首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
INTRODUCTION: The purpose of the current study was to investigate the capacity of CD4+, CD8+, or non-T cells to independently initiate acute rejection of allogeneic hepatocytes using reconstituted SCID, CD4 or CD8 knockout (KO) recipient mice. METHODS: Allogeneic hepatocytes (FVB/N, H-2q) were transplanted into C57BL/6.SCID (H-2b), CD4 KO (H-2b), CD8 KO (H-2b), or beige/beige (H-2b) mice. SCID mice with functioning hepatocellular allografts subsequently received purified non-T cells (NTC), CD4+, or CD8+ splenocytes. Some mice were treated with anti-CD4, anti-CD8, and/or anti-nkl.1 mAb. Recipient mice were also assessed for donor-reactive delayed-type hypersensitivity (DTH) responses and donor-reactive alloantibody production. RESULTS: Median hepatocellular allograft survival time (MST) was 28 days in CD4+ reconstituted SCID mice and 14 days in CD8+ reconstituted SCID mice. SCID hosts reconstituted with NTC demonstrated indefinite hepatocellular allograft survival (>120 days). MST was 10 days in untreated beige/beige (NK cell deficient) mice. MST was 14 days in untreated, 35 days in anti-CD4 mAb treated, and 10 days in anti-nkl.1 mAb treated CD8 KO mice. MST was 10 days in untreated, 35 days in anti-CD8 mAb treated, and 7 days in anti-nk1.1 mAb treated CD4 KO mice. Donor-reactive DTH responses were not detected in reconstituted SCID mice, were minimal in CD4 KO mice, and were prominent in CD8 KO mice after rejection of allogeneic hepatocytes. Similarly, donor-reactive alloantibody, was not detected in CD4 KO hosts, but was readily detected in CD8 KO hosts. CONCLUSIONS: These studies show that both CD4+ and CD8+ T cells (but not host NTC) can independently initiate the rejection of allogeneic hepatocytes. While hepatocyte rejection by isolated CD4+ T cells is not surprising, rejection by CD8+ T cells (in the absence of CD4+ T cells) was unusual, and may explain the failure of "standard" immunosuppressive regimens to suppress acute rejection of allogeneic hepatocytes, as noted in prior studies. Furthermore, NK cells do not appear to be required for either CD4+ T cell or CD8+ T cell initiated hepatocyte rejection.  相似文献   

2.
BACKGROUND: Treatment with a single donor-specific transfusion (DST) plus a brief course of anti-CD154 monoclonal antibody (mAb) prolongs skin allograft survival in mice. It is known that prolongation of allograft survival by this method depends in part on deletion of alloreactive CD8(+) T cells at the time of tolerance induction. Recent data suggest that infection with lymphocytic choriomeningitis virus (LCMV) abrogates the ability of this protocol to prolong graft survival. METHODS: To study the mechanism by which viral infection abrogates allograft survival, we determined (1) the fate of tracer populations of alloreactive transgenic CD8(+) T cells and (2) the duration of skin allograft survival following treatment with DST and anti-CD154 mAb in the presence or absence of LCMV infection. RESULTS: We confirmed that treatment of uninfected mice with DST and anti-CD154 mAb leads to the deletion of alloreactive CD8(+) T cells and is associated with prolongation of skin allograft survival. In contrast, treatment with DST and anti-CD154 mAb in the presence of intercurrent LCMV infection was associated with the failure to delete alloreactive CD8(+) T cells and with the rapid rejection of skin allografts. The number of alloreactive CD8(+) cells actually increased significantly, and the cells acquired an activated phenotype. CONCLUSIONS: Interference with the deletion of alloreactive CD8(+) T cells mediated by DST and anti-CD154 mAb may in part be the mechanism by which viral infection abrogates transplantation tolerance induction.  相似文献   

3.
BACKGROUND: Transplant rejection has generally been considered a CD4 T-cell-dependent immune process. CD4-independent, CD8 T-cell rejection pathways have recently gained attention because of their relative resistance to immunosuppression. In the current study, the role of the allograft tissue in activation of these distinct pathways was examined by comparing host-immune responses with allogeneic pancreatic islets or hepatocytes transplanted across the same genetic disparity. METHODS: To compare activation of CD4-dependent versus CD8-dependent alloimmunity, islets or hepatocytes retrieved from FVB/N (H-2) mice were transplanted into CD8 or CD4 T-cell-reconstituted severe combined immunodeficiency mice, CD4 or CD8 knockout (KO) mice, and anti-CD4 monoclonal antibody (mAb) or anti-CD8 mAb treated C57BL/6 mice (all H-2). The ability to immunomodulate CD4-dependent allograft rejection (in CD8 KO mice) was examined in the context of several mechanistically distinct immunotherapeutic strategies, including anti-CD4 mAb, donor-specific transfusion and anti-CD154 mAb, and anti-lymphocyte function-associated antigen-1 mAb. RESULTS: The studies demonstrate that, whereas hepatocytes evoke alloreactive CD4-dependent and (CD4-independent) CD8 T-cell immune responses, allogeneic islets only activate CD4-dependent immune pathways. CD4-dependent host-immune responses initiated by pancreatic islet allografts were readily suppressed by a variety of short-term immunotherapies, whereas hepatocyte-initiated CD4-dependent alloimmune responses were not. CONCLUSIONS: These results demonstrate that immune characteristics of the specific allograft tissue uniquely influence the pattern of host immune responses such that the propensity to activate CD4- or CD8-dependent alloimmune responses can be distinguished. Furthermore, CD4-dependent immune responses activated by different tissues from the same donor strain are distinguished by their susceptibility to specific immunotherapy.  相似文献   

4.
INTRODUCTION: This is the first in a series of reports that characterizes immune responses evoked by allogeneic hepatocytes using a functional model of hepatocyte transplantation in mice. METHODS: "Donor" hepatocytes expressing the transgene human alpha-1-antitrypsin (hA1AT-FVB/N, H2q) were transplanted into C57BL/6 (H2b) or MHC II knockout (H2b) hosts treated with anti-CD4, anti-CD8, or a combination of anti-CD4 and anti-CD8 monoclonal antibodies (mAbs). Hepatocyte rejection was determined as a loss of circulating ELISA-detectable transgene product (hA1AT). In addition, some C57BL/6 mice underwent transplantation with FVB/N heterotopic cardiac allografts and were treated with anti-CD4 mAb. Cardiac allograft rejection was determined by palpation. Graft recipients were tested for donor-reactive alloantibodies and donor-reactive delayed-type hypersensitivity (DTH) responses. RESULTS: The median survival time (MST) of allogeneic hepatocytes in normal C57BL/6 mice was 10 days (no treatment), 10 days (anti-CD4 mAb), 14 days (anti-CD8 mAb), and 35 days (anti-CD4 and anti-CD8 mAbs). The MST of hepatocytes in B6 MHC class II knockout mice was 10 days (no treatment) and 21 days (anti-CD8 mAb). The MST of cardiac allografts was 11 days (no treatment) and >100 days (anti-CD4 mAb). Donor-reactive DTH responses were readily detected in both untreated and mAb-treated recipients. Donor-reactive alloantibody was barely detectable in untreated hosts. CONCLUSIONS: These studies demonstrate that allogeneic hepatocytes are highly immunogenic and stimulate strong cell-mediated immune responses by both CD4+ and CD8+ T cells, even when treated with agents that can cause acceptance of cardiac allografts. Indeed, CD4+ or CD8+ T cells seem to independently cause hepatocellular allograft rejection. Allogeneic hepatocytes evoked strong donor-reactive DTH responses but were poor stimuli for donor-reactive antibody production. This is an unusual pattern of immune reactivity in allograft recipients.  相似文献   

5.
Despite success of early islet allograft engraftment and survival in humans, late islet allograft loss has emerged as an important clinical problem. CD8+ T cells that are independent of CD4+ T cell help can damage allograft tissues and are resistant to conventional immunosuppressive therapies. Previous work demonstrates that islet allografts do not primarily initiate rejection by the (CD4-independent) CD8-dependent pathway. This study was performed to determine if activation of alloreactive CD4-independent, CD8+ T cells, by exogenous stimuli, can precipitate late loss of islet allografts. Recipients were induced to accept intrahepatic islet allografts (islet 'acceptors') by short-term immunotherapy with donor-specific transfusion (DST) and anti-CD154 mAb. Following the establishment of stable long-term islet allograft function for 60–90 days, recipients were challenged with donor-matched hepatocellular allografts, which are known to activate (CD4-independent) CD8+ T cells. Allogeneic islets engrafted long-term were vulnerable to damage when challenged locally with donor-matched hepatocytes. Islet allograft loss was due to allo specific immune damage, which was CD8- but not CD4-dependent. Selection of specific immunotherapy to suppress both CD4- and CD8-dependent immune pathways at the time of transplant protects islet allografts from both early and late immune damage.  相似文献   

6.
BACKGROUND: Treatment with a donor-specific transfusion (DST) and a brief course of anti-mouse CD154 (anti-CD40-ligand) monoclonal antibody (mAb) prolongs the survival of both allografts and rat xenografts in mice. The mechanism by which allograft survival is prolonged is incompletely understood, but depends in part on the presence of CD4+ cells and the deletion of alloreactive CD8+ T cells. Less is known about the mechanism by which this protocol prolongs xenograft survival. METHODS: We measured rat islet and skin xenograft survival in euthymic and thymectomized mice treated with combinations of DST, anti-CD154 mAb, anti-CD4 mAb, and anti-CD8 mAb. Recipients included C57BL/6, C57BL/6-scid, C57BL/6-CD4null, and C57BL/6-CD8null mice. RESULTS: Pretreatment with a depleting anti-CD4 mAb markedly prolonged the survival of both skin and islet xenografts in mice given DST plus anti-CD154 mAb. Comparable prolongation of xenograft survival was obtained in C57BL/6-CD4null recipients treated with DST and anti-CD154 mAb. In contrast, anti-CD8 mAb did not prolong the survival of either islet or skin xenografts in mice treated with DST and anti-CD154 mAb. Thymectomy did not influence xenograft survival in any treatment group. Adoptive transfer of splenocytes from C57BL/6-CD4null recipients treated with DST and anti-CD154 mAb and bearing long-term skin xenografts revealed the presence of residual xenoreactive cells. CONCLUSIONS: These data suggest that treatment with DST and anti-CD154 mAb induces a state of "functional" transplantation tolerance. They also support the hypothesis that both the induction and maintenance of graft survival based on this protocol depend on different cellular mechanisms in allogeneic and xenogeneic model systems.  相似文献   

7.
BACKGROUND: Allogeneic hepatocytes initiate both CD4- and CD8-dependent rejection responses. The current studies address the hypothesis that acute damage of allogeneic liver parenchymal cells by the CD4-dependent pathway is alloantibody-mediated and examines immune conditions which promote activation of this pathway. METHODS: The role of alloantibody in CD4-dependent hepatocyte rejection was evaluated by assessing hepatocyte (FVB/N, H-2q) survival in CD8-depleted B-cell knockout (KO) (H-2b) recipients and by monitoring hepatocyte survival in C57BL/6.SCID (H-2b) recipients transfused with donor-reactive alloantibody. The development of donor-reactive alloantibody in C57BL/6 (H-2b), CD8-depleted C57BL/6, CD8 KO (H-2b), IFN-gamma KO (H-2b), perforin KO (H-2b), and FasL mutant gld/gld (H-2b) hepatocyte recipients was assessed. RESULTS: Hepatocyte rejection in B-cell KO mice was significantly delayed by CD8+ T-cell depletion (median survival time [MST], 35 days) when compared to untreated (MST, 8 days) and CD4-depleted (MST, 10 days) recipient mice. Transfusion of donor-reactive alloantibody into SCID recipients with functional hepatocellular allografts was sufficient to precipitate rejection in a dose-dependent fashion. Donor-reactive alloantibody was minimal in the serum of C57BL/6 hepatocyte recipients, but was produced in significant quantities in hepatocyte recipients genetically deficient in or depleted of CD8+ T cells and in recipients with impaired cytotoxic effector mechanisms. In addition, recipients with defects in Th1 immunity, such as IFN-gamma KO recipients, also produced readily detectable alloantibody. CONCLUSIONS: Collectively, these data support the hypothesis that acute immune damage of allogeneic hepatocytes by the CD4-dependent pathway is mediated by alloantibody and that this pathway is favored when Th1- or cell-mediated cytotoxic effector immune mechanisms are impaired.  相似文献   

8.
BACKGROUND: Donor-specific transfusion (DST) and a brief course of anti-CD154 monoclonal antibody (mAb) induces permanent islet and prolonged skin allograft survival in mice. Induction of skin allograft survival requires the presence of CD4 cells and deletion of alloreactive CD8 cells. The specific roles of CD4 and CD4CD25 cells and the mechanism(s) by which they act are not fully understood. METHODS: We used skin and islet allografts, a CD8 T cell receptor (TCR) transgenic model system, and in vivo depleting antibodies to analyze the role of CD4 cell subsets in regulating allograft survival in mice treated with DST and anti-CD154 mAb. RESULTS: Deletion of CD4 or CD25 cells during costimulation blockade induced rapid rejection of skin but only minimally shortened islet allograft survival. Deletion of CD4 or CD25 cells had no effect upon survival of healed-in islet allografts, and CD25 cell deletion had no effect upon healed-in skin allograft survival. In the TCR transgenic model, DST plus anti-CD154 mAb treatment deleted alloreactive CD8 T cells, and anti-CD4 mAb treatment prevented that deletion. In contrast, injection of anti-CD25 mAb did not prevent alloreactive CD8 T cell deletion. CONCLUSIONS: These data document that (1) both CD4CD25 and CD4CD25 cells are required for induction of skin allograft survival, (2) CD4CD25 T cells are not required for alloreactive CD8 T cell deletion, and (3) CD4CD25 regulatory cells are not critical for islet allograft tolerance. It appears that skin and islet transplantation tolerance are mediated by different CD4 cell subsets and different mechanisms.  相似文献   

9.
BACKGROUND: Investigations of the role of CD4 T lymphocytes in allograft rejection and tolerance have relied on the use of mouse models with a deficiency in CD4 cells. However, in mice treated with depleting monoclonal antibody (mAb) and in MHC class II knockout (KO) mice, there are residual populations of CD4 cells. CD4 KO mice had increased CD4- CD8-TCRalphabeta+ helper T cells, and both strains of KO mice could reject skin allografts at the normal rate. In this study, transgenic mice with no peripheral CD4 cells were the recipients of skin and heart allografts. Results were compared with allograft survival in CD4 and MHC class II KO mice. METHODS: GK5 (C57BL/6 bml mice transgenic for a chimeric anti-CD4 antibody) had no peripheral CD4 cells. These mice, and CD4 and class II KO mice, received BALB/c or CBA skin or cardiac allografts. Some GK5 mice were treated with anti-CD8 mAb to investigate the role of CD8 cells in rejection. CD4 and CD8 cells were assessed by FACS and immunohistochemistry. RESULTS: BALB/c skin on GK5 mice had a mean survival time +/- SD of 24+/-6 days, compared with 9+/-2 days in wild-type mice. Anti-CD8 mAb prolonged this to 66+/-7 days. BALB/c skin survived 10+/-2 days on class II KO and 14+/-2 days on CD4 KO, both significantly less than the survival seen on GK5 recipients (P<0.001). BALB/c hearts survived >100 days in GK5 recipients and in wild-type recipients treated with anti-CD4 mAb at the time of grafting, in contrast to a mean survival time of 10+/-2 days in untreated wild-type mice. Immunohistochemistry revealed that long-term surviving heart allografts from the GK5 recipients had CD8 but no CD4 cellular infiltrate. These hearts showed evidence of transplant vasculopathy. CONCLUSIONS: The GK5 mice, with a complete absence of peripheral CD4 cells, provide the cleanest available model for investigating the role of CD4 lymphocytes in allograft rejection. Prolonged skin allograft survival in these mice compared with CD4 and MHC class II KO recipients was clearly the result of improved CD4 depletion. Nevertheless, skin allograft rejection, heart allograft infiltration, and vascular disease, mediated by CD8 cells, developed in the absence of peripheral CD4 T cells.  相似文献   

10.
BACKGROUND: Treatment with anti-CD154 monoclonal antibody (mAb) plus a donor-specific transfusion (DST) of spleen cells prolongs skin allograft survival in mice through a mechanism involving deletion of host alloreactive CD8(+) T cells. It is unknown if other lymphohematopoietic cell populations can be used as a DST. METHODS: Murine recipients of allogeneic skin grafts on day 0 were either untreated or given a DST on day -7 plus 4 doses of anti-CD154 mAb on days -7, -4, 0, and +4. Deletion of CD8(+) alloreactive cells was measured using "synchimeric" CBA recipients, which circulate trace populations of TCR transgenic alloreactive CD8(+) T cells. RESULTS: Transfusion of splenocytes, thymocytes, lymph node cells, or buffy coat cells led to prolonged skin allograft survival in recipients treated with anti-CD154 mAb. In contrast, bone marrow DST failed to delete host alloreactive CD8(+) T cells and was associated with brief skin allograft survival. Transfusions consisting of bone marrow-derived dendritic cells or a mixture of splenocytes and bone marrow cells were also ineffective. CONCLUSIONS: Donor-specific transfusions of splenocytes, thymocytes, lymph node cells, or buffy coat cells can prolong skin allograft survival in recipients treated with costimulation blockade. Bone marrow cells fail to serve this function, in part by failing to delete host alloreactive CD8(+) T cells, and they may actively interfere with the function of a spleen cell DST. The data suggest that transplantation tolerance induction protocols that incorporate bone marrow cells to serve as a DST may not be effective.  相似文献   

11.
Allogeneic hepatocytes elicit CD4-dependent and (CD4-independent) CD8+ T-cell-initiated graft rejection. The (CD4-independent) CD8+ T-cell pathway is resistant to immunosuppressive strategies that readily and indefinitely suppress CD4+ T-cell-dependent rejection responses. Consequently, successful immunoregulation of hepatocyte-initiated immune responses requires a strategy which regulates both CD4-dependent and CD8-dependent rejection responses. Interference with CD40/CD40 ligand (CD40L) costimulation only transiently suppresses CD4- and CD8-dependent hepatocyte rejection. Interference with CD28/B7 costimulation transiently suppresses CD4-dependent hepatocyte rejection, but is ineffective for suppression of CD8-dependent hepatocyte rejection. To date, hepatocyte survival > 60 days post-transplant has not been achieved by any immunotherapeutic strategy. In the current study, we evaluated a novel immunosuppressive strategy which targets both LFA-1 and CD40L-mediated signals. Targeting LFA-1 suppressed (CD4-independent) CD8+ T-cell-initiated hepatocyte rejection such that allogeneic hepatocyte survival > 60 days was achieved in 70% of CD4 KO mice. Targeting both LFA-1-mediated signals and CD40/CD40L costimulation resulted in synergistic effects, such that hepatocellular survival > 60 days was achieved in 100% of C57BL/6 mice (which have both CD4- and CD8-dependent T-cell pathways available).  相似文献   

12.
BACKGROUND: In many situations, anti-CD154 (CD40 ligand) monoclonal antibody (mAb) treatment is very potent in producing allograft tolerance. In accordance to our previously reported results, combined donor specific transfusion (DST)3 plus anti-CD154 mAb (MR1) treatment enables the permanent engraftment of DBA/2 (H-2(d)) islets into B6AF1 (H-2(b/kd)) recipients in all cases. It has been widely assumed that the MR1 anti-154 is a noncytolytic neutralizing mAb, and it exerts immune suppressive effects by blockade of CD40/CD154 signal pathway. In this study, we sought to test the role of complement dependent cytotoxicity (CDC) immune effector mechanism in MR1 anti-CD154 induced immunosuppression. METHODS: We have evaluated the contributions of CDC in the context of the potent tolerizing effects of DST plus anti-CD154 mAb treatment regiment in recipients of islet allografts. We have used CD40 knockout (KO) mice and complement C5 deficient mice DBA/2 as islet allograft recipients as well as cobra venom factor (CVF), a complement blocker, treatment. RESULTS: The absence of direct and indirect CD40/CD154 pathway signals does not prevent islet allograft acute rejection. Interestingly, MR1 anti-CD154 induces islet allograft tolerance in the absence of CD40/CD154 pathway. In a wild-type major histocompatibility complex (MHC) mismatched strain combination, DST results in accelerated islet allograft rejection. Combination of DST and MR1 anti-CD154 treatment prevents presensitization and permits permanent engraftment. However, administration of CVF abolishes the tolerance induction. Moreover, DST plus MR1 anti-CD154 regiment, a potent tolerizing therapy, does not prevent acute islet allograft rejection when complement C5 deficient DBA/2 mice are used as recipients. Thus, the mechanisms of the tolerizing effects by MR1 anti-CD154 are not limited to blockade of CD40/CD154 signals. The CDC immune effector mechanism contributes to MR1 anti-CD154 induced immunosuppression.  相似文献   

13.
BACKGROUND: Combined treatment with a single donor-specific transfusion (DST) and a brief course of anti-mouse CD154 monoclonal antibody (mAb) to induce co-stimulation blockade leads to long-term murine islet allograft survival. The authors hypothesized that this protocol could also induce long-term survival of neonatal porcine islet cell clusters (NPCC) in chemically diabetic immunocompetent mice and allow their differentiation into functional insulin-producing cells. METHODS: Pancreata from 1- to 3-day-old pigs were collagenase digested and cultured for 8 days. NPCC were recovered and transplanted into the renal subcapsular space. Recipients included chemically diabetic nonobese diabetic (NOD)-scid and C57BL/6 mice that were otherwise untreated, treated with anti-CD154 mAb alone, or treated with DST plus anti-CD154 mAb. Plasma glucose concentration and body weight were measured, and xenografts were examined histologically. RESULTS: NPCC fully differentiated and restored normoglycemia in four of five diabetic NOD-scid recipients but were uniformly rejected by diabetic C57BL/6 recipients. Anti-CD154 mAb monotherapy restored normoglycemia in 4 of 10 (40%) NPCC-engrafted, chemically diabetic C57BL/6 mice, but combined treatment with DST and anti-CD154 mAb restored normoglycemia in 12 of 13 (92%) recipients. Reversal of diabetes required 5 to 12 weeks. Surviving grafts were essentially free of inflammatory infiltrates 15 weeks after transplantation. CONCLUSIONS: Combination therapy with a single DST and a brief course of anti-mouse CD154 mAb without maintenance immunosuppression permits survival and differentiation of NPCC in diabetic C57BL/6 mice. Successful grafts were associated with durable restoration of normoglycemia and the absence of graft inflammation.  相似文献   

14.
CD28-/- mice have been utilized to study the role of B7/CD28 and B7-CTLA4 interactions. There is evidence that CTLA4 ligation may be critical for tolerance induction. The aim of the current study is to further investigate rejection responses of CD28-/- mice and to define the role of B7-CTLA4 interactions in the absence of the CD40 and CD28 pathways. Balb/c skin allografts were transplanted onto C57BL/6 (B6) wild type or CD28-/- mice treated with anti-CD40L, CTLA4-Ig, or combination blockade. To investigate the cellular mechanism of rejection in CD28-/- recipients, mice were treated with anti-CD4 or anti-CD8 antibodies prior to treatment with costimulation blockade. The fluoroscein dye CFSE was utilized to study T cell expansion in vivo. Surprisingly, treatment of B6 CD28-/- mice with CTLA4-Ig alone (MST 12d), anti-CD40L alone (MST 13d), or combined blockade (MST 13d) had no effect on allograft survival compared to untreated B6 CD28 mice (MST 11d). CD28-/- recipients depleted of CD4+ cells and treated with CTLA4-Ig, anti-CD40L, or combination blockade also did not have prolonged survival compared with untreated mice (MST 10d). In contrast, CD28-/- recipients depleted of CD8+ cells had markedly prolonged allograft survival when treated with either anti-CD40L alone (MST 49d) or with combination blockade (MST 57d). Studies utilizing CFSE demonstrated that CD28-/- CD8+ T cells are not defective in in vivo proliferation responses compared with wild type CD8 cells. Thus, CD28-/- CD8+ T cells are responsible for aggressive rejection responses of CD28-/- mice independent of the CD40 pathway. In addition, CD40L blockade does not result in CD4+ T cell tolerance in CD28 recipients, despite an intact B7-CTLA4 pathway.  相似文献   

15.
BACKGROUND: We investigated whether blockade of tumor necrosis factor receptor-ligand pathways could generate regulatory cells induced by intratracheal delivery of alloantigen. METHODS: CBA (H-2k) mice were pretreated with intratracheal delivery of splenocytes (1x10(7)) from C57BL/10 (H-2b) mice and intraperitoneal administration of monoclonal antibody (mAb) specific for CD70, CD134 ligand (CD134L), CD153, or CD137L. Seven days later, C57BL/10 hearts were transplanted into pretreated CBA mice. Some naive CBA mice underwent adoptive transfer of splenocytes (5x10(7)) from pretreated CBA mice and transplantation of a C57BL/10 heart on the same day. RESULTS: Untreated CBA mice rejected C57BL/10 cardiac grafts acutely (median survival time [MST] 12 days). Pretreatment with intratracheal delivery of C57BL/10 donor splenocytes prolonged graft survival significantly (MST 84 days). Mice given intratracheal delivery of alloantigen plus anti-CD70, anti-CD134L, or anti-CD153 mAb, but not those given intratracheal delivery of alloantigen plus anti-CD137L mAb, rejected their graft acutely (MST 16, 14, 10, and 65 days, respectively). Adoptive transfer of splenocytes from mice pretreated with intratracheal delivery of alloantigen plus anti-CD70, CD134L, or CD153 mAb did not prolong survival of C57BL/10 cardiac grafts in naive secondary CBA recipients (MST 14, 11, and 11 days, respectively), whereas adoptive transfer of splenocytes from mice given intratracheal delivery of alloantigen plus anti-CD137L mAb did (MST 75 days). CONCLUSION: The CD27/CD70, CD134/CD134L, and CD30/CD153 pathways are independently required for generation of regulatory cells in our model.  相似文献   

16.
BACKGROUND: Purified allogeneic hepatocytes are highly antigenic and elicit immune responses that are not easily controlled. However, it is not clear whether hepatocytes are not capable of protective immune mechanisms or whether they are not to protection by immune mechanisms that permit long-term survival of other allografts. The purpose of the current study was to determine whether donor-matched allogeneic hepatocytes are protected from rejection in mice that have been induced to accept heart allografts. METHODS: Transient treatment with anti-CD4 monoclonal antibody (mAb) or gallium nitrate (GN) was used to induce acceptance of heterotopic FVB/N (H-2(q)) heart allografts by C57BL/6 (H-2(b)) mice. Transgenic hA1AT-FVB/N hepatocytes were sequentially transplanted into C57BL/6 mice that had accepted FVB/N heart allografts more than 60 days (heart acceptor mice), CD8 depleted C57BL/6 heart acceptor mice, or B-cell knockout (BCKO, H-2(b)) heart acceptor mice. Hepatocyte survival was determined by the detection of secreted transgenic product hA1AT by enzyme-linked immunosorbent assay (ELISA). RESULTS: FVB/N hepatocytes were rejected by day 10-14 posttransplant, while FVB/N heart allografts continued to function in C57BL/6, BCKO, and CD8 depleted heart acceptor mice. When FVB/N hepatocytes and heart allografts were transplanted into C57BL/6 or BCKO mice under short-term cover of anti-CD4 mAb or GN, hepatocyte rejection occurred by day 10 posttransplant, while most heart allografts survived for more than 60 days. CONCLUSIONS: Hepatocyte rejection does not appear to interfere with the of mechanisms that permit heart allograft acceptance. However, immune responses to allogeneic hepatocytes are not to regulation by mechanisms induced in heart acceptor mice. The simultaneous rejection of FVB/N allogeneic hepatocytes and continued acceptance of FVB/N-matched heart allografts is independent of host CD8+ T cells and humoral immunity.  相似文献   

17.
BACKGROUND: Costimulatory blockade has been shown to allow long-term survival of xenogeneic islets. The aim of the present study was to evaluate the role of recipient CD40 and CD154 in the rejection process of concordant and discordant islet xenotransplantation (Tx). METHODS: Diabetic C57BL/6 mice, CD40- or CD154 knockout (KO) mice were transplanted with either concordant rat or discordant human islets. Experimental design: group 1, control (ie, C57BL/6 mice received islet Tx without therapy); group 2, C57BL/6 mice received islet Tx with anti-CD154 monoclonal Ab (mAb) therapy; group 3, CD40 KO mice; and group 4, CD154 KO mice were used as recipients without therapy. Mouse anti-rat mixed lymphocyte reactions (MLR) were performed using mouse splenocytes obtained from animals transplanted with rat islets in groups 1 to 4. RESULTS: In group 2, short-term anti-CD154 mAb therapy significantly prolonged rat-to-mouse and human-to-mouse xenograft survival, compared to controls. In CD40-KO and CD154-KO recipients, survival of concordant or discordant islets was not prolonged significantly compared to control groups. Mouse anti-donor rat cellular responses were reduced approximately 50% in group 2 but remained unmodified in groups 3 and 4, when compared to group 1. CONCLUSIONS: Improved graft survival and reduced MLR responses against donor cells in vitro among the anti-CD154 mAb-treated mice could be explained by specific targeting of activated T cells with subsequent inactivation by anergy and/or elimination by apoptosis, or complement- or cellular-mediated mechanisms. Rejection of xenografts and strong MLR responses against donor cells in vitro in CD40 or CD154 KO animals is possible through efficient activation of alternate pathways of costimulation.  相似文献   

18.
A protocol consisting of a single donor-specific transfusion (DST) plus a brief course of anti-CD154 monoclonal antibody (anti-CD40 ligand mAb) induces permanent islet allograft survival in chemically diabetic mice, but its efficacy in mice with autoimmune diabetes is unknown. Confirming a previous report, we first observed that treatment of young female NOD mice with anti-CD154 mAb reduced the frequency of diabetes through 1 year of age to 43%, compared with 73% in untreated controls. We also confirmed that spontaneously diabetic NOD mice transplanted with syngeneic (NOD-Prkdc(scid)/Prkdc(scid)) or allogeneic (BALB/c) islets rapidly reject their grafts. Graft survival was not prolonged, however, by pretreatment with either anti-CD154 mAb alone or anti-CD154 mAb plus DST. In addition, allograft rejection in NOD mice was not restricted to islet grafts. Anti-CD154 mAb plus DST treatment failed to prolong skin allograft survival in nondiabetic male NOD mice. The inability to induce transplantation tolerance in NOD (H2g7) mice was associated with non-major histocompatibility complex (MHC) genes. Treatment with DST and anti-CD154 mAb prolonged skin allograft survival in both C57BL/6 (H2b) and C57BL/6.NOD-H2g7 mice, but it was ineffective in NOD, NOD.SWR-H2q, and NOR (H2g7) mice. Mitogen-stimulated interleukin-1beta production by antigen-presenting cells was greater in strains susceptible to tolerance induction than in the strains resistant to tolerance induction. The results suggest the existence of a general defect in tolerance mechanisms in NOD mice. This genetic defect involves defective antigen-presenting cell maturation, leads to spontaneous autoimmune diabetes in the presence of the H2g7 MHC, and precludes the induction of transplantation tolerance irrespective of MHC haplotype. Promising islet transplantation methods based on overcoming the alloimmune response by interference with costimulation may require modification or amplification for use in the setting of autoimmune diabetes.  相似文献   

19.
BACKGROUND: We have previously demonstrated that costimulatory blockade with anti-CD40L monoclonal antibody (mAb) prolongs the survival of non-vascularized concordant rat to mouse islet xenografts. Here, we examine whether signaling through the PD-1/PD-1L pathway is required for the anti-CD40L therapy to prolong concordant islet graft survival using a novel anti-murine PD-1 mAb (clone 4F10). METHODS: C57BL/6 mice received a cellular concordant islet xenograft under the left kidney capsule and four experimental groups were prepared. Group I: untreated control; group II: recipient mice were treated with three doses of 0.5 mg of anti-CD40L mAb (clone MR1) on days 0, 2 and 4; group III: mice were treated with 0.5 mg of anti-PD-1 (CD279) mAb (clone 4F10) every other day for 8 days; and finally group IV: mice received the combined treatment that consisted of anti-CD40L plus anti-PD-1 mAb. RESULTS: Concordant islet xenografts transplanted in control untreated mice showed a median survival time (MST) of 17 +/- 7.43 days, whereas anti-CD40L treatment led to a significant prolongation of graft survival (MST: 154 +/- 65.56, P < 0.0001). The administration of anti-PD-1 alone significantly accelerated graft rejection compared to non-treated controls (MST: 10 +/- 2.24 vs. MST: 17 +/- 7.43, P < 0.0004). Remarkably, the combined administration of anti-CD40L and anti-PD-1 reversed the protective effect obtained with anti-CD40L alone (anti-CD40L, MST: 154 +/- 65.56 vs. anti-CD40L plus anti-PD-1, MST: 10 +/- 7.72, P < 0.0002). CONCLUSION: Overall, our data indicate that the PD-1/PD-1L pathway is required for the achievement of prolonged graft survival in anti-CD40L-treated mice in a setting of rat to mouse concordant islet xenotransplantation.  相似文献   

20.
BACKGROUND: Dendritic cells can mount immune response as competent antigen presenting cells. Recently, it has been reported that immature dendritic cells induce prolongation of allograft survival. However, the ability of mature dendritic cells to induce operational tolerance is unclear. Therefore, in this study, we examined the ability of splenic mature dendritic cells to induce operational tolerance to fully allogeneic antigens using mouse heterotopic heart transplantation model. METHODS: CBA (H2k) mice received i.v. injections with donor splenic dendritic cells or B cells in the absence or presence of monoclonal antibody (mAb) specific for CD40 ligand or CD80/CD86 2 weeks before transplantation of a C57BL/10 (H2b) heart. RESULTS: When donor dendritic cells were injected i.v. 2 weeks before transplantation, rejection response was accelerated compared with that of naive mice [median survival time (MST) = 7 and 8 days, respectively]. However, when CD40 pathway was blocked by anti-CD40 ligand mAb, i.v. injection of donor dendritic cells but not B cells induced indefinite graft survival (MST >100 and 20 days, respectively). Mice treated with anti-CD40 ligand mAb alone rejected their grafts with a MST of 18 days. Intravenous injection of donor dendritic cells and B cells in combination with anti-CD80/CD86 mAbs was less effective to induce graft prolongation (MST = 9.5 and 13 days, respectively). CONCLUSIONS: Therefore, under blockade of CD40 pathway, mature dendritic cells were tolerogens in vivo independent of CD80/86 pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号