首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
为了评估放射治疗剂量计算最常用的笔形束(PB)算法、卷积叠加(CS)算法处理小野且气腔存在条件下的计算精度,建立一包含气腔的水模体,分别用PB算法、CS算法和蒙特卡罗(MC)模拟计算1cm×1cm~7cm×7cm射野条件下该模体中的深度剂量和离轴比,并以MC模拟为标准比较深度剂量和离轴比曲线的扩展半影(自定义为10%~90%等剂量线之间的宽度)。研究结果显示PB算法和CS算法均高估了深度剂量,相比之下PB算法高估的程度更严重;CS算法计算的离轴比和MC模拟接近,向两侧发散,而PB算法计算的离轴比无明显发散。这表明在小野且气腔存在的情况下,PB算法和CS算法的计算精度都不高,但相对来说CS算法的计算精度高于PB算法。  相似文献   

2.
本文用Monte Carlo方法计算在添加不同厚度补偿材料(Paraffin和PMMA)情况下不同能量电子线照射水模体的剂量分布,对所得照射野离轴比和百分深度剂量曲线进行分析讨论.结果表明,补偿材料(Paraffin和PMMA)在放射治疗中可以起到补偿人体不规则的外轮廓,提高皮肤及皮下剂量和调整电子线的剂量分布等作用.  相似文献   

3.
刘浩  刘宗翻 《医学信息》2005,18(3):199-200
0 引言三维水箱是肿瘤放射治疗中重要的剂量测量设备,主要用于测量各种高能X线和高能电子线辐射场中的百分深度量和离轴比。我院1995年购买了一台中国剂量测量研究院(成都)产的一台三维水箱测量系统(简称“国产三维水箱”),该系统的软件包对测量所得的数据处理能力相对较弱。2  相似文献   

4.
目的:在放射治疗中,入射光子的角分布对人体中的剂量分布等有直接的影响。为了进一步提高放射治疗的精度,分析医用直线加速器等中心平面上光子的角分布及影响因素。方法:蒙特卡罗程序(BEAMnrc)是建立在蒙特卡罗程序(EGSnrc)之上,是为了医学物理中模拟三维放射治疗开发的一个程序。使用蒙特卡罗程序BEAMnrc模拟电子和光子在加速器治疗头中的输运行为,在源皮距为100 cm的等中心平面处得到相空间文件,通过程序蒙特卡罗程序BEAMdp处理相空间文件统计光子的角分布。结果:通过对标称能量为6 MV的医用加速器的光子角分布的统计,发现不同大小的射野,只要中心区域一致,光子的角分布基本相同。对于不同的离轴区域,光子的角分布与该区域的锥形角度基本一致,光子的角分布可以由锥形发散束来近似估计。结论:医用直线加速器等中心平面上光子的角分布与其所在区域有关,次级准直器对光子的角分布影响很小。在放射治疗的剂量计算中,应仔细考虑光子角分布的影响,这样可以提高放射治疗的精度和患者的生存质量。  相似文献   

5.
用BEAMnrc程序代码构建G4射波刀治疗头,用DOSXYZnrc程序代码计算6种不同准直器射野的百分深度剂量及离轴比。通过与测量数据对比,分别微调次级准直器大小,从而确保模型的合理构建,并借助BEAMDP程序代码分析射波刀射束中光子谱分布及平均能量、粒子能谱分布及角分布等特点。结果显示各射野的百分深度剂量误差均在2%以内;在辐射野范围内,对于20 mm的射野,蒙特卡罗方法计算的离轴比与测量值间的误差在3%以内,而对于20 mm的射野,误差最大不超过5%;光子谱峰值能量为0.380 MeV,光子平均能量为1.570 MeV;出射光子强度比电子强度高出3个数量级;光子角分布集中在与中心轴成5°的范围内,而电子角分布范围较大。这些信息对临床与辐射防护有一定意义,该模型也为射波刀剂量学特点的后续研究提供了基础。  相似文献   

6.
目的:用蒙特卡罗模拟评估放射治疗剂量计算使用的各向异性分析算法(Anisotropic Analytical Algorithm,AAA)在小野条件下肺介质中的计算精度。材料与方法:建立一包含肺介质的水模体,分别用AAA算法、笔形束卷积算法(Pencil Beam Convolution,PBC算法)(作为对比)和蒙特卡罗(Monte Carlo,MC)模拟计算2cm×2cm到8cm×8cm射野条件下该模体中的深度剂量和离轴比,并以MC模拟为标准比较深度剂量。用一维伽马分析对离轴比进行分析。结果:AAA算法在2cmx2cm射野肺介质区域高估了深度剂量,其它情况均低估了深度剂量,剂量偏差范围为-0.24%-2.66%.PBC算法在肺介质区域高估了深度剂量,剂量偏差的范围为1.18%~14.55%。AAA算法计算的离轴比和MC模拟,在射野剂量平坦区相对内收,在剂量跌落区向两侧发散,但AAA算法略高估了射野边缘的剂量,一维伽马分析(与MC相比)通过率为100%(3mm/3%)。PBC算法在射野剂量平坦区相对发散,而在剂量跌落区向两侧内收。一维伽马分析通过率范围为51%~88%。结论:在肺介质中,AAA剂量计算的结果与MC模拟的一致性较好,与PBC算法相比,剂量计算的精度较高。  相似文献   

7.
目的:使用蒙特卡罗方法模拟计算清华同源双束医用加速器KV级能量成像束在肺部模型中剂量分布。方法:使用清华同源双束医用加速器KV级能量成像束机头蒙卡模型得到相空间文件;以此相空间为源,使用蒙卡DOSXYZnrc程序建立肺部模型,计算肺部模体中成像剂量;使用MATLAB编程处理剂量数据,得到百分深度剂量(percent depthdose,PDD)、离轴比(off axis ratio,OAR)和等剂量曲线(isodose curve)。结果:得到了清华同源双束医用加速器KV级能量成像束在肺部模型中剂量分布曲线。结论:先计算不同模拟参数下的加速器机头相空间文件并保存再进行剂量计算,能极大节约整个计算流程耗费的时间;该模拟得到的成像剂量分布曲线可指导评价成像剂量对肺部器官损伤;加速器机头模型可用于其它器官成像剂量分布计算等后续研究。  相似文献   

8.
目的:介绍医用加速器常规光子射线的机器数据测量方法及剂量计算模型中基本参数的计算过程。以百分深度剂量与散射因子为基础数据,根据原散射线模型通过测量数据推导出原射线组织最大剂量比、散射最大剂量比、原射线在水中线性衰减系数、能量注量等,为进一步还原射野在水模体中的剂量分布提供方法与理论。方法:用Blue Phantom三维水箱在医科达Synergy加速器上测量6MV光子线的百分深度剂量、离轴比剂量、总散射因子、准直器散射因子,先从测量的百分深度剂量曲线中按照原散射模型剥离出原射线百分深度剂量,然后在Matlab软件中拟合处理测量的散射因子数据,外推出零野的模体散射因子,从而按照给定公式计算出组织最大剂量比、散射最大剂量比。按照离轴比剂量,利用平方反比规律推出最大开野在模体表面的能量注量。结果:计算出准直器散射因子、总散射因子的拟合公式,外推零野模体散射因子(s。)、根据原射线的百分深度剂量曲线计算出原射线在水中线性衰减系数,组织最大剂量比(TMR)、散射最大剂量比(SMR)、以及射野能量注量分布(Fluence Matrix)。结论:这些基本参数是剂量计算建模的关键,也是进一步研究各种剂量计算模型的基础。  相似文献   

9.
目的:使用蒙特卡罗方法模拟清华大学自主研制的同源双束医用加速器,为今后研究该设备KV级能量在放射治疗中成像剂量分布奠定基础。方法:(1)借助蒙卡BEAMnrc程序模拟加速器机头得到相空间文件。(2)以该相空间文件为源,使用蒙卡DOSXYZnrc程序计算水模体中百分深度剂量(percent depth dose,PDD)和离轴比(off axis ratio,OAR),采用MATLAB编程提取剂量数据显示于EXCEL。(3)分析蒙卡模拟参数对结果的影响。(4)对比实测调整模拟参数。结果:蒙卡模拟所得水模体中PDD和OAR曲线与实测有很好的吻合,得到加速器机头模型。结论:医用加速器KV级能量蒙卡模拟与高能有明显不同;要得到合适的该加速器蒙卡模型,需要选择合适的电子束能量和电子空间密度分布;该模拟所得加速器模型可用于成像剂量分布等后续研究。  相似文献   

10.
目的:采用三维治疗计划系统(3D-TPS)模拟计算全身照射(TBI)的剂量分布.材料和方法:对于全身照射,设置源皮距(SSD)为380 cm,射野大小为40 cm×40 cm,光栏角度为45°,采用自制大水箱测量了直线加速器8 MV光子线水中的百分深度剂量(PDD)和离轴比(OAR).上述相同照射条件下,在3D-TPS中进行水体模的PDD和OAR的模拟计算并与之测量结果进行对比,确认3D-TPS是否能够模拟计算TBI的剂量分布.采用3D-TPS计算人形体模的TBI剂量分布,采用剂量胶片和热释光测量对计算结果进行了比较和确认.结果:对于水体模中的百分深度量和离轴比,3D-TPS的模拟计算结果与大水箱的测量结果最大误差分别为3%和6%左右.对于人形体模的模拟计算,3D-TPS的模拟计算结果与胶片和热释光的测量结果基本符合.结论:3D-TPS可以较准确地模拟计算全身照射的剂量分布.通过3D-TPS对每个特定病人制作相应补偿块,为更均匀剂量的全身照射治疗提供了可能.  相似文献   

11.
目的:探讨最新推出基于蒙特卡罗方法的DPM(dose planning method)程序在放疗剂量计算中的应用,研究DPM程序计算放疗剂量的准确性及其临床应用的可行性。方法:对DPM源文件编译形成四个可执行文件,使其能在Windows系统下运行。(1)通过借助蒙卡BEAMnrc程序模拟我院Varian Clinac 21EX直线加速器治疗头,得到其相空间文件,并计算出SSD=100cm处的相空间(Phase Space)数据。(2)使用BEAMDP程序对该相空间文件进行能谱分析,获取到6MV-X线能谱分布。(3)修改DPM源程序,使之能调用该能谱。(4)DPM计算出水模体内百分深度剂量并用MATLAB软件显示PDD曲线分布,与实际测量进行拟合。(5)DPM计算非均匀组织内方野剂量,相同条件下与实测量、TPS计算值进行了比较。结果:蒙卡DPM程序调用直线加速器能谱计算水模体内的PDD曲线与实测曲线的拟合完全吻合,证明了DPM程序调用能谱方法可行而且计算准确。DPM蒙卡程序在非均匀组织中的计算也是准确的。结论:DPM蒙卡方法可应用实现组织中放疗剂量计算的研究。  相似文献   

12.
In this work we present a method of calculating dose in deforming anatomy where the position and shape of each dose voxel is tracked as the anatomy changes. The EGSnrc/DOSXYZnrc Monte Carlo code was modified to calculate dose in voxels that are deformed according to deformation vectors obtained from a nonlinear image registration algorithm. The defDOSXYZ code was validated by consistency checks and by comparing calculations against DOSXYZnrc calculations. Calculations in deforming phantoms were compared with a dose remapping method employing trilinear interpolation. Dose calculations with the deforming voxels agree with DOSXYZnrc calculations within 1%. In simple deforming rectangular phantoms the trilinear dose remapping method was found to underestimate the dose by up to 29% for a 1.0 cm voxel size within the field, with larger discrepancies in regions of steep dose gradients. The agreement between the two calculation methods improved with smaller voxel size and deformation magnitude. A comparison of dose remapping from Inhale to Exhale in an anatomical breathing phantom demonstrated that dose deformations are underestimated by up to 16% in the penumbra and 8% near the surface with trilinear interpolation.  相似文献   

13.
Dose-point kernels (DPKs) can be widely applied to therapeutic nuclear medicine to obtain more accurate absorbed dose assessments in internal dosimetry assuming a spherical geometry. Recently, EGSnrc-the latest in the family of EGS Monte Carlo codes--has been tested for isotropic monoenergetic electrons and Y-90 beta spectrum in spherical geometry. The availability of SPECT images allows one to take into account heterogeneities in activity distribution within tumors, and to perform dose calculations using voxel dosimetry based on Monte Carlo simulations in a Cartesian geometry. The purpose of this study is to evaluate the differences of dose distributions scored in Cartesian voxels also known as Dose Voxel Kernels (DVKs) for five beta-emitting (131I, 89Sr, 153Sm, 186Re, and 90Y) and Auger-emitting (111In) radionuclides, when their computation is made using these two Monte Carlo codes from the same family to check if the new physics in EGSnrc simulation system produces DVK very different from those calculated with EGS4. We have calculated the DVKs for point and voxel sources in Cartesian scoring grids of different spatial resolutions. Our results for the point source, scored in the finer spatial resolution, show a poor agreement between EGSnrc and EGS4 (up to about 20%) for voxels closer to the origin, and a better agreement (below 5%) for longer distances for all radionuclides. For the voxel source, where doses were scored in the coarser spatial resolution, dose deposition in the central voxel is in good agreement for all the radionuclides; while surrounding voxels exhibit a slightly worse agreement.  相似文献   

14.
The purpose of this study is to perform a clinical evaluation of the first commercial (MDS Nordion, now Nucletron) treatment planning system for electron beams incorporating Monte Carlo dose calculation module. This software implements Kawrakow's VMC++ voxel-based Monte Carlo calculation algorithm. The accuracy of the dose distribution calculations is evaluated by direct comparisons with extensive sets of measured data in homogeneous and heterogeneous phantoms at different source-to-surface distances (SSDs) and gantry angles. We also verify the accuracy of the Monte Carlo module for monitor unit calculations in comparison with independent hand calculations for homogeneous water phantom at two different SSDs. All electron beams in the range 6-20 MeV are from a Siemens KD-2 linear accelerator. We used 10,000 or 50,000 histories/cm2 in our Monte Carlo calculations, which led to about 2.5% and 1% relative standard error of the mean of the calculated dose. The dose calculation time depends on the number of histories, the number of voxels used to map the patient anatomy, the field size, and the beam energy. The typical run time of the Monte Carlo calculations (10,000 histories/cm2) is 1.02 min on a 2.2 GHz Pentium 4 Xeon computer for a 9 MeV beam, 10 x 10 cm2 field size, incident on the phantom 15 x 15 x 10 cm3 consisting of 31 CT slices and voxels size of 3 x 3 x 3 mm3 (total of 486,720 voxels). We find good agreement (discrepancies smaller than 5%) for most of the tested dose distributions. We also find excellent agreement (discrepancies of 2.5% or less) for the monitor unit calculations relative to the independent manual calculations. The accuracy of monitor unit calculations does not depend on the SSD used, which allows the use of one virtual machine for each beam energy for all arbitrary SSDs. In some cases the test results are found to be sensitive to the voxel size applied such that bigger systematic errors (>5%) occur when large voxel sizes interfere with the extensions of heterogeneities or dose gradients because of differences between the experimental and calculated geometries. Therefore, user control over voxelization is important for high accuracy electron dose calculations.  相似文献   

15.
Chow JC  Wong E  Chen JZ  Van Dyk J 《Medical physics》2003,30(10):2686-2694
The objective of this study is to seek an accurate and efficient method to calculate the dose distribution of a photon arc. The algorithms tested include Monte Carlo, pencil beam kernel (PK), and collapsed cone convolution (CCC). For the Monte Carlo dose calculation, EGS4/DOSXYZ was used. The SRCXYZ source code associated with the DOSXYZ was modified so that the gantry angle of a photon beam would be sampled uniformly within the arc range about an isocenter to simulate a photon arc. Specifically, photon beams (6/18 MV, 4 x 4 and 10 x 10 cm2) described by a phase space file generated by BEAM (MCPHS), or by two point sources with different photon energy spectra (MCDIV) were used. These methods were used to calculate three-dimensional (3-D) distributions in a PMMA phantom, a cylindrical water phantom, and a phantom with lung inhomogeneity. A commercial treatment planning system was also used to calculate dose distributions in these phantoms using equivalent tissue air ratio (ETAR), PK and CCC algorithms for inhomogeneity corrections. Dose distributions for a photon arc in these phantoms were measured using a RK ion chamber and radiographic films. For homogeneous phantoms, the measured results agreed well (approximately 2% error) with predictions by the Monte Carlo simulations (MCPHS and MCDIV) and the treatment planning system for the 180 degrees and 360 degrees photon arcs. For the dose distribution in the phantom with lung inhomogeneity with a 90 degrees photon arc, the Monte Carlo calculations agreed with the measurements within 2%, while the treatment planning system using ETAR, PK and CCC underestimated or overestimated the dose inside the lung inhomogeneity from 6% to 12%.  相似文献   

16.
Even though the hybrid phantom embodies both the anatomic reality of voxel phantoms and the deformability of stylized phantoms, it must be voxelized to be used in a Monte Carlo code for dose calculation or some imaging simulation, which incurs the inherent limitations of voxel phantoms. In the present study, a voxel phantom named VKH-Man (Visible Korean Human-Man), was converted to a polygon-surface phantom (PSRK-Man, Polygon-Surface Reference Korean-Man), which was then adjusted to the Reference Korean data. Subsequently, the PSRK-Man polygon phantom was directly, without any voxelization process, implemented in the Geant4 Monte Carlo code for dose calculations. The calculated dose values and computation time were then compared with those of HDRK-Man (High Definition Reference Korean-Man), a corresponding voxel phantom adjusted to the same Reference Korean data from the same VKH-Man voxel phantom. Our results showed that the calculated dose values of the PSRK-Man surface phantom agreed well with those of the HDRK-Man voxel phantom. The calculation speed for the PSRK-Man polygon phantom though was 70-150 times slower than that of the HDRK-Man voxel phantom; that speed, however, could be acceptable in some applications, in that direct use of the surface phantom PSRK-Man in Geant4 does not require a separate voxelization process. Computing speed can be enhanced, in future, either by optimizing the Monte Carlo transport kernel for the polygon surfaces or by using modern computing technologies such as grid computing and general-purpose computing on graphics processing units programming.  相似文献   

17.
目的:探讨基于GAMOS的蒙特卡罗(MC)方法模拟电子线放疗的剂量精确性。方法:运用GAMOS MC程序,建立Varian Rapidarc加速器3档能量(6、9和12 MeV)及3种限光筒[(6×6)、(10×10)和(15×15) cm2]的束流模型,模拟束流在水模体中的剂量分布,并与测量得到的百分深度剂量和等平面剂量分布比较,评估GAMOS软件模拟电子线照射的精确性和运算效率。结果:模拟的粒子数越多,模拟与测量结果的误差越小;当模拟粒子的数量达到5×108时,各个能量的电子线射程(Rp)和50%剂量深度(R50)的模拟结果与测量结果一致;除建成区外,百分深度剂量模拟和测量的结果误差在2%以内;等平面剂量分布模拟和测量的结果误差也在2%以内,模拟的照射野大小与测量结果一致。运算效率中,能量越大,限光筒尺寸越大,并行同步模拟所用的时间越多,模拟时间的变化越大。结论:基于GAMOS的MC方法可准确地模拟放疗电子线照射剂量的分布,粒子数的增加可提高模拟的精确性,并行同步计算可提高模拟的效率。  相似文献   

18.
The potential benefit of using scattering foil free beams for delivery of modulated electron radiotherapy is investigated in this work. Removal of the scattering foil from the beamline showed a measured bremsstrahlung tail dose reduction just beyond R(p) by a factor of 12.2, 6.9, 7.4, 7.4 and 8.3 for 6, 9, 12, 16 and 20 MeV beams respectively for 2 × 2 cm(2) fields defined on-axis when compared to the clinical beamline. Monte Carlo simulations were matched to measured data through careful tuning of source parameters and the modification of certain accelerator components beyond the manufacturer's specifications. An accelerator model based on the clinical beamline and one with the scattering foil removed were imported into a Monte Carlo-based treatment planning system (McGill Monte Carlo Treatment Planning). A treatment planning study was conducted on a test phantom consisting of a PTV and two distal organs at risk (OAR) by comparing a plan using the clinical beamline to a plan using a scattering foil free beamline. A DVH comparison revealed that for quasi-identical target coverage, the volume of each OAR receiving a given dose was reduced, thus reducing the dose deposited in healthy tissue.  相似文献   

19.
In the framework of the development of the integration of a MRI-scanner with a linear accelerator, the influence of a lateral, magnetic field on the dose distribution has to be determined. Dose increase is expected at tissue-air boundaries, due to the electron return effect (ERE): electrons entering air will describe a circular path and return into the phantom causing extra dose deposition. Using IMRT with many beam directions, this exit dose will not constitute a problem. Dose levels behind air cavities will decrease because of the absence of electrons crossing the cavity. The ERE has been demonstrated both by simulation and experiment. Monte Carlo simulations are performed with GEANT4, irradiating a water-air-water phantom in a lateral magnetic field. Also an air tube in water has been simulated, resulting in slightly twisted regions of dose increase and decrease. Experimental demonstration is achieved by film measurement in a perspex-air-perspex phantom in an electromagnet. Although the ERE causes dose increase before air cavities, relatively flat dose profiles can be obtained for the investigated cases using opposite beam configurations. More research will be necessary whether this holds for more realistic geometries with the use of IMRT and whether the ERE can be turned to our advantage when treating small tumour sites at air cavities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号