首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
OBJECTIVE: The aim of this study was to evaluate the effect of various ex vivo expansion conditions on the cell products and their ability to accelerate hematopoietic recovery in patients undergoing stem cell transplantation. PATIENTS AND METHODS: Unselected peripheral blood progenitor cells (PBPCs) from 43 breast cancer patients were seeded into gas-permeable bags containing serum-free media, granulocyte colony-stimulating factor, stem cell factor, and pegylated megakaryocyte growth and development factor. Between 2 and 24 x 10(9) PBPCs were cultured at 1, 2, or 3 x 10(6) cells/mL for 9 to 14 days. The expanded PBPCs and cryopreserved PBPCs containing at least 5 x 10(6) CD34(+) cells/kg were infused following completion of high-dose chemotherapy. RESULTS: Increasing culture duration from 9 to 11-14 days significantly improved the expanded cell yield and fold expansion, whereas increasing PBPC seeding density above 10(6) cells/mL had the opposite effect. The expanded cell dose was the only culture variable that correlated significantly with the time to neutrophil recovery (r = -0.66; p = 0.0001). Study patients had significantly faster neutrophil (p < 0.0001) and platelet (p = 0.001) recovery, reduced red cell transfusions (p = 0.01), and shorter hospital stays (p < 0.0001) than historical controls. The most clinically efficacious expanded cell product was seeded with 10(10) PBPCs at 10(6) cells/mL, then cultured for 11 days. The six patients in that cohort experienced 2.8 +/- 1 days of absolute neutropenia and had neutrophil recovery 5.7 +/- 0.8 days post-transplant; none had a neutropenic fever or required intravenous antibiotics. CONCLUSION: Unselected PBPCs expanded ex vivo significantly impact hematopoietic recovery following high-dose therapy. Optimization of the expansion conditions enhances the efficacy of this cell product.  相似文献   

2.
Ex-vivo expanded progenitor cells have been proposed as a source of cells to support high-dose chemotherapy and to decrease or eliminate the period of neutropenia following transplantation. To date, no clinical studies using ex vivo expanded cells, have demonstrated any decrease in the time to neutrophil or platelet recovery, although a number of clinical studies have been performed using a variety of growth factor cocktails and culture conditions. Over the past 6 years we have developed a static culture system that results in optimal expansion of myeloid progenitor cells. We have initiated a clinical study to evaluate this culture system in breast cancer patients receiving peripheral blood progenitor cells (PBPC) to support high-dose chemotherapy. CD34 selected cells were cultured for 10 days in 800 ml of defined media (Amgen Inc.) containing 100 ng/ml each of rhSCF, rhG-CSF and rhMGDF in 1L teflon bags (American Fluoroseal) at 20,000 to 50,000 cells per ml. After culture the cells were washed with 3 volumes of PBS to remove all media and growth factors and reinfused on day 0 of transplant followed by daily administration of rhG-CSF. On day +1 the patients received an unexpanded PBPC product to ensure the durability of the graft. Patients transplanted with expanded PBPC cells recovered neutrophil counts (ANC > 500/microl) as early as day 4 post transplant with a median of 6 days (range 4 to 14 days). In comparison, our historical control group of patients (N=175) had a median time to neutrophil engraftment of 9 days (range 7 to 24 days). A second cohort of patients were transplanted with expanded cells alone and a similar rapid engraftment was obtained. The first patients are now over 70 days post transplant with durable engraftment. No effect on platelet recovery has been observed in any patients to date. These data demonstrate that PBPC expanded under the conditions defined can significantly shorten the time to engraftment of neutrophils.  相似文献   

3.
Weaver  CH; Hazelton  B; Birch  R; Palmer  P; Allen  C; Schwartzberg  L; West  W 《Blood》1995,86(10):3961-3969
The CD34 antigen is expressed by committed and uncommitted hematopoietic progenitor cells and is increasingly used to assess stem cell content of peripheral blood progenitor cell (PBPC) collections. Quantitative CD34 expression in PBPC collections has been suggested to correlate with engraftment kinetics of PBPCs infused after myeloablative therapy. We analyzed the engraftment kinetics as a function of CD34 content in 692 patients treated with high-dose chemotherapy (HDC). Patients had PBPCs collected after cyclophosphamide based mobilization chemotherapy with or without recombinant human granulocyte colony-stimulating factor (rhG-CSF) until > or = 2.5 x 10(6) CD34+ cells/kg were harvested. Measurement of the CD34 content of PBPC collections was performed daily by a central reference laboratory using a single technique of CD34 analysis. Forty-five patients required a second mobilization procedure to achieve > or = 2.5 x 10(6) CD34+ cells/kg and 15 patients with less than 2.5 x 10(6) CD34+ cells/kg available for infusion received HDC. A median of 9.94 x 10(6) CD34+ cells/kg (range, 0.5 to 112.6 x 10(6) CD34+ cells/kg) contained in the PBPC collections was subsequently infused into patients after the administration of HDC. Engraftment was rapid with patients requiring a median of 9 days (range, 5 to 38 days) to achieve a neutrophil count of 0.5 x 10(9)/L and a median of 9 days (range, 4 to 53+ days) to achieve a platelet count of > or = 20 x 10(9)/L. A clear dose-response relationship was evident between the number of CD34+ cells per kilogram infused between the number of CD34+ cells per kilogram infused and neutrophil and platelet engraftment kinetics. Factors potentially influencing the engraftment kinetics of neutrophil and platelet recovery were examined using a Cox regression model. The single most powerful mediator of both platelet (P = .0001) and neutrophil (P = .0001) recovery was the CD34 content of the PBPC product. Administration of a post-PBPC infusion myeloid growth factor was also highly correlated with neutrophil recovery (P = .0001). Patients receiving high-dose cyclophosphamide, thiotepa, and carboplatin had more rapid platelet recovery than patients receiving other regimens (P = .006), and patients requiring 2 mobilization procedures versus 1 mobilization procedure to achieve > or = 2.5 x 10(6) CD34+ cells/kg experienced slower platelet recovery (P = .005). Although a minimal threshold CD34 dose could not be defined, > or = 5.0 x 10(6) CD34+ cells/kg appears to be optimal for ensuring rapid neutrophil and platelet recovery.  相似文献   

4.
Lineage-specific growth factors mobilize peripheral blood progenitor cells (PBPC) and accelerate hematopoietic recovery after high-dose chemotherapy. Recombinant human thrombopoietin (rhTPO) may further increase the progenitor-cell content and regenerating potential of PBPC products. We evaluated the safety and activity of rhTPO as a PBPC mobilizer in combination with granulocyte colony-stimulating factor (G-CSF) in 29 breast cancer patients treated with high-dose chemotherapy followed by PBPC reinfusion. Initially, patients received escalating single doses of rhTPO intravenously (IV) at 0.6, 1.2, or 2.4 micrograms/kg, on day 1. Subsequent patients received rhTPO 0.6 or 0.3 micrograms/kg on days -3, -1, and 1, or 0.6 micrograms/kg on days -1 and 1. G-CSF, 5 micrograms/kg IV or subcutaneously (SC) twice daily, was started on day 3 and continued through aphereses. Twenty comparable, concurrently and identically treated patients (who were eligible and would have been treated on protocol but for the lack of study opening) mobilized with G-CSF alone served as comparisons. CD34(+) cell yields were substantially higher with the first apheresis following rhTPO and G-CSF versus G-CSF alone: 4.1 x 10(6)/kg (range, 1.3 to 17.6) versus 0.8 x 10(6)/ kg (range, 0.3 to 4.2), P =.0003. The targeted minimum yield of 3 x 10(6) CD34(+) cells/kg was procured following a single apheresis procedure in 61% of the rhTPO and G-CSF-mobilized group versus 10% of G-CSF-mobilized patients (P =.001). In rhTPO and G-CSF mobilized patients, granulocyte (day 8 v 9, P =.0001) and platelet recovery (day 9 v 10, P =.07) were accelerated, and fewer erythrocyte (3 v 4, P =.02) and platelet (4 v 5, P =.02) transfusions were needed compared with G-CSF-mobilized patients. Peripheral blood platelet counts, following rhTPO and G-CSF, were increased by greater than 100% and the platelet content of PBPC products by 60% to 110% on the first and second days of aphereses (P <.0001) with the greatest effect seen with repeated dosing of rhTPO at 0.6 microgram/kg. rhTPO is safe and well tolerated as a mobilizing agent before PBPC collection. Mobilization with rhTPO and G-CSF, in comparison to a comparable, nonrandomized G-CSF-mobilized group of patients, decreases the number of apheresis procedures required, may accelerate hematopoietic recovery, and may reduce the number of transfusions required following high-dose chemotherapy for breast cancer.  相似文献   

5.
OBJECTIVE: Neutropenia following high-dose chemotherapy and peripheral blood progenitor cell (PBPC) transplantation might be abrogated by an additional transplantation of ex vivo generated granulopoietic postprogenitor cells (GPPC). Therefore, the ex vivo expansion of CD34(+) PBPC was systematically studied aiming for optimum GPPC production. MATERIALS AND METHODS: CD34(+) PBPC were cultured in serum-free medium comparing different (n = 32) combinations of stem cell factor (S), interleukin 1 (1), interleukin 3 (IL-3) (3), interleukin-6 (6), erythropoietin (E), granulocyte colony-stimulating factor (G), granulate-macrophage colony-stimulating factor (GM), daniplestim (D, a novel IL-3 receptor agonist), and Flt3 ligand (FL) under various culture conditions. Ex vivo generated cells were assessed by flow cytometry, morphology, and progenitor cell assays. RESULTS: Addition of G +/- GM but not GM alone to cultures stimulated with S163E effectively induced the generation of GPPC. GPPC production was maximum after 12 to 14 days. Best expansion rates were observed when cells were cultured at 1.5x10(4)/mL in 21% O(2). Modifications of culture conditions were either less or equally effective (i.e., modification of starting cell concentrations, low oxygen, addition of serum albumin or autologous plasma, repetitive feeding). Comparison of different cytokine combinations revealed that the optimum GPPC expansion cocktail consisted of S6GD+FL (day 12: 130-fold cellular expansion, 32% myeloblasts/promyelocytes, 49.4% myelocytes/metamyelocytes, 12.4% bands/segmented), which furthermore expanded CD34(+) cells (3.4-fold) and clonogenic progenitors (13.4-fold). CONCLUSION: Using the S6DG+FL expansion cocktail, GPPC could be effectively produced ex vivo starting from positively selected CD34 PBPC, possibly enabling amelioration or even abrogation of posttransplant neutropenia.  相似文献   

6.
OBJCECTIVE: The use of allogeneic cord blood (CB) products as a source of cellular support for patients receiving high-dose chemotherapy has been limited primarily to smaller children due to the low numbers of cells in a CB unit. Ex vivo expansion of CB cells has been proposed as a method to increase the number of cells available for transplantation. Following high-dose chemotherapy administration, we transplanted adult patients with CB expanded in static culture for 10 days, in DM containing stem cell factor (SCF), granulocyte colony-stimulating factor (G-CSF), and megakaryocyte growth and development factor (MGDF). Patients achieved neutrophil engraftment in a median of 26 days (range 15 to 45). In an attempt to hasten the time to neutrophil engraftment, we developed a two-step culture system that results in increased expansion of total nucleated cells and further maturation of neutrophil precursors.MATERIALS AND METHODS: CD34(+) cells isolated from CB products were cultured for 7 days at 37 degrees C in 100-mL Teflon culture bags containing 50 mL of DM containing SCF, G-CSF, and MGDF (100 ng/mL). The cells were harvested from these bags after 7 days of incubation at 37 degrees C and transferred to 1-L Teflon bags containing 1 L of DM plus SCF, G-CSF, and MGDF. After a second culture period of 7 days, the cells were harvested, washed, and assayed for mature (granulocyte-macrophage colony-forming cells [GM-CFC]) and primitive progenitor cells (high proliferative potential colony-forming cells [HPP-CFC]). RESULTS: The two-step cultures resulted in a median total nucleated cell expansion of 438-fold (range 286 to 952, N = 11); the original one-step cultures resulted in a median expansion of 98-fold (range 59 to 350, N = 5). Equivalent expansion of committed progenitor cells (GM-CFC) and primitive progenitor cells (HPP-CFC) was obtained. CD34(+) cells were expanded a median of 29-fold in the two-step cultures (N = 11). The two-step culture contained more mature neutrophil cells, by morphologic examination, than the one-step cultures, similar to ex vivo expanded peripheral blood progenitor cells (PBPC). CONCLUSION: The two-step ex vivo expansion conditions described for CB resulted in increased numbers of total nucleated cells, GM-CFC, HPP-CFC, and CD34(+) cells and morphologically resembled ex vivo expanded PBPC, which have been shown to provide more rapid neutrophil engraftment than unexpanded PBPC. We propose that the availability of increased numbers of expanded CB cells may result in more rapid engraftment of neutrophils following infusion to transplant recipients.  相似文献   

7.
Ex vivo expanded peripheral blood progenitor cells (PBPCs) have been proposed as a source of hematopoietic support to decrease or eliminate the period of neutropenia after high-dose chemotherapy. CD34 cells were selected from rhG-CSF mobilized PBPCs from patients with breast cancer and were cultured for 10 days in defined media containing 100 ng/mL each of rhSCF, rhG-CSF, and PEG-rhMGDF in 1 L Teflon bags at 20 000 cells/mL. After culture the cells were washed and reinfused on day 0 of transplantation. On day +1, cohort 1 patients (n = 10) also received an unexpanded CD34-selected PBPC product. These patients engrafted neutrophils (absolute neutrophil count, >500/microL) in a median of 6 (range, 5-14) days. Cohort 2 patients (n = 11), who received expanded PBPCs only, engrafted neutrophils in a median of 8 (range, 4-16) days. In comparison, the median time to neutrophil engraftment in a historical control group of patients (n = 100) was 9 days (range, 7-30 days). All surviving patients are now past the 15-month posttransplantation stage with no evidence of late graft failure. The total number of nucleated cells harvested after expansion culture was shown to be the best predictor of time to neutrophil engraftment, with all patients receiving more than 4 x 10(7) cells/kg, engrafting neutrophils by day 8. No significant effect on platelet recovery was observed in any patient. These data demonstrate that PBPCs expanded under the conditions defined can shorten the time to engraftment of neutrophils compared with historical controls and that the rate of engraftment is related to the dose of expanded cells transplanted.  相似文献   

8.
Cytopenia after high-dose chemotherapy and autologous stem cell reinfusion is a major cause of morbidity. Ex vivo cultured expansion and differentiation of CD34+ peripheral blood progenitor cells (PBPC) to neutrophil precursors may shorten the neutropenic period further. We explored the use of these ex vivo cultured PBPCs in nine patients with metastatic breast cancer. All underwent PBPC mobilization with cyclophosphamide, VP-16, and G-CSF. Subsequently, they underwent four to five apheresis procedures. One apheresis product from each patient was prepared using the Isolex 300 Magnetic Cell Separation System (Baxter Immunotherapy, Irvine, CA) to obtain CD34+ cells. These cells were then cultured in gas permeable bags containing serum-free X-VIVO 10 (BioWhittaker, Walkersville, MD) medium supplemented with 1% human serum albumin and 100 ng/mL PIXY321. At day 12 of culture the mean fold expansion was 26x with a range of 6 to 64x. One patient's cells did not expand because of a technical difficulty. The final cell product contained an average of 29.3% CD15+ neutrophil precursors with a range of 18.5% to 48.1%. The patients underwent high-dose chemotherapy with cyclophosphamide, carboplatin, and thiotepa. On day 0, the cryopreserved PBPCs were reinfused and on day +1 the 12-day cultured cells were washed, resuspended, and reinfused into eight of nine patients. One patient was not infused with cultured cells. The mean number of cultured cells reinfused was 44.6 x 10(6) cells/kg with a range of 0.8 to 156.6 x 10(6) cells/kg. No toxicity was observed after reinfusion. The eight patients have recovered absolute neutrophil counts > 500/microL on a median of 8 days (range 8 to 10 days); the median platelet transfusion independence occurred on day 10 (range 8 to 12 days) and platelet counts > 50,000/microL were achieved by day 12 (range 9 to 14) for the seven patients whose platelet counts could be determined. Expanded CD34+ selected PBPC can be obtained and safely reinfused into patients.  相似文献   

9.
In order to assess the effect of delaying G-CSF administration after autologous peripheral blood progenitor cell (PBPC) transplantation on the duration of neutropenia, 87 patients were randomized to receive G-CSF 5 microg/kg/day starting on day +1 (n = 45) or +5 (n = 42) following PBPC transplantation, until recovery of the neutrophils. The duration of neutropenia (<0.5 x 10(9)/l) was shorter in the day +1 group (7 vs 8 days; P = 0.02), especially in patients receiving melphalan 200 mg/m(2) and CD34(+) cell doses >3.0 x 10(6)/kg. These patients had a later onset of neutropenia after transplant. There were no differences in time to neutrophil and platelet engraftment, or in the incidence of fever and documentation of infection. Although the duration of antibiotic therapy (7 vs 10.5 days; P = 0.01) and time to hospital discharge (13 vs 15 days; P = 0.02) were shorter in the day +1 group, these differences could not be predicted by the day of G-CSF initiation in multivariate analysis. Starting G-CSF on day +1 does not result in faster neutrophil engraftment but in later onset and consequently, slightly shorter duration of neutropenia in patients who receive melphalan 200 mg/m(2) and CD34(+) cell doses >3.0 x 10(6)/kg.  相似文献   

10.
To evaluate the impact of ex vivo expanded megakaryocyte (MK) progenitors on high-dose chemotherapy-induced thrombocytopenia, we conducted a phase II study in 10 patients with relapsed lymphoma. Two fractions of peripheral blood progenitor cells (PBPC) were cryopreserved, one with enough cells for at least 2 x 10(6) CD34+ cells/kg and a second obtained after CD34+ selection. Ten days before autologous stem cell transplantation, the CD34+ fraction was cultured with MGDF+SCF for 10 days. After BEAM (BCNU, cyclophosphamide, cytarabine, and melphalan) chemotherapy, patients were reinfused with standard PBPC and ex vivo expanded cells. No toxicity was observed after reinfusion. The mean fold expansion was 9.27 for nucleated cells, 2 for CD34+ cells, 676 for CD41+ cells, and 627 for CD61+ cells. The median date of platelet transfusion independence was day 8 (range: 7-12). All patients received at least one platelet transfusion. In conclusion, ex vivo expansion of MK progenitors was feasible and safe, but this procedure did not prevent BEAM-induced thrombocytopenia. Future studies will determine if expansion of higher numbers of CD34+ cells towards the MK-differentiation pathway will translate into a functional effect in terms of shortening of BEAM-induced thrombocytopenia.  相似文献   

11.
A retrospective analysis of long-term hematopoiesis was performed in a group of 145 consecutive patients who had received high-dose therapy with peripheral blood progenitor cell (PBPC) support between May 1985 and December 1993. Twenty-two patients had acute myelogenous leukemia, nine had acute lymphoblastic leukemia, 43 had Hodgkin's disease, 57 had non-Hodgkin's lymphoma, and 14 patients had multiple myeloma. Eighty- four patients were male and 61 female, with a median age of 37 years (range, 16 to 58 years). In 46 patients, PBPC were collected after cytotoxic chemotherapy alone, while 99 patients received cytokines either during steady-state hematopoiesis or post-chemotherapy. Sixty patients were treated with dose-escalated polychemotherapy, and 85 patients had a conditioning therapy including hyperfractionated total body irradiation at a total dose of 14.4 Gy. The duration of severe pancytopenia posttransplantation was inversely related to the number of reinfused granulocyte-macrophage colony-forming units (CFU-GM) and CD34+ cells. Threshold quantities of 2.5 x 10(6) CD34+ cells per kilogram or 12.0 x 10(4) CFU-GM per kilogram became evident and were associated with rapid neutrophil and platelet recovery within less than 18 and 14 days, respectively. These numbers were also predictive for long-term reconstitution, indicating that normal blood counts are likely to be achieved within less than 10 months after transplantation. Conversely, 12 patients were autografted with a median of 1.75 x 10(4) CFU-GM per kilogram resulting in delayed recovery to platelet counts of greater than 150 x 10(9)/L between 1 and 6 years. Our study includes bone marrow examinations in 50 patients performed at a median follow-up time of 10 months (range, 1 to 85 months) posttransplantation. A comparison with normal volunteers showed a 3.2-fold smaller proportion of bone marrow CD34+ cells, which was paralleled by an even more pronounced reduction in the plating efficiency of CFU-GM and burst- forming unit-erythroid. No secondary graft failure was observed, even in patients autografted with relatively low numbers of progenitor cells. This suggests that either the pretransplant regimens were not myeloablative, allowing autochthonous recovery, or that a small number of cells capable of perpetual self-renewal were included in the autograft products.  相似文献   

12.
To reduce the number of apheresis procedures and maintain the usual rate of hematopoietic recovery in patients treated with high-dose chemotherapy, we studied the effect of adding a small volume of ex vivo expanded bone marrow to low doses of CD34(+) blood stem cells. Thirty-four patients with breast cancer received G-CSF (10 microg/kg/day) priming followed by a limited volume (50-100 ml) bone marrow aspiration and standard 10-liter aphereses. Marrow was expanded ex vivo using the AastromReplicell system and infused along with low doses of blood-derived CD34(+) cells, collected in one apheresis. Thirty-one evaluable patients received a median CD34(+) blood stem cell dose of 0.7 x 10(6)/kg (range, 0.2-2.5) and 4.7 x 10(7) nucleated cells/kg (range, 1.98-8.7) of ex vivo expanded marrow. All patients recovered with normal blood counts and engrafted 500 neutrophils/microl and 20 000 platelets/microl in a median of 10 and 13 days, respectively. Multivariate analysis revealed that, in addition to CD34(+) lineage negative cell quantity, the quantity of stromal progenitors contained in the ex vivo expanded product correlated with engraftment outcome (r = 0.551, P = 0.004). Our results indicate that ex vivo expanded bone marrow is capable of facilitating engraftment when combined with low doses of mobilized blood derived CD34(+) cells.  相似文献   

13.
Agents with stem cell-toxic potential are frequently used for salvage therapy of Hodgkin's disease (HD) and high-grade non-Hodgkin's lymphoma (NHL). Because many patients with relapsed or refractory lymphoma are candidates for autologous progenitor cell transplantation, possible toxic effects of salvage chemotherapy on progenitor cells must be taken into account. In a retrospective study, we have analyzed the influence of a salvage regimen containing the stem cell-toxic drugs BCNU and melphalan (Dexa-BEAM) on subsequently harvested bone marrow (BM)- and peripheral blood-derived progenitor cell grafts (PBPC) and compared it with other factors. Progenitor cells were collected from 96 patients with HD or high-grade NHL. Seventy-nine grafts were reinfused (35 PBPC and 44 BM) after high-dose chemotherapy. Compared with patients autografted with BM, hematopoietic recovery was significantly accelerated in recipients of PBPC. For PBPC, the number of Dexa-BEAM cycles ( > or = v > 1) was the predominate prognostic factor affecting colony-forming unit-granulocyte-macrophage (CFU-GM) yield (66 v 6.8 x 10(4)/kg, P = .0001), CD34+ cell yield (6.6 v 1.6 x 10(6)/kg, P = .0001), neutrophil recovery to > 0.5 x 10(9)/L (9 v. 11 days, P = .0086), platelet recovery to > 20 x 10(9)/L (10 v 15.5 days, P = .0002), and platelet count on day +100 after transplantation (190 v 107 x 10(9)/L, P = .031) using univariate analysis. Previous radiotherapy was associated with significantly lower CFU-GM and CD34+ cell yields but had no influence on engraftment. Patient age, patient sex, disease activity, or chemotherapy other than Dexa-BEAM did not have any prognostic impact. Multivariate analysis confirmed that Dexa-BEAM chemotherapy was the overriding factor adversely influencing CFU-GM yield (P < .0001), CD34+ cell yield (P < .0001), and platelet engraftment (P < .0001). BM grafts were not significantly affected by previous Dexa-BEAM chemotherapy or any other variable tested. However, prognostic factors favoring the use of BM instead of PBPC were not identified using joint regression models involving interaction terms between the graft type (PBPC or BM) and the explanatory variables investigated. We conclude that, in contrast to previous radiotherapy or other chemotherapy, exposure to salvage regimens containing stem cell- toxic drugs, such as BCNU and melphalan, is a critical factor adversely affecting yields and performance of PBPC grafts. Marrow progenitor cells appear to be less sensitive to stem cell-toxic chemotherapy. PBPC should be harvested before repeated courses of salvage chemotherapy involving stem cell-toxic drugs to preserve the favorable repopulation kinetics of PBPC in comparison with BM.  相似文献   

14.
Fifty women with breast cancer metastatic to bone or bone marrow involvement on light microscopy at the time of initial evaluation were treated with high-dose chemotherapy (HDC) and peripheral blood progenitor cell (PBPC) transplantation with CD34(+) cell selection using the Isolex 300i system. All patients received induction chemotherapy. PBPC were mobilized with chemotherapy and granulocyte colony-stimulating factor. The median CD34(+) progenitor purity was 94.7% (range 72-98.7%) and recovery 38.4% (range 21-60%). Forty-eight hours after HDC with cyclophosphamide, cisplatin and carmustine, PBPC were reinfused. Median time to neutrophil count >0.5 x 10(9)/l was 9 (range 9-12) days and to platelet transfusion independence 11 (4-30) days. These data demonstrate that selected CD34(+) PBPCs allow rapid hematologic reconstitution after HDC. During follow-up, 23% of patients developed herpes zoster. Two patients developed cytomegalovirus infections. Three patients developed fungal infections. The development of these infections was not associated with steroid use but appeared more frequently in patients with diabetes mellitus. Seventy-four per cent of patients received steroids for pulmonary toxicity. Treatment-related mortality was 4%. Progression-free survival and overall survival at 35 months was 22.4% and 40.5%, with a median of 11.4 months and 15.4 months, respectively.  相似文献   

15.
Stem cell factor (SCF) has been shown to synergize with filgrastim to mobilize CD34(+) cells into the peripheral blood. To determine if addition of SCF to chemotherapy and filgrastim reduces the number of leukaphereses required to achieve a target yield of 5 x 10(6) CD34(+) cells/kg, 102 patients with multiple myeloma were randomized to receive mobilization chemotherapy with cyclophosphamide (4 g/m(2)) and either SCF (20 micrograms/kg/d) combined with filgrastim (5 micrograms/kg/d) or filgrastim alone (5 micrograms/kg/d), administered daily until leukaphereses were completed. After collection, patients were treated with myeloablative therapy supported by autologous peripheral blood progenitor cell (PBPC) infusion and filgrastim (5 micrograms/kg/d). There was a significant difference between the treatment groups in the number of leukaphereses required to collect 5 x 10(6) CD34(+) cells/kg (median of 1 v 2 for SCF + filgrastim and filgrastim alone, respectively, P =.008). Patients receiving the combination of SCF plus filgrastim had a 3-fold greater chance of reaching 5 x 10(6) CD34(+) cells/kg in a single leukapheresis compared with patients mobilized with filgrastim alone. The median CD34(+) cell yield was significantly increased for the SCF group in the first leukapheresis (11.3 v 4.0 x 10(6)/kg, P =.003) and all leukaphereses (12.4 v 8.2 x 10(6)/kg, P =.007). Total colony-forming unit-granulocyte-macrophage (CFU-GM) and mononuclear cell counts were also significantly higher in the SCF group in the first leukapheresis and in all leukaphereses. As expected for patients mobilized to an optimal CD34(+) cell yield, the time to engraftment was similar between the 2 treatment groups. Cells mobilized with the combination of SCF plus filgrastim were thus considered effective and safe for achieving rapid engraftment. Treatment with SCF plus filgrastim was well tolerated, with mild to moderate injection site reactions being the most frequently reported adverse events. There were no serious allergic-like reactions to SCF. The addition of SCF to filgrastim after cyclophosphamide for PBPC mobilization resulted in a significant increase in CD34(+) cell yield and a concomitant reduction in the number of leukaphereses required to collect an optimal harvest of 5 x 10(6) CD34(+) cells/kg.  相似文献   

16.
Filgrastim (r-metHuG-CSF)-mobilized peripheral blood progenitor cells (PBPC) and unstimulated bone marrow (BM) were evaluated and compared for reconstitution after high-dose chemotherapy in patients with relapsed Hodgkin's disease (HD) or non-Hodgkin's lymphoma (NHL) with respect to engraftment, overall and relapse-free survival, and contamination by lymphoma cells using molecular analysis of immunoglobulin gene rearrangements. Forty-four patients with either NHL or HD underwent autologous transplantation after high-dose chemotherapy. Patients were randomized to receive either Filgrastim-mobilized PBPC (n = 15) or unstimulated BM (n = 14). An additional 15 patients received PBPC without randomization because of a recent history of marrow involvement by lymphoma. Use of PBPC was associated with faster neutrophil engraftment than BM (11 vs 14 days to an absolute neutrophil count >0.5 x 10(9)/l, P = 0.04), but without any difference in platelet engraftment, infectious complications, or overall or event-free survival. Both BM (65%) and PBPC (73%) were frequently contaminated by tumor cells as assessed by CDR3 analysis. Patients with negative polymerase chain reaction analysis of a BM sample during the study had a trend towards an improved survival; however, BM involvement by disease had no impact on the ability to mobilize or collect PBPC. We conclude that PBPC are as effective as BM in reconstituting hematopoiesis after high-dose chemotherapy and that both products are frequently contaminated by sequences marking the malignant clone.  相似文献   

17.
We analyzed the relationship between the reinfusion of large or very large amounts of peripheral blood progenitor cells (PBPC) and hematologic toxicity in twenty-one advanced breast cancer patients subjected to a myeloablative dose of melphalan at the end of a high-dose sequential chemotherapy (HDSC) program. We also evaluated the influence of the white blood cell (WBC) count to predict an optimal PBPC harvest after high-dose chemotherapy and growth factor priming. Twenty-one patients with high-risk or metastatic breast cancer sequentially received: high-dose cyclophosphamide (HD-Cy) and G-CSF followed by PBPC harvest, HD-methotrexate plus vincristine, HD-doxorubicin, cisplatin and finally HD-melphalan 200 mg/m2 (HD-L-PAM) followed by PBPC reinfusion. No growth factor was administered after HD-L-PAM. CD34+ cytofluorimetric analysis, WBC count and clonogenic assays were employed to monitor circulating cells and to analyze the PBPC harvest. Correlation between different PBPC doses and hematologic toxicity as well as leukocyte and platelet recovery time was attempted. Patients received a median number of 16 (4-25.1) x 10(6)/kg CD34+ cells, 81.3 (30.8-228) x 10(4)/kg CFU-GM and 4.2 (1.3-7.3) x 10(8)/kg nucleated cells (NC) after HD-L-PAM. The number of days with fewer than 1 x 10(9)/l leukocytes and 20 x 10(9)/l platelets were 6 (range 4-9) and 0 (range 0-3), respectively. The CD34+ cell dose significantly correlated with both platelet count nadir (r = 0.73) and time to 50 x 10(9)/l platelets (r = 0.7), but did not correlate with time to reach more than 1 x 10(9)/l WBC count (r = 0.2). In particular, we found that in 12 patients given very large amounts of CD34+ cells, ranging between 15.8 and 25. 1 x 10(6)/kg (V-LA-CD34+), the platelet nadir count never fell below 20 x 10(9)/l and platelet transfusions were not required. Conversely, nine patients who received only large amounts of CD34+ cells, ranging between 4 and 12 x 10(6)/kg (LA-CD34+), experienced a platelet nadir lower than 20 x 10(9)/l and required 2 days (range 1-4) to achieve independence from platelet transfusions (P = 0.001 and P = 0. 0005). The requirement for packed red blood cells (RBC) was 1.5 vs 3 units in the V-LA-CD34+ and LA-CD34+ groups respectively (P = 0.063). The analysis of 44 PBPC collections demonstrated that 29 aphereses performed with a WBC count <20 x 10(9)/l yielded a mean of 312 +/- 43 x 10(6) CD34+ cells and 1831 +/- 201 x 10(4) CFU-GM, whereas 15 collections performed with WBC count >20 x 10(9)/l yielded 553 +/- 64 x 10(6) CD34+ cells and 3190 +/- 432 x 10(4) CFU-GM (P = 0.004). In conclusion, our data suggests that V-LA-CD34+ eliminates severe thrombocytopenia and platelet transfusion requirements in breast cancer patients subjected to HD-L-PAM, and higher PBPC collections seems to coincide with WBC count higher than 20 x 10(9)/l after HD-Cy and G-CSF mobilization. These results justify a prospective study to establish whether large doses of CD34+ cells result in significant clinical benefits.  相似文献   

18.
Administration of mobilized peripheral blood progenitor cells (PBPCs) after high-dose chemotherapy rapidly restores multilineage hematopoiesis, but the ability of such products to restore lymphocyte populations remains unclear. In this report, we evaluated immune reconstitution in a series of patients treated with sequential cycles of high-dose chemotherapy, followed by autologous PBPC infusions (median CD34(+) cell dose 7.2 x 10(6) cells/kg [range 2-29.3]). Although patients experienced rapid reconstitution of B cells and CD8(+) T cells, we observed CD4 depletion and diminished immune responsiveness in all patients for several months after completion of therapy. Mature CD4(+) T cells contained within the grafts did not appear to contribute substantially to immune reconstitution because CD4 counts did not differ between recipients of unmanipulated T-cell replete infusions versus CD34 selected, T-cell-depleted infusions. Rather, at 12 months after therapy, total CD4 count was inversely proportional to age (rho = -0.78, P =.04), but showed no relationship to CD34 cell dose (rho = -0.42, P =.26), suggesting that age-related changes within the host are largely responsible for the limited immune reconstitution observed. These results demonstrate that in the autologous setting, the infusion of large numbers of PBPCs is not sufficient to restore T-cell immune competence and emphasize that specific approaches to enhance immune reconstitution are necessary if immune-based therapy is to be used to eradicate minimal residual disease after autologous PBPC transplantation. (Blood. 2000;96:754-762)  相似文献   

19.
Although CD34 cell dose is known to influence outcome of peripheral stem cell- and/or T-cell-depleted transplantation, such data on unmanipulated marrow transplantation are scarce. To study the influence of CD34(+) cell dose on hematopoietic reconstitution and incidence of infections after bone marrow transplantation, we retrospectively analyzed 212 patients from January 1994 to August 1999 who received a transplant of an unmanipulated graft from an HLA-identical sibling donor. Median age was 31 years; 176 patients had hematologic malignancies. Acute graft-versus-host disease prophylaxis consisted mainly in cyclosporin associated with methotrexate (n = 174). Median number of bone marrow nucleated cells and CD34(+) cells infused were 2.4 x 10(8)/kg and 3.7 x 10(6)/kg, respectively. A CD34(+) cell dose of 3 x 10(6)/kg or more significantly influenced neutrophil (hazard ratio [HR] = 1.37, P =.04), monocyte (HR = 1.47, P =.02), lymphocyte (HR = 1.70, P =.003), erythrocyte (HR = 1.77, P =.0002), and platelet (HR = 1.98, P =.00008) recoveries. CD34(+) cell dose also influenced the incidence of secondary neutropenia (HR = 0.60, P =.05). Bacterial and viral infections were not influenced by CD34 cell dose, whereas it influenced the incidence of fungal infections (HR = 0.41, P =.008). Estimated 180-day transplantation-related mortality (TRM) and 5-year survival were 25% and 56%, respectively, and both were highly affected by CD34(+) cell dose (HR = 0.55, P =.006 and HR = 0.54, P =.03, respectively). Five-year survival and 180-day TRM were, respectively, 64% and 19% for patients receiving a CD34(+) cell dose of 3 x 10(6)/kg or more and 40% and 37% for the remainders. In conclusion a CD34(+) cell dose of 3 x 10(6)/kg or more improved all hematopoietic recoveries, decreased the incidence of fungal infections and TRM, and improved overall survival.  相似文献   

20.
BACKGROUND AND OBJECTIVE: Multiple myeloma (MM) typically afflicts elderly patients. High-dose therapy has recently been shown to lead to a better outcome than standard treatment, mainly in younger patients. The extent to which older subjects can benefit from intensified approaches without excessive toxicity is examined in this study. DESIGN AND METHODS: Between December 1994 and May 1997, 12 Italian Multiple Myeloma Study Group institutions entered 68 patients at diagnosis (median age 65) into an intensified chemotherapy regimen: cyclophosphamide (CY) 3 g/m(2) plus melphalan 60 mg/m(2) followed by peripheral blood progenitor cells (PBPC) and G-CSF (CM regimen). CY (day 0) and G-CSF were used to mobilize PBPC harvested by a single leukapheresis on day 10. Melphalan was infused on day 11. PBPC were kept unprocessed at 4 degrees C for 48 hours and reinfused on day 12. Three CM regimens were delivered at 6-month intervals. RESULTS: Sufficient PBPC to support the first CM cycle were available (median CD34(+) harvest: 4.9x10(6)/kg), but dropped significantly after the second (median CD34(+) harvest: 2x10(6)/kg) and the third (median CD34(+) harvest: 0.9x10(6)/kg). The median durations of severe neutropenia (absolute neutrophil count < 500 microL) were 3, 4, and 3 days, and those of severe thrombocytopenia (platelets < 25,000/microL) were 2.5, 2, and 1 days, after the first, second and third courses, respectively. The frequency of extramedullary toxicities was low. Treatment-related mortality (TRM) was 3% after the first CM, only. Complete remission (CR) was 14% after the first, 16% after the second and 27% after the third CM. After a median follow-up of 34 months (range 19-49 months), median event-free survival was 35.6 months. INTERPRETATION AND CONCLUSIONS: These results indicate that dose-intensity of melphalan can be increased by reinfusing PBPC with acceptable low toxicity. The combination of CY and melphalan followed by PBPC is an effective chemotherapy for elderly myeloma patients. Repeated melphalan infusion hampered subsequent CD34(+) harvests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号