHR) and airway inflammation in a system shown to be B cell- and mast cell-independent. Sensitization of BALB/c mice with ovalbumin (OVA) and alum after three consecutive OVA challenges resulted in AHR to inhaled methacholine and airway inflammation. The Syk inhibitor R406 (30 mg/kg, administered orally, twice daily) prevented the development of AHR, increases in eosinophils and lymphocytes and IL-13 levels in bronchoalveolar lavage (BAL) fluid, and goblet cell metaplasia when administered after sensitization and before challenge with OVA. Levels of IL-4, IL-5, and IFN-gamma in BAL fluid and allergen-specific antibody levels in serum were not affected by treatment. Because many of these responses may be influenced by dendritic cell function, we investigated the effect of R406 on bone marrow-derived dendritic cell (BMDC) function. Co-culture of BMDC with immune complexes of OVA and IgG anti-OVA together with OVA-sensitized spleen mononuclear cells resulted in increases in IL-13 production. IL-13 production was inhibited if the BMDCs were pretreated with the Syk inhibitor. Intratracheal transfer of immune complex-pulsed BMDCs (but not nonpulsed BMDCs) to naive mice before airway allergen challenge induced the development of AHR and increases in BAL eosinophils and lymphocytes. All of these responses were inhibited if the transferred BMDCs were pretreated with R406. These results demonstrate that Syk inhibition prevents allergen-induced AHR and airway inflammation after systemic sensitization and challenge, at least in part through alteration of DC function.  相似文献   

4.
gammadelta T cells regulate airway reactivity, but their role in ozone (O3)-induced airway hyperresponsiveness (AHR) is not known. Our objective was to determine the role of gammadelta T cells in O3-induced AHR. Different strains of mice, including those that were genetically manipulated or antibody-depleted to render them deficient in total gammadelta T cells or specific subsets of gammadelta T cells, were exposed to 2.0 ppm of O3 for 3 hours. Airway reactivity to inhaled methacholine, airway inflammation, and epithelial cell damage were monitored. Exposure of C57BL/6 mice to O3 resulted in a transient increase in airway reactivity, neutrophilia, and increased numbers of epithelial cells in the lavage fluid. TCR-delta(-/-) mice did not develop AHR, although they exhibited an increase in neutrophils and epithelial cells in the lavage fluid. Similarly, depletion of gammadelta T cells in wild-type mice suppressed O3-induced AHR without influencing airway inflammation or epithelial damage. Depletion of Vgamma1+, but not of Vgamma4+ T cells, reduced O3-induced AHR, and transfer of total gammadelta T cells or Vgamma1+ T cells to TCR-delta(-/-) mice restored AHR. After transfer of Vgamma1+ cells to TCR-delta(-/-) mice, restoration of AHR after O3 exposure was blocked by anti-TNF-alpha. However, AHR could be restored in TCR-delta(-/-)mice by transfer of gammadelta T cells from TNF-alpha-deficient mice, indicating that another cell type was the source of TNF-alpha. These results demonstrate that TNF-alpha and activation of Vgamma1+ gammadelta T cells are required for the development of AHR after O3 exposure.  相似文献   

5.

Purpose

Invariant natural killer T (iNKT) cells may play an important role in the pathogenesis of asthma in mice and humans. Thus, an agent that modulates the function of iNKT cells may have therapeutic potential to control asthma. We hypothesized that lipopolysaccharide (LPS)-, flagellin-, or CpG-induced changes in the cytokine milieu may modify and even inhibit the function of airway iNKT cells in asthma.

Methods

Because increased α-galactosylceramide (GalCer)-induced airway hyperreactivity (AHR) reflects the presence of airway iNKT cells, α-GalCer-induced AHR, as well as inflammatory cells and cytokines in bronchoalveolar lavage (BAL) fluid, were determined 24 hours after in vivo treatment with LPS, flagellin, or CpG in naïve BALB/c mice. Intracellular IL-4 and IFN-γ were measured in spleen iNKT cells after in vitro treatment with LPS, flagellin, or CpG. A role for IL-12 following the treatments was determined.

Results

Intranasal administration of LPS, flagellin, or CpG reduced development of α-GalCer-induced AHR, eosinophilic airway inflammation, and Th1 and Th2 cytokine responses in BAL fluid, while producing IL-12 in BAL fluid. Intraperitoneal administration of IL-12 mAb blocked the suppressive effect of LPS, flagellin, or CpG. In vitro treatment with LPS, flagellin, or CpG reduced production of IL-4 and IFN-γ from α-GalCer-stimulated spleen iNKT cells; these effects were ameliorated by addition of anti-IL-12 mAb.

Conclusions

TLR4, 5, and 9 agonists may suppress the function of airway and spleen iNKT cells via IL-12-dependent mechanisms. Anergy of iNKT cells by IL-12 might play a role in suppression by these TLR agonists.  相似文献   

6.
Exposure to ozone induces airway hyperresponsiveness (AHR) mediated partly by substance P (SP) released from nerve terminals of intrinsic airway neurons. Our recent studies showed that interleukin (IL)-1, an important multifunctional proinflammatory cytokine, increases synthesis and release of SP from intrinsic airway neurons. The purpose of this study is to investigate the possible involvement of endogenous IL-1 in modulating neural responses associated with ozone-enhanced airway responsiveness. Ferrets were exposed to 2 ppm ozone or filtered air for 3 h. IL-1 in the bronchoalveolar lavage (BAL) fluid was significantly increased in ozone-exposed animals and responses of tracheal smooth muscle to methacholine (MCh) and electrical field stimulation (EFS) were elevated significantly. Both the SP nerve fiber density in tracheal smooth muscle and the number of SP-containing neurons in airway ganglia were significantly increased following ozone exposure. Pretreatment with IL-1 receptor antagonist (IL-1 Ra) significantly diminished ozone-enhanced airway responses to EFS as well as ozone-increased SP in the airway. To selectively investigate intrinsic airway neurons, segments of ferret trachea were maintained in culture conditions for 24 h to eliminate extrinsic contributions from sensory nerves. The segments were then exposed to 2 ppm ozone in vitro for 3 h. The changes of ozone-induced airway responses to MCh and EFS, and the SP levels in airway neurons paralleled those observed with in vivo ozone exposure. The ozone-enhanced airway responses and neuronal SP levels were inhibited by pretreatment with IL-1 Ra. These findings show that IL-1 is released during ozone exposure enhances airway responsiveness by modulating SP expression in airway neurons.  相似文献   

7.
The leukotriene modifiers are a novel generation of therapeutic agents in the treatment of allergic asthma. However, the mechanisms by which the cysteinyl (cys) leukotrienes (LTs) participate in allergen-induced airway eosinophilia and airway hyperresponsiveness (AHR) are still unclear. In the present study, we have investigated the role of cys-LTs in ovalbumin (OVA)-induced airway responses in a murine model of asthma. Montelukast (3 or 10 mg/kg), a selective cys-LT1 receptor antagonist, reduced airway eosinophilia and AHR after OVA challenge. The levels of interleukin (IL)-5 and eotaxin in the bronchoalveolar lavage fluid (BALF) from montelukast-treated (3 mg/kg) mice were unaffected, although a decrease in IL-5 was observed with a dose of 10 mg/kg. LTD4 (50 ng) instilled intranasally to immunized mice augmented macrophages in the BALF, but in conjunction with OVA challenge it caused BALF eosinophilia and neutrophilia when given before challenge and BALF neutrophilia but not eosinophilia when given 2 h after challenge. However, there were no increases of IL-5 or eotaxin in BALF following LTD4 treatment. Repeated instillations of LTD4 to immunized mice, mimicking allergen challenge, did not induce AHR but in conjunction with OVA challenge LTD4 enhanced AHR. These results indicate that allergen-induced eosinophilia and AHR are in part mediated by the cys-LT1 receptor, and that, although LTD4 alone has no effect on airway eosinophilia, in conjunction with antigenic stimulation it potentiates the degree of airway inflammation and AHR.  相似文献   

8.
The time course of the development of airway hyperresponsiveness (AHR) to inhaled acetylcholine (ACh) and the associated inflammatory cell recovery in bronchoalveolar lavage fluid (BAL) in actively sensitised Brown-Norway rats was studied following challenge with inhaled ovalbumin (OA). IgE for OA was detected in serum obtained from sensitised rats using passive cutaneous anaphylaxis, at titres of 1:10 to 1:30; none was detected in unsensitised animals. There was no significant change in either airway responsiveness to inhaled ACh or in BAL cell counts in rats challenged with saline over the 24 h. Following challenge with a 1% OA aerosol, airway responsiveness to inhaled ACh increased over the 24-hour period, maximal at 18-24 h (saline-challenged group mean -log PC200 1.95 +/- 0.07 M; OA-challenged group mean -log PC200 2.30 +/- 0.05 M; p < 0.01). The composition of the inflammatory cells in the BAL fluid after allergen inhalation varied over the 24-hour period, with an initial neutrophilia at 5-8 h (p < 0.01), followed at 18-24 h by an increase in lymphocytes (p < 0.01) and marked eosinophilia (p < 0.01). There was a significant correlation between airway responsiveness and eosinophil recovery at 5-8 h (p < 0.05), and at 18-24 h after allergen exposure (p < 0.05). At 18-24 h there was also a significant correlation between neutrophils and airway responsiveness (p < 0.05). There was no difference between baseline lung resistance in matched saline- or OA-challenged animals at each time point.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
BACKGROUND: IL-10 affects dendritic cell (DC) function, but the effects on airway hyperresponsiveness (AHR) and inflammation are not defined. OBJECTIVE: We sought to determine the importance of IL-10 in regulating DC function in allergen-induced AHR and airway inflammation. METHODS: DCs were generated from bone marrow in the presence or absence of IL-10. In vivo IL-10-treated DCs from IL-10(+/+) and IL-10(-/-) donors pulsed with ovalbumin (OVA) were transferred to naive or sensitized mice before challenge. In recipient mice AHR, cytokine levels, cell composition of bronchoalveolar lavage (BAL) fluid, and lung histology were monitored. RESULTS: In vitro, IL-10-treated DCs expressed lower levels of CD11c, CD80, and CD86; expressed lower levels of IL-12; and suppressed T(H)2 cytokine production. In vivo, after transfer of OVA-pulsed IL-10-treated DCs, naive mice did not have AHR, airway eosinophilia, T(H)2 cytokine increase in BAL fluid, or goblet cell metaplasia when challenged, and in sensitized and challenged mice IL-10-treated DCs suppressed these responses. Levels of IL-10 in BAL fluid and numbers of lung CD4(+)IL-10(+) T cells were increased in mice that received OVA-pulsed IL-10-treated DCs. Transfer of IL-10-treated DCs from IL-10-deficient mice were ineffective in suppressing the responses in sensitized and challenged mice. CONCLUSIONS: These data demonstrate that IL-10-treated DCs are potent suppressors of the development of AHR, inflammation, and T(H)2 cytokine production; these regulatory functions are at least in part through the induction of endogenous (DC) production of IL-10. CLINICAL IMPLICATIONS: Modification of DC function by IL-10 can attenuate lung allergic responses, including the development of AHR.  相似文献   

10.
BACKGROUND: T(H)2-mediated allergic asthma is characterized by eosinophilia, mucus overproduction, and airway hyperresponsiveness (AHR). Although it is clear that T(H)2 cells and their cytokines play an important role in AHR, the roles of T(H)1 cells and neutrophils in AHR are controversial. OBJECTIVE: We sought to determine the roles of T(H)1 cells and neutrophils in AHR. METHODS: Ovalbumin-specific CD4(+) T cells were purified from DO11.10 mice, differentiated into T(H)1 cells, and injected into naive BALB/c, IL-4RalphaKO, or IL-8RKO mice. After ovalbumin antigen challenge, cytokine mRNA levels in lung samples, as well as inflammatory cell types and numbers in bronchoalveolar lavage fluid (BALF), were determined. AHR was assessed by measuring resistance in tracheostomized mice and enhanced pause in freely moving mice. RESULTS: T(H)1 cells induced AHR as robust as T(H)2 cells. They also induced lung inflammation dominated by neutrophils. Neither AHR nor inflammation were reduced when T(H)1 cells were transferred into IL-4RalphaKO mice. When IL-8RKO mice were used as recipients of T(H)1 cells, neutrophilia was greatly reduced, but the AHR was as strong as that seen in wild-type mice. On the other hand, dexamethasone treatment had no effect on neutrophilia but has significantly reduced AHR. Reduction in AHR was accompanied by a reduction in the numbers of lymphocytes and macrophages in BALF. CONCLUSIONS: T(H)1 cells can induce strong AHR independent of IL-4 and IL-13. The AHR is associated with the presence of lymphocytes and macrophages, but not neutrophils, in BALF. Our results point to a pathway whereby T(H)1 cells mediate AHR independent of neutrophilic inflammation.  相似文献   

11.

Purpose

Cockroach (CR) is an important inhalant allergen and can induce allergic asthma. However, the mechanism by which CR induces airway allergic inflammation and the role of endotoxin in CR extract are not clearly understood in regards to the development of airway inflammation. In this study, we evaluated whether endotoxin is essential to the development of CR induced airway allergic inflammation in mice.

Materials and Methods

Airway allergic inflammation was induced by intranasal administration of either CR extract, CR with additional endotoxin, or endotoxin depleted CR extract, respectively, in BALB/c wild type mice. CR induced inflammation was also evaluated with toll like receptor-4 (TLR-4) mutant (C3H/HeJ) and wild type (C3H/HeN) mice.

Results

Intranasal administration of CR extracts significantly induced airway hyperresponsiveness (AHR), eosinophilic and neutrophilic airway inflammation, as well as goblet cell hyperplasia in a dose-dependent manner. The addition of endotoxin along with CR allergen attenuated eosinophilic inflammation, interleukin (IL)-13 level, and goblet cell hyperplasia of respiratory epithelium; however, it did not affect the development of AHR. Endotoxin depletion in CR extract did not attenuate eosinophilic inflammation and lymphocytosis in BAL fluid, AHR and IL-13 expression in the lungs compared to CR alone. The attenuation of AHR, eosinophilic inflammation, and goblet cell hyperplasia induced by CR extract alone was not different between TLR-4 mutant and the wild type mice. In addition, heat inactivated CR extract administration induced attenuated AHR and eosinophilic inflammation.

Conclusion

Endotoxin in CR extracts may not be essential to the development of airway inflammation.  相似文献   

12.
BACKGROUND: Adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) are thought to contribute to the airway inflammation and airway hyper-responsiveness (AHR) of allergic asthma. Some differences from allergic asthma have been noted, including airway neutrophilia, and the involvement of ICAM-1 in toluene diisocyanate (TDI) asthma is currently unclear. OBJECTIVE: We utilized mice lacking ICAM-1 expression (ICAM-1(-/-)) to investigate the role of ICAM-1 in airway inflammation and AHR in TDI-induced asthma. METHODS: Male C57BL/6J mice (ICAM-1(+/+)) and ICAM-1(-/-) mice were intranasally sensitized to TDI solution or solvent alone. Airway inflammation, AHR and cytokine secretion were assessed 24 h after challenge by TDI or solvent. The production of antigen-specific IgG and IgE by TDI sensitized and non-sensitized mice was determined. RESULTS: TDI challenge to ICAM-1(+/+) mice induced an increase in airway inflammatory cell numbers, AHR and cytokine secretion of TNF-alpha, macrophage inflammatory protein-2 (MIP-2), IL-4, IL-5 and IFN-gamma into the bronchoalveolar lavage fluid. All these pathophysiological changes were reduced in ICAM-1(-/-) mice. Serum levels of TDI-specific IgG and IgE of ICAM-1(-/-) and ICAM-1(+/+) mice were comparable. CONCLUSION: These results suggest that ICAM-1 plays an essential role in airway inflammation and AHR in TDI-induced asthma.  相似文献   

13.
BACKGROUND: Airway inflammation and airway hyperresponsiveness (AHR) are fundamental features of asthma. Migration of inflammatory cells from the circulation into the lungs is dependent on adhesion molecule interactions. The cell surface adhesion molecule L-selectin has been demonstrated to mediate leukocyte rolling on inflamed and noninflamed pulmonary endothelium. However, its role in the development of airway inflammation and AHR in asthma has not been examined. OBJECTIVE: We sought to characterize the role of L-selectin in the recruitment of inflammatory cells to the airway-lung and the development of AHR in a murine model of asthma. METHODS: An ovalbumin (OVA)-induced allergic airway disease model of asthma was applied to L-selectin-deficient (LKO) mice and C57BL/6 wild-type (WT) control mice. The development of airway inflammation was assessed by examining leukocyte influx into bronchoalveolar lavage (BAL) fluid and the lung. Total and differential BAL leukocyte counts were determined, and the immunophenotype of BAL lymphocytes was assessed by means of flow cytometry. The development of AHR was assessed by means of whole-body plethysmography. RESULTS: Airway-lung inflammation was equivalent in LKO and WT mice sensitized-challenged with OVA, as measured by total and differential BAL cell counts and histologic analysis of lung tissue. Numbers of eosinophils, neutrophils, lymphocytes, and monocytes in BAL fluid were equivalent in LKO and WT mice. However, phenotypic analysis of BAL lymphocytes demonstrated significantly reduced CD3(+) populations and increased B220(+) populations in LKO compared with WT mice (P <.05). Remarkably, despite a fulminant inflammatory response in the airway-lung in LKO mice sensitized-challenged with OVA, AHR was completely abrogated. CONCLUSION: L-selectin plays a crucial role in the development of AHR but not allergic inflammation in an animal model of asthma. L-selectin represents a potential target for novel asthma therapies specifically aimed at controlling AHR.  相似文献   

14.
BACKGROUND: Aeroallergens continuously enter the respiratory tract of atopic individuals and provoke the development of asthma characterized by airway hyperreactivity (AHR) and inflammation. By contrast, nonatopic individuals are exposed to the same aeroallergens, but airway inflammation does not develop. However, the mechanisms that prevent allergen-induced respiratory diseases in nonatopic subjects are poorly characterized. OBJECTIVE: In this study we compared the role of allergen-specific T-cell tolerance and immune deviation in conferring protection against the development of allergen-induced AHR. METHODS: We exposed mice to intranasal ovalbumin (OVA) to induce T-cell tolerance and examined its effects on the subsequent development of AHR and inflammation. RESULTS: We demonstrated that exposure of mice to intranasal OVA resulted in peripheral CD4(+) T-cell unresponsiveness that very efficiently prevented not only the development of AHR but also greatly inhibited airway inflammation and OVA-specific IgE production. The induction of peripheral T-cell tolerance and protection against AHR were not dependent on the presence of IFN-gamma or IL-4. The development of AHR was also prevented by an OVA-specific T(H)1-biased immune response induced by inhalation of OVA in the presence of IL-12. However, the OVA-specific T(H)1 response was associated with a significant degree of pulmonary inflammation. CONCLUSION: These results indicate that both allergen-specific T-cell tolerance and T(H)1-biased immune deviation prevent the development of AHR, but T(H)1 responses are associated with significantly greater inflammation in the lung than is associated with T-cell unresponsiveness. Therefore CD4(+) T-cell unresponsiveness critically regulates immune responses to aeroallergens and protects against the development of allergic disease and asthma.  相似文献   

15.
Background: Airway inflammation and airway hyperresponsiveness (AHR) are fundamental features of asthma. Migration of inflammatory cells from the circulation into the lungs is dependent on adhesion molecule interactions. The cell surface adhesion molecule -selectin has been demonstrated to mediate leukocyte rolling on inflamed and noninflamed pulmonary endothelium. However, its role in the development of airway inflammation and AHR in asthma has not been examined. Objective: We sought to characterize the role of -selectin in the recruitment of inflammatory cells to the airway-lung and the development of AHR in a murine model of asthma. Methods: An ovalbumin (OVA)-induced allergic airway disease model of asthma was applied to -selectin–deficient (LKO) mice and C57BL/6 wild-type (WT) control mice. The development of airway inflammation was assessed by examining leukocyte influx into bronchoalveolar lavage (BAL) fluid and the lung. Total and differential BAL leukocyte counts were determined, and the immunophenotype of BAL lymphocytes was assessed by means of flow cytometry. The development of AHR was assessed by means of whole-body plethysmography. Results: Airway-lung inflammation was equivalent in LKO and WT mice sensitized-challenged with OVA, as measured by total and differential BAL cell counts and histologic analysis of lung tissue. Numbers of eosinophils, neutrophils, lymphocytes, and monocytes in BAL fluid were equivalent in LKO and WT mice. However, phenotypic analysis of BAL lymphocytes demonstrated significantly reduced CD3+ populations and increased B220+ populations in LKO compared with WT mice (P < .05). Remarkably, despite a fulminant inflammatory response in the airway-lung in LKO mice sensitized-challenged with OVA, AHR was completely abrogated. Conclusion: -Selectin plays a crucial role in the development of AHR but not allergic inflammation in an animal model of asthma. -Selectin represents a potential target for novel asthma therapies specifically aimed at controlling AHR. (J Allergy Clin Immunol 2001;107:1019-24.)  相似文献   

16.

Background

Antioxidants have been suggested to alleviate the pathophysiological features of asthma, and grape seed proanthocyanidin extract (GSPE) has been reported to have powerful antioxidant activity.

Purpose

This study was performed to determine whether GSPE has a therapeutic effect on allergic airway inflammation in both acute and chronic murine model of asthma.

Methods

Acute asthma model was generated by intraperitoneal sensitization of ovalbumin (OVA) with alum followed by aerosolized OVA challenges, whereas chronic asthma model was induced by repeated intranasal challenges of OVA with fungal protease twice a week for 8?weeks. GSPE was administered by either intraperitoneal injection or oral gavage before OVA challenges. Airway hyperresponsiveness (AHR) was measured, and airway inflammation was evaluated by bronchoalveolar lavage (BAL) fluid analysis and histopathological examination of lung tissue. Lung tissue levels of various cytokines, chemokines, and growth factors were analyzed by quantitative polymerase chain reaction and ELISA. Glutathione assay was done to measure oxidative burden in lung tissue.

Results

Compared to untreated asthmatic mice, mice treated with GSPE showed significantly reduced AHR, decreased inflammatory cells in the BAL fluid, reduced lung inflammation, and decreased IL-4, IL-5, IL-13, and eotaxin-1 expression in both acute and chronic asthma models. Moreover, airway subepithelial fibrosis was reduced in the lung tissue of GSPE-treated chronic asthmatic mice compared to untreated asthmatic mice. Reduced to oxidized glutathione (GSH/GSSG) ratio was increased after GSPE treatment in acute asthmatic lung tissue.

Conclusion

GSPE effectively suppressed inflammation in both acute and chronic mouse models of asthma, suggesting a potential role of GSPE as a therapeutic agent for asthma.  相似文献   

17.
In experimental models of bronchial asthma with mice, airway inflammation and increase in airway hyperreactivity (AHR) are induced by a combination of systemic sensitization and airway challenge with allergens. In this report, we present another possibility: that systemic antigen-specific sensitization alone can induce AHR before the development of inflammation in the airway. Male BALB/c mice were sensitized with ovalbumin (OVA) by a combination of intraperitoneal injection and aerosol inhalation, and various parameters for airway inflammation and hyperreactivity were sequentially analyzed. Bronchial response measured by a noninvasive method (enhanced pause) and the eosinophil count and interleukin (IL)-5 concentration in bronchoalveolar lavage fluid (BALF) gradually increased following the sensitization, and significant increase was achieved after repeated OVA aerosol inhalation along with development of histologic changes of the airway. In contrast, AHR was already significantly increased by systemic sensitization alone, although airway inflammation hardly developed at that time point. BALF IL-4 concentration and the expression of IL-4 mRNA in the lung reached maximal values after the systemic sensitization, then subsequently decreased. Treatment of mice with anti-IL-4 neutralizing antibody during systemic sensitization significantly suppressed this early increase in AHR. In addition, IL-4 gene-targeted mice did not reveal this early increase in AHR by systemic sensitization. These results suggest that an immune response in the lung in an early stage of sensitization can induce airway hyperreactivity before development of an eosinophilic airway inflammation in BALB/c mice and that IL-4 plays an essential role in this process. If this early increase in AHR does occur in sensitized human infants, it could be another therapeutic target for early prevention of the future onset of asthma.  相似文献   

18.
Chemokine receptor (CCR) 5 is expressed on dendritic cells, macrophages, CD8 cells, memory CD4 T cells, and stromal cells, and is frequently used as a marker of T helper type 1 cells. Interventions that abrogate CCR5 or interfere with its ligand binding have been shown to alter T helper type 2-induced inflammatory responses. The role of CCR5 on allergic airway responses is not defined. CCR5-deficient (CCR5(-/-)) and wild-type (CCR5(+/+)) mice were sensitized and challenged with ovalbumin (OVA) and allergic airway responses were monitored 48 hours after the last OVA challenge. Cytokine levels in lung cell culture supernatants were also assessed. CCR5(-/-) mice showed significantly lower airway hyperresponsiveness (AHR) and lower numbers of total cells, eosinophils, and lymphocytes in bronchoalveolar lavage (BAL) fluid compared with CCR5(+/+) mice after sensitization and challenge. The levels of IL-4 and IL-13 in BAL fluid of CCR5(-/-) mice were lower than in CCR5(+/+) mice. Decreased numbers of lung T cells were also detected in CCR5(-/-) mice after sensitization and challenge. Transfer of OVA-sensitized T cells from CCR5(+/+), but not transfer of CCR5(-/-) cells, into CCR5(-/-) mice restored AHR and numbers of eosinophils in BAL fluid after OVA challenge. Accordingly, the numbers of airway-infiltrating donor T cells were significantly higher in the recipients of CCR5(+/+) T cells. Taken together, these data suggest that CCR5 plays a pivotal role in allergen-induced AHR and airway inflammation, and that CCR5 expression on T cells is essential to the accumulation of these cells in the airways.  相似文献   

19.
The Th2 cytokines IL-4 and IL-13 mediate allergic pulmonary inflammation and airways hyperreactivity (AHR) in asthma models through signaling dependent upon the IL-4 receptor-alpha chain (IL-4Ralpha). IL-13 has been further implicated in the overproduction of mucus by the airway epithelium and in lung remodeling that commonly accompanies chronic inflammation. IL-4Ralpha-deficient mice are resistant to allergen-induced asthma, highlighting the therapeutic promise of selective molecular inhibitors of IL-4Ralpha. We designed a chemically modified IL-4Ralpha antisense oligonucleotide (IL-4Ralpha ASO) that specifically inhibits IL-4Ralpha protein expression in lung eosinophils, macrophages, dendritic cells, and airway epithelium after inhalation in allergen-challenged mice. Inhalation of IL-4Ralpha ASO attenuated allergen-induced AHR, suppressed airway eosinophilia and neutrophilia, and inhibited production of airway Th2 cytokines and chemokines in previously allergen-primed and -challenged mice. Histologic analysis of lungs from these animals demonstrated reduced goblet cell metaplasia and mucus staining that correlated with inhibition of Muc5AC gene expression in lung tissue. Therapeutic administration of inhaled IL-4Ralpha ASO in chronically allergen-challenged mice produced a spectrum of anti-inflammatory activity similar to that of systemically administered Dexamethasone with the added benefit of reduced airway neutrophilia. These data support the potential utility of a dual IL-4 and IL-13 oligonucleotide inhibitor in allergy/asthma, and suggest that local inhibition of IL-4Ralpha in the lung is sufficient to suppress allergen-induced pulmonary inflammation and AHR.  相似文献   

20.
Most of the studies investigating the effectiveness of blocking the leukotriene B4 (LTB4) receptor 1 (BLT1) have been performed in models of primary or acute allergen challenge. The role of the LTB4-BLT1 pathway in secondary challenge models, where airway hyperresponsiveness (AHR) and airway inflammation have been established, has not been defined. We investigated the effects of blocking BLT1 on early- and late-phase development of AHR and airway inflammation in previously sensitized and challenged mice. Female BALB/c mice were sensitized (Days 1 and 14) and challenged (primary, Days 28-30) with ovalbumin. On Day 72, mice were challenged (secondary) with a single OVA aerosol, and the early and late phases of AHR and inflammation were determined. Specific blockade of BLT1 was attained by oral administration of a BLT1 antagonist on Days 70 through 72. Administration of the antagonist inhibited the secondary ovalbumin challenge-induced alterations in airway responses during the late phase but not during the early phase, as demonstrated by decreases in AHR and in bronchoalveolar lavage neutrophilia and eosinophilia 6 and 48 hours after secondary challenge. The latter was associated with decreased levels of KC protein, macrophage inflammatory protein 2, and IL-17 in the airways. These data identify the importance of the LTB4-BLT1 pathway in the development of late-phase, allergen-induced airway responsiveness after secondary airway challenge in mice with established airway disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号