首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Osteoclasts are multinucleated cells formed by multiple steps of cell differentiation from progenitor cells of hematopoietic origin. Intervention in osteoclast differentiation is considered as an effective therapeutic approach to the treatment for bone diseases involving osteoclasts. In this study, we found that the organic compound (S)-1-lyso-2-stearoylamino-2-deoxy-sn-glycero-3-phosphatidylcholine (SCOH) inhibited osteoclast differentiation. The inhibitory effect of SCOH was observed in mouse bone marrow cell cultures supported either by coculturing with osteoblasts or by adding macrophage colony stimulating factor (M-CSF) and receptor activator of nuclear factor kappaB ligand (RANKL). M-CSF and RANKL activate the ERK, Akt, and NF-kappaB signal transduction pathways, and SCOH suppressed this activation. SCOH also inhibited the bone resorptive activity of differentiated osteoclasts. It attenuated bone resorption, actin ring formation, and survival of mature osteoclasts. Reduced activation of Akt and NF-kappaB and decreased induction of XIAP were observed in mature osteoclasts treated with SCOH. Thus, this novel phosphatidylcholine derivative may be useful for treating bone-resorption diseases.  相似文献   

2.
A series of thymine phosphonomethoxyalkyl derivatives were evaluated for their ability to inhibit thymidine phosphorylase (dThdPase) purified from rat spontaneous T-cell lymphoma. A kinetic study of thymidine phosphorolysis catalyzed by dThdPase was performed with thymidine and/or inorganic phosphate as substrates. Data show that the substantial inhibitory effect of these acyclic nucleotide analogues is decreasing in the order of (R)-FPMPT>(S)-FPMPT>or=(R)-HPMPT>(S)-PMPT>(S)-HPMPT>PMET>or=(R)-PMPT. The inhibitory potency (K(i)/(dThd)K(m)) of the most efficient inhibitors from this series against T-cell lymphoma enzyme is 0.0026 for (R)-FPMPT and 0.0048 for (S)-FPMPT. The studied compounds do not inhibit Escherichia coli and human enzyme and possess lower inhibitory potency against rat liver thymidine phosphorylase.  相似文献   

3.

Background and Purpose

Products of Maillard reactions between aminoacids and reducing sugars are known to have anti-inflammatory properties. Here we have assessed the anti-arthritis effects of (E)-2,4-bis(p-hydroxyphenyl)-2-butenal and its possible mechanisms of action.

Experimental Approach

We used cultures of LPS-activated macrophages (RAW264.7 cells) and human synoviocytes from patients with rheumatoid arthritis for in vitro assays and the collagen-induced arthritis model in mice. NO generation, iNOS and COX2 expression, and NF-κB/IKK and STAT3 activities were measured in vitro and in joint tissues of arthritic mice, along with clinical scores and histopathological assessments. Binding of (E)-2,4-bis(p-hydroxyphenyl)-2-butenal to STAT3 was evaluated by a pull-down assay and its binding site was predicted using molecular docking studies with Autodock VINA.

Key Results

(E)-2,4-bis(p-hydroxyphenyl)-2-butenal (2.5–10 μg·mL−1) inhibited LPS-inducedNO generation, iNOS and COX2 expression, and NF-κB/IKK and STAT3 activities in macrophage and human synoviocytes. This compound also suppressedcollagen-induced arthritic responses in mice by inhibiting expression of iNOS and COX2, and NF-κB/IKK and STAT3 activities; it also reduced bone destruction and fibrosis in joint tissues. A pull-down assay showed that (E)-2,4-bis(p-hydroxyphenyl)-2-butenal interfered with binding of ATP to STAT3. Docking studies suggested that (E)-2,4-bis(p-hydroxyphenyl)-2-butenal bound to the DNA-binding interface of STAT3 possibly inhibiting ATP binding to STAT3 in an allosteric manner.

Conclusions and Implications

(E)-2,4-bis(p-hydroxyphenyl)-2-butenal exerted anti-inflammatory and anti-arthritic effects through inhibition of the NF-κB/STAT3 pathway by direct binding to STAT3. This compound could be a useful agent for the treatment of arthritic disease.  相似文献   

4.
5.
It has previously been shown that the endocannabinoids anandamide and 2-arachidonoylglycerol (2-AG) inhibit the proliferation of C6 glioma cells in a manner that can be prevented by a combination of capsazepine (Caps) and cannabinoid (CB) receptor antagonists. It is not clear whether the effect of 2-AG is due to the compound itself, due to the rearrangement to form 1-arachidonoylglycerol (1-AG) or due to a metabolite. Here, it was found that the effects of 2-AG can be mimicked with 1-AG, both in terms of its potency and sensitivity to antagonism by Caps and CB receptor antagonists. In order to determine whether the effect of Caps could be ascribed to actions upon vanilloid receptors, the effect of a more selective vanilloid receptor antagonist, SB366791 was investigated. This compound inhibited capsaicin-induced Ca(2+) influx into rVR1-HEK293 cells with a pK(B) value of 6.8+/-0.3. The combination of SB366791 and CB receptor antagonists reduced the antiproliferative effect of 1-AG, confirming a vanilloid receptor component in its action. 1-AG, however, showed no direct effect on Ca(2+) influx into rVR1-HEK293 cells indicative of an indirect effect upon vanilloid receptors. Identification of the mechanism involved was hampered by a large inter-experimental variation in the sensitivity of the cells to the antiproliferative effects of 1-AG. A variation was also seen with anandamide, which was not a solubility issue, since its water soluble phosphate ester showed the same variability. In contrast, the sensitivity to methanandamide, which was not sensitive to antagonism by the combination of Caps and CB receptor antagonists, but has similar physicochemical properties to anandamide, did not vary between experiments. This variation greatly reduces the utility of these cells as a model system for the study of the antiproliferative effects of anandamide. Nevertheless, it was possible to conclude that the antiproliferative effects of anandamide were not solely mediated by either its hydrolysis to produce arachidonic acid or its CB receptor-mediated activation of phospholipase A(2) since palmitoyltrifluoromethyl ketone did not prevent the response to anandamide. The same result was seen with the fatty acid amide hydrolase inhibitor palmitoylethylamide. Increasing intracellular arachidonic acid by administration of arachidonic acid methyl ester did not affect cell proliferation, and the modest antiproliferative effect of umbelliferyl arachidonate was not prevented by a combination of Caps and CB receptor antagonists.  相似文献   

6.
BACKGROUND AND PURPOSE: Glycogen synthase kinase-3 (GSK-3) is a ubiquitous serine-threonine protein kinase that participates in a multitude of cellular processes and has recently been implicated in the pathophysiology of a number of diseases. The aim of this study was to investigate the effects of GSK-3beta inhibition in a model of acute inflammation. Here, we have investigated the effects of TDZD-8, a potent and selective GSK-3beta inhibitor, in a mouse model of carrageenan-induced pleurisy. EXPERIMENTAL APPROACH: Injection of carrageenan into the pleural cavity of mice elicited an acute inflammatory response characterized by: accumulation of fluid containing a large number of neutrophils (PMNs) in the pleural cavity, infiltration of PMNs in lung tissues and subsequent lipid peroxidation, and increased production of nitrite/nitrate (NOx), prostaglandin E2 (PGE2), tumour necrosis factor-alpha, (TNF-alpha) and interleukin-1beta (IL-1beta). Furthermore, carrageenan induced an upregulation of the adhesion molecules ICAM-1 and P-selectin, iNOS, COX-2 as well as nitrotyrosine as determined by immunohistochemical analysis of lung tissues. KEY RESULTS: Administration of TDZD-8 (1, 3 or 10 mg kg(-1), i.p.), 30 min prior to injection of carrageenan, caused a dose-dependent reduction in all the parameters of inflammation measured. CONCLUSIONS AND IMPLICATIONS: Thus, based on these findings we propose that inhibitors of the activity of GSK-3beta, such as TDZD-8, may be useful in the treatment of various inflammatory diseases.  相似文献   

7.
8.
The addition of atrial natriuretic peptide (ANP) to isolated human adipocytes in primary culture from very obese individuals resulted in an inhibition of leptin release after a 24- or 48-hr incubation. There was also an inhibition of leptin release by isoproterenol (ISO) that was partially reversed by insulin, whereas the inhibition due to ANP was unaffected. Similar results were seen with N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulphonamide (H-89), which is a cell-permeable inhibitor of protein kinase A. H-89 markedly reduced the effects of ISO on both lipolysis and leptin release without affecting the stimulation of lipolysis or the inhibition of leptin release due to ANP. Inhibition of endogenous nitric oxide formation using N(omega)-nitro-L-arginine resulted in a 20% increase in leptin release over 48 hr, which suggests that the nitric oxide/cyclic GMP pathway might play a small role in the regulation of endogenous leptin release. Similarly, the addition of the nitric oxide donor (Z)-1-[2-aminoethyl)-N-(2-aminoethyl)diazen-1-ium-1,2-diolate (DETA NONOate) at 0.1 or 1 microM to explants of human adipose tissue enhanced lipolysis by 29%. Our data demonstrate that the lipolytic effect of ANP is probably secondary to stimulation of cyclic GMP accumulation in human adipocytes, and this is accompanied by an inhibition of leptin release.  相似文献   

9.
The antiviral effect of the acyclic nucleoside phosphonate tenofovir (R)-PMPA on double-stranded DNA Cauliflower mosaic virus (CaMV) in Brassica pekinensis plants grown in vitro on liquid medium was evaluated. Double antibody sandwich ELISA and PCR were used for relative quantification of viral protein and detecting nucleic acid in plants. (R)-PMPA at concentrations of 25 and 50 mg/l significantly reduced CaMV titers in plants within 6-9 weeks to levels detectable neither by ELISA nor by PCR. Virus-free plants were obtained after 3-month cultivation of meristem tips on semisolid medium containing 50 mg/l (R)-PMPA and their regeneration to whole plants in the greenhouse. Studying the metabolism of (R)-PMPA in B. pekinensis revealed that mono- and diphosphate, structural analogs of NDP and/or NTP, are the only metabolites formed. The data indicate very low substrate activity of the enzymes toward (R)-PMPA as substrate. The extent of phosphorylation in the plant’s leaves represents only 4.5% of applied labeled (R)-PMPA. In roots, we detected no radioactive peaks of phosphorylated metabolites of (R)-PMPAp or (R)-PMPApp.  相似文献   

10.
The Maillard Reaction Products (MRPs) are chemical compounds which have been known to be effective in chemoprevention. Death receptors (DR) play a central role in directing apoptosis in several cancer cells. In our previous study, we demonstrated that (E)-2,4-bis(p-hydroxyphenyl)-2-butenal, a MRP product, inhibited human colon cancer cell growth by inducing apoptosis via nuclear factor-κB (NF-κB) inactivation and G2/M phase cell cycle arrest. In this study, (E)-2,4-bis(p-hydroxyphenyl)-2-butenal diacetate, a new (E)-2,4-bis(p-hydroxyphenyl)-2-butenal derivative, was synthesized to improve their solubility and stability in water and then evaluated against NCI-H460 and A549 human lung cancer cells. (E)-2,4-bis(p-hydroxyphenyl)-2-butenal diacetate reduced the viability in both cell lines in a time and dose-dependent manner. We also found that (E)-2,4-bis(p-hydroxyphenyl)-2-butenal diacetate increased apoptotic cell death through the upregulation of the expression of death receptor (DR)-3 and DR6 in both lung cancer cell lines. In addition to this, the transfection of DR3 siRNA diminished the growth inhibitory and apoptosis inducing effect of (E)-2,4-bis(p-hydroxyphenyl)-2-butenal diacetate on lung cancer cells, however these effects of (E)-2,4-bis(p-hydroxyphenyl)-2-butenal diacetate was not changed by DR6 siRNA. These results indicated that (E)-2,4-bis(p-hydroxyphenyl)-2-butenal diacetate inhibits human lung cancer cell growth via increasing apoptotic cell death by upregulation of the expression of DR3.  相似文献   

11.

BACKGROUND AND PURPOSE

Methyl salicylate 2-O-β-d-lactoside (MSL), whose chemical structure is similar to that of salicylic acid, is a natural product derivative isolated from a traditional Chinese herb. The aim of this study was to investigate the therapeutic effect of MSL in mice with collagen-induced arthritis (CIA) and explore its underlying mechanism.

EXPERIMENTAL APPROACH

The anti-arthritic effects of MSL were evaluated on human rheumatoid fibroblast-like synoviocytes (FLS) in vitro and CIA in mice in vivo by obtaining clinical scores, measuring hind paw thickness and inflammatory cytokine levels, radiographic evaluations and histopathological assessments.

KEY RESULTS

Treatment with MSL after the onset of arthritis significantly prevented the progression and development of rheumatoid arthritis (RA) in CIA mice without megascopic gastric mucosa damage. In addition, MSL inhibited the production of pro-inflammatory mediators, the phosphorylation and translocation of NF-κB, and cell proliferation induced by TNF-α in FLS. MSL non-selectively inhibited the activity of COX in vitro, but was a more potent inhibitor of COX-2 than COX-1. MSL also inhibited the phosphorylation of inhibitor of NF-κB kinase, IκBα and p65, thus blocking the nuclear translocation of NF-κB in TNF-α-stimulated FLS.

CONCLUSION AND IMPLICATIONS

MSL exerts therapeutic effects on CIA mice, suppressing the inflammatory response and joint destruction by non-selectively inhibiting the activity of COX and suppressing activation of the NF-κB signalling pathway, but without damaging the gastric mucosa. Therefore, MSL has great potential to be developed into a novel therapeutic agent for the treatment of RA.  相似文献   

12.
NB1011 [E-5-(2-bromovinyl)-2'-deoxyuridine-5'-(L-methylalaninyl)-phenylphosphoramidate], a phosphoramidate prodrug of E-5-(2-bromovinyl)-2'-deoxyuridine-5'-monophosphate (BVdUMP), is an investigational new anticancer drug. NB1011 targets thymidylate synthase (TS), which catalyzes the transformation of BVdUMP into cytotoxic reaction products. Due to the elevated levels of TS expression in tumor cells compared to normal cells, these cytotoxic products are preferentially generated inside tumor cells, and, as expected, NB1011 is more toxic to cells with higher levels of TS expression. Therefore, NB1011 therapy should kill tumor cells without severely damaging normal cells. Radiolabeled NB1011 was used to determine the intracellular fate of NB1011 reaction products and, possibly, the mechanism of action of this investigational new drug. We found significant incorporation of the radiolabel into cellular macromolecules. In contrast to our expectations that NB1011 product(s) would be incorporated into DNA, we discovered that cellular proteins were the labeled macromolecular fraction. Herein, we report that the intracellular transformation of NB1011 involves formation of the corresponding monophosphate, TS-dependent transformation into highly reactive intermediates, and subsequent incorporation into cellular proteins. TS itself appears to escape irreversible inactivation. Our data suggest that protein modification not DNA incorporation accounts for the therapeutic effect of NB1011. The proposed mechanism is rather unexpected for a nucleotide analogue and could lead to the discovery of new cellular protein targets for future drug design.  相似文献   

13.
14.
The protein tyrosine phosphatase (PTP) Shp2 (PTPN11) is an attractive target for anticancer drug discovery because it mediates growth factor signaling and its gain-of-function mutants are causally linked to leukemias. We previously synthesized SPI-112 from a lead compound of Shp2 inhibitor, NSC-117199. In this study, we demonstrated that SPI-112 bound to Shp2 by surface plasmon resonance (SPR) and displayed competitive inhibitor kinetics to Shp2. Like some other compounds in the PTP inhibitor discovery efforts, SPI-112 was not cell permeable, precluding its use in biological studies. To overcome the cell permeation issue, we prepared a methyl ester SPI-112 analog (SPI-112Me) that is predicted to be hydrolyzed to SPI-112 upon entry into cells. Fluorescence uptake assay and confocal imaging suggested that SPI-112Me was taken up by cells. Incubation of cells with SPI-112Me inhibited epidermal growth factor (EGF)-stimulated Shp2 PTP activity and Shp2-mediated paxillin dephosphorylation, Erk1/2 activation, and cell migration. SPI-112Me treatment also inhibited Erk1/2 activation by a Gab1-Shp2 chimera. Treatment of Shp2E76K mutant-transformed TF-1 myeloid cells with SPI-112Me resulted in inhibition of Shp2E76K-dependent cell survival, which is associated with inhibition of Shp2E76K PTP activity, Shp2E76K-induced Erk1/2 activation, and Bcl-XL expression. Furthermore, SPI-112Me enhanced interferon-γ (IFN-γ)-stimulated STAT1 tyrosine phosphorylation, ISRE-luciferase reporter activity, p21 expression, and the anti-proliferative effect. Thus, the SPI-112 methyl ester analog was able to inhibit cellular Shp2 PTP activity.  相似文献   

15.
16.

Background and the purpose of the study

The species Hymenocrater calycinus, belongs to the plant family Lamiaceae and grows wildly in the north-east of Iran. Previously, the antimicrobial activity of the plant extracts was reported. In the present study, the bioactivity-guided fractionation of the methanol extract of H. calycinus and the combination effects of the isolated compound with cell wall active agents against S. aureus and E. coli was investigated.

Methods

Column and thin layer chromatographic methods were used for isolation and purification and spectroscopic data (MS, 1H- and 13C-NMR, HMQC, HMBC and 1H-1H COSY) were employed for identification of the compound isolated from the extract. A disk diffusion method was used to determine the antibacterial activity of the isolated compound against S. aureus and E. coli in comparison with 7 different antibiotics.

Results

The isolated compound 1 was identified as 3-(3, 4- dihydroxyphenyl) lactic acid 2-O-quinic acid. Compound 1 (500 µg/disc) enhanced antibacterial effect of ampicillin, ciprofloxacin, vancomycin and cefepime against S. aureus and activated the effects of ampicillin and vancomycin against E. coli.

Conclusion

Results showed that the compound 1 was not active against both tested strains at any concentration below 1 mg/disk, and as a result the enhancing effect of the compound could be due its association with antibiotics.  相似文献   

17.
AS-3201 [(3R)-2'-(4-bromo-2-fluorobenzyl)spiro[pyrrolidine-3,4'(1'H)-pyrrolo[1,2-a]pyrazine]-1',2,3',5(2'H)-tetrone] is a structurally novel and stereospecifically potent aldose reductase (AKR1B; EC 1.1.1.21) inhibitor, which contains a succinimide ring that undergoes ring-opening at physiological pH levels. To delineate intermolecular interactions governing its favorable pharmacokinetic profile, the interaction of AS-3201 (R-isomer) with plasma proteins, especially human serum albumin (HSA), was examined in comparison with that of the optical antipode (S-isomer). Fluorescence, kinetic, and high-performance frontal analyses showed that the R-isomer is more strongly bound than the S-isomer to sites I and II on HSA, and the R-isomer is particularly protected from hydrolysis, suggesting that the stable HSA-R-isomer complex contributes to its prolonged activity. The thermodynamic parameters for the specific binding indicated that in addition to hydrophobic interactions, hydrogen bonds contribute significantly to the R-isomer complex formation. (13)C NMR observations of the succinimide ring (5-(13)C enriched), which are sensitive to its ionization state, suggested the presence of a hydrogen bond between the R-isomer and HSA, and (19)F NMR of the pendent benzyl ring (2-(19)F) evaluated the equilibrium exchange dynamics between the specific sites. Furthermore, fatty acid binding or glycation (both are site II-oriented perturbations) inhibited the binding to one of the specific sites and reduced the stereospecificity of HSA toward the isomers, although the clinical influence of these perturbations on the R-isomer binding ratio seemed to be minor. Thus, the difference in the interaction mode at site II might be a major cause of the stereospecificity; this is discussed on the basis of putative binding modes. The present results, together with preliminary absorption and distribution profiles, provide valuable information on the stereospecific pharmacokinetic and pharmacodynamic properties of the R-isomer relevant for the therapeutic treatment of diabetic complications.  相似文献   

18.
The objective of this study was to investigate the fermented culture broth of Antrodia camphorata (A. camphorata) to induce apoptosis and inhibit cyclooxygenase-2 (COX-2) in estrogen-nonresponsive (MDA-MB-231) human breast cancer cells. Treatment of the highly invasive MDA-MB-231 cells with A. camphorata (40-240 microg/ml) resulted in dose and time-dependent sequences of events marked by apoptosis, as evidenced by loss of cell viability, chromatin condensation, and internucleosomal DNA fragmentation. Apoptosis in the MDA-MB-231 cells was accompanied by release of cytochrome c, activation of caspase-3, -8, and -9, and specific proteolytic cleavage of poly (ADP-ribose) polymerase (PARP). Although the A. camphorata-induced apoptosis was associated with a reduction in Bcl-2 protein levels, negligible Bax increase was observed. Furthermore, A. camphorata treatment inhibited COX-2 protein expression and prostaglandin E2 (PGE2) production in MDA-MB-231 cells. Analysis of the study data suggests that A. camphorata exerts growth inhibition on (highly invasive) estrogen-nonresponsive human breast cancer cells through apoptosis induction associated with COX-2 inhibition, and that it may possess anticancer properties potentially valuable for application in drug products.  相似文献   

19.
20.
The objective of the current study was to facilitate functional calcium assays, compatible with the fluorometric imaging plate reader platform, for the human metabotropic glutamate receptor (mGluR) subtypes 2 and 4, by co-expressing each receptor with a G-protein chimera comprising Galphaq with the C-terminal five amino acids replaced with those from Galphai3 (GqGi3). Transfection of GqGi3 into previously validated stable CHO cell lines expressing mGluR2 or mGluR4 allowed for the selection of new double transfectants in which application of L-glutamate and other mGluR agonists resulted in calcium coupling with a high signal:noise ratio (maximal changes in relative fluorescence units up to 20,000). The rank order of agonist potency for the stimulation of calcium mobilization in the mGluR2/GqGi3 stable cell line was LY354740>L-CCG-I=DCG-IV>L-glutamate>/=(2R,4R)-APDC>/=(1S,3R)-ACPD. In the mGluR4/GqGi3 stable cell line the rank order of agonist potency was L-AP4>L-SOP>/=ACPT-I=L-CCG-I>/=L-glutamate=(R,S)-PPG. By comparison, equivalent potency orders and a significant correlation in functional activities were observed when the same compounds were profiled in [35S]GTPgammaS binding assays for each mGluR subtype. These results validate the use of functional calcium assays, amenable to high-throughput applications on the fluorometric imaging plate reader, for the mGluR2 and mGluR4 subtypes when co-expressed in stable cell lines with the GqGi3 chimera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号