首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The postsynaptic effects of clindamycin have been analyzed in bullfrog sympathetic ganglion B cells using single electrode current and voltage clamp recordings and two electrode voltage clamp measurements. Clindamycin added to the bathing solution in the concentration range, 2.5 x 10(-4) to 5 x 10(-4) M, inhibited fast ganglionic transmission. In addition, local application of clindamycin decreased depolarizations produced by direct application of acetylcholine and decreased the amplitude of miniature excitatory postsynaptic potentials (MEPSPs) evoked by tetanic stimulation of the preganglionic trunk. In contrast, clindamycin did not change the amplitude or time course of the slow EPSP elicited by preganglionic stimulation (30 Hz for 10 s) or muscarinic depolarizations produced by local acetylcholine application to preparations pretreated with 25-50 microM (+)-tubocurarine. In voltage-clamped ganglion cells, excitatory postsynaptic current (EPSC) amplitude initially was increased and then decreased with increasing concentrations of clindamycin (0.5 x 10(-5) to 2.5 x 10(-4) M). The EPSC time course in control cells was exponential. After exposure to clindamycin, the EPSC decay was composed of two exponential components. The time constant of the fast component decreased and the time constant of the slow component increased with increasing concentrations of clindamycin. The two time constants of EPSCs obtained in clindamycin were independent of membrane voltage between -50 and -100 mV. We concluded that the block of fast ganglionic transmission is primarily due to a postsynaptic site of action, at least part of which is due to a concentration-dependent, but voltage-independent blockade of open nicotinic receptor channel complexes.  相似文献   

2.
Hematologic involvement is the main feature of Argentine hemorrhagic fever (AHF), an endemo-epidemic disease caused by Junin virus (JV). Since endothelial dysfunction could play a role in AHF-altered hemostasis, we studied human umbilical vein endothelial cell (HUVEC) infection with a virulent (JVv) and a non-virulent (JVa) JV strain. Cells were infected by the two JV variants with no detectable apoptosis or cytopathic effect. Both viral variants up-regulated ICAM-1 and VCAM-1 levels, while von Willebrand factor (VWF) production was decreased. Prostacyclin (PGI2) release and decay accelerating factor (DAF) expression were greater in JVv- than in JVa-infected or control cells. Furthermore, nitric oxide (NO) production and endothelial nitric oxide synthase (eNOS) expression was only raised in JVv-infected supernatants. Significant NO and PGI2 values were also detected in AHF patient sera. These data demonstrate that endothelial cell responses are triggered subsequently by JV infection, suggesting that such alterations play a major role in the pathogenesis of AHF and perhaps in other viral-induced hemorrhagic diseases.  相似文献   

3.
Corticosteroids are used for a variety of conditions; among the most well-known uses are for asthma and eczema. We review here the direct and indirect effects of corticosteroids on astrocyte physiology. Astrocytes play an important role in communication between neural cells, as one astrocyte can communicate with many neurons. They are also central in bringing nutrients through the blood-brain barrier (BBB) to the brain areas they serve. Therefore, any chemical or pharmaceutical product entering the brain via the BBB will first come into contact with the astrocytes. We discuss the direct effects that corticosteroids have on astrocyte physiology and functioning; these include inhibited glucose transport, decreased glycogen synthesis and decreased glutamate uptake. Furthermore, the indirect effects of corticosteroids on astrocytes are also reviewed. We know that corticosteroids lower neural serotonin. Lowered serotonin affects astrocyte functioning, and particularly astrocytic cAMP activities, a decrease in cytokine activities and impaired GABA uptake. These can be seen as the indirect effects of corticosteroids on astrocyte physiology. Corticosteroids therefore have a pertinent effect on neuro-energetics due to astrocyte physiology impairment, and this may ultimately be the reason for memory impairment of patients who chronically use corticosteroids.  相似文献   

4.
The organization of the fourth abdominal ganglion of the crayfish, Procambarus clarki, was studied with the light microscope in serial sections stained with osmium ethyl gallate. This ganglion is composed of a ventral rind of somata and a core of alternating layers of through-tracts and commissures. The longitudinal tracts of the ganglion are named according to the system in use for the orthopteran insects, because the basic plans of the crustacean and insect ventral ganglia exhibit striking anatomical parallels. The dorsal tracts are the largest and the most regular in their path through the ganglion. In the ventral posterior quadrant of the ganglion the tracts diverge from the basic plan to pass around the major synaptic neuropil and the bases of the peripheral nerves. This paper reports the three-dimensional anatomy of the major longitudinal through-tracts, internal tracts and commissures, and bases of peripheral nerves. Landmark features of the ganglion--including the tracts, the major artery of the vascular system, the shape of the ganglionic core in section, and prominent single cells, all of which make it possible to recognize specific regions of the ganglion--are described.  相似文献   

5.
6.
7.
46 patients treated with lithium for an average of 8 years participated in a functional-morphological follow-up study based on a 12-day hospitalization and involving a kidney biopsy. The functional part of the study showed that tubular function was markedly influenced, leading to increased urine volume (average 3 1/24 h) and a decreased renal concentration capacity in 85% of the patients. Glomerular function was generally not influenced, and only 10% of the patients had glomerular filtration rates below their age-corrected normal ranges. Both urine volume and glomerular filtration rates showed significant correlations with dosage schedule. Urine volume was lower and glomerular filtration rate higher on a one-dose schedule than when lithium was given in divided doses during the day. It is concluded that discontinuity in lithium treatment minimizes lithium effects on kidney function.  相似文献   

8.
Loss of P retinal ganglion cell function in resolved optic neuritis   总被引:1,自引:0,他引:1  
M Wall 《Neurology》1990,40(4):649-653
To determine the relative loss of P and M (X and Y) ganglion cell function in unilateral resolved optic neuritis, 10 patients with 20/20 or better Snellen acuity in both eyes had contrast sensitivity testing, color vision testing, and automated perimetry. We used contrast sensitivity gratings of 0.5 cycles per degree (cpd) with a rate of counterphase temporal modulation of 30 Hz and gratings of 11.4 cpd at 1 Hz. On 1 trial, patients responded when they detected the pattern of the grating and on the next trial when they 1st perceived movement. There was a significant difference in the 1 Hz high spatial frequency pattern and movement results suggesting loss of P cell function. Two patients were unable to perceive any movement with their involved eye with this target, but could detect the pattern. There was no significant difference between the involved and uninvolved eyes in the low spatial frequency pattern detection values. This is a function ascribed to the M cell. There was also loss of low spatial frequency movement detection. Although there was significant depression of the entire visual field in the involved eye, the probability plots showed the most significant loss in the cecocentral area. Farnsworth-Munsell 100 Hue color testing was also abnormal. Greater involvement of P than M ganglion cell axons may explain these contrast sensitivity abnormalities, central scotomata, and color vision loss.  相似文献   

9.
Receptive fields of retinal ganglion cells were analyzed during extracellular microelectrode recordings in the optic tract of the lightly anesthetized pigeon. Four major types of receptive field can be distinguished among the 359 fibers studied. Twenty-five percent of the receptive fields are relatively simple, responding at on and at off to stationary spots of light in the central region. All of the receptive fields have inhibitory surrounds of varying strength that do not produce a response when illuminated alone, but antagonize responses from the central region. Motion sensitive units comprise 15% of the recorded population; they are similar to the on-off center type except that responses to stationary stimuli are absent or very weak while responses to moving stimuli are virorous. Directionally selective units also have the basic features of on-off, inhibitory surround cells, but respond to moving stimuli well from the preferred direction and not at all from the null direction. Directional cells have a broad range of null directions; in about one-third of the units the range becomes broader when the stimulus involves both center and surround of the receptive field, thus enhancing directional selectivity. Directionally selective units are common, comprising 38% of the units studied. Cells unresponsive to stimuli moving from anterior in the visual field are much more common than other types, while cells unresponsive to stimuli from posterior in the field are rare. A few units (11%) respond only at on or at off to stationary stimuli in their receptive field centers; they also have antagonistic but unresponsive receptive field surrounds. The area of the visual field sampled is uniform in regard to the relative numbers of the four major receptive field types.  相似文献   

10.
Amphetamine, a neural stimulatory agent with acute effects mimicking those of stress, is shown here to elevate plasma corticosterone levels and suppress spleen and peripheral blood lymphocyte (PBL) mitogenic responses to concanavalin A (Con A) and phytohemagglutinin (PHA) when administered to rats. Pretreatment of the rats with propranolol, a nonselective beta-adrenergic receptor antagonist, totally prevented the amphetamine-induced suppression of lymphocyte mitogenic reactivity to Con A and PHA in the spleen and to PHA in the peripheral blood; however, the PBL mitogenic response to Con A was only partially restored. Although the amphetamine-induced alterations in immune function were prevented by propranolol pretreatment, the elevated plasma corticosterone response was not. This suggests that corticosterone is not modulating the mitogenic activity of splenic lymphocytes or PHA-reactive PBLs. On the other hand, Con A-reactive PBLs may be affected by corticosterone and/or other mechanisms, which may include the catecholamines.  相似文献   

11.
Retinal ganglion cells (RGCs) convey visual signals to 50 regions of the brain. For reasons of interest and convenience, they constitute an excellent system for the study of brain structure and function. There is general agreement that, absent a complete “parts list,” understanding how the nervous system processes information will remain an elusive goal. Recent studies indicate that there are 30–50 types of ganglion cell in mouse retina, whereas only a few years ago it was still written that mice and the more visually oriented lagomorphs had less than 20 types of RGC. More than 30 years ago, I estimated that rabbits have about 40 types of RGC. The present study indicates that this number is much too low. I have employed the old but powerful method of Golgi-impregnation to rabbit retina, studying the range of component neurons in this already well-studied retinal system. Close quantitative and qualitative analyses of 1,142 RGCs in 26 retinas take into account cell body and dendritic field size, level(s) of dendritic stratification in the retina's inner plexiform layer, and details of dendritic branching. Ninety-one morphologies are recognized. Of these, at least 32 can be correlated with physiologically studied RGCs, dye-injected for morphological analysis. It is unlikely that rabbits have 91 types of RGC, but is argued here that this number lies between 60 and 70. The present study provides a “yardstick” for measuring the output of future molecular studies that may be more definitive in fixing the number of RGC types in rabbit retina.  相似文献   

12.
We have assessed the effects of 15 pigmentation mutations on the development of retinal ganglion cell projections in mice in two ways: (1) by analyzing the pattern of innervation of the ipsilateral lateral geniculate nucleus as mapped in autoradiograms of brains of animals killed 12 days after intravitreal injection of 3H-proline into one eye and (2) by determining the ratio of axonally transported radioactive protein in the contralateral and ipsilateral optic tracts after similar intravitreal injections. Analysis of the ratio of transported protein in the two optic tracts provides a new and useful assay of the degree of decussation in experimental animals. The effects of the mutations on eye pigmentation, whole eye melanin content and relative tyrosinase activity also were examined. The degree of ipsilateral innervation generally correlates with the degree of pigmentation of the retinal pigment epithelium and with tyrosinase activity. However, discrepancies have been found in ch and ce mutants. In these animals the pigment epithelium is well pigmented, and the area of ipsilateral innervation in the lateral geniculate nucleus is extensive, despite a high ratio of label in contralateral to ipsilateral optic tracts and low tyrosinase activity. Furthermore, mice heterozygous for the c2J allele have pigmentation and optic projections that are normal even though tyrosinase is reduced to 40% of normal. The few anomalous results suggest that alternative or additional factors may control optic axon projections.  相似文献   

13.
正Retinal ganglion cell (RGC) function in health and disease:RGCs are extremely high-maintenance neurons connecting the eye to the brain trough the optic nerve.In order to produce and propagate action potentials along the unmyelinated RGC axons and support axonal transport of materials back and forth from the eye to the brain,RGC require large amounts of energy.Therefore,RGCs are under considerable metabolic stress when healthy and become particularly vulnerable in disease, resulting in blindness(Morgan,2004).  相似文献   

14.
Chick ciliary ganglion neurons have nicotinic acetylcholine receptors (AChRs) that mediate primary chemical synaptic transmission through the ganglion. Previous studies have shown that preganglionic denervation reduces the total number of AChRs in the ganglion about 3-fold in 10 d, while postganglionic axotomy reduces AChR levels about 10-fold in 5 d. Since the neurons contain large numbers of intracellular AChRs in addition to the surface AChRs, the present studies were undertaken to determine whether either surface or internal AChR pools are changed selectively by the operations. An anti-AChR monoclonal antibody followed by an HRP-conjugated secondary antibody was used to visualize AChR distributions on neurons in ciliary ganglia 5 d after postganglionic axotomy and 10 d after preganglionic denervation. Ganglia were permeabilized by treatment with saponin to obtain access to intracellular receptors. The results show that the operations do not qualitatively change the subcellular localization of AChRs, but they do alter the levels relative to control ganglia. Axotomy produces substantial declines both in the number of synaptic AChRs and in the number of intracellular AChRs. Denervation produces a significant, though less extensive decline in the number of intracellular receptors while having no detectable effect on the number of synaptic AChRs. Small alterations in receptor distribution would have gone undetected by the present techniques. Regulation of neuronal AChRs differs in several respects from that described for muscle AChRs: presynaptic input appears to be less important for controlling neuronal AChRs, while signals from the postsynaptic target tissue may be essential for maintaining synaptic receptors on the neurons.  相似文献   

15.
Horseradish peroxidase was applied to lesions in the optic nerve of catfish (Ictalurus punctatus). The retinae were processed to reveal HRP-labelled ganglion cells. The histochemical techniques employed allowed fine details of the dendritic arbor to be resolved. Flat-mounted retinae were examined and the following characteristics were noted in individual ganglion cells: Soma area, shape, and depth; number and diameter of major dendrites; shape, area, and depth(s) within the inner plexiform layer (ipl) of the dendritic arbor; origin of the axon (from the soma or a dendrite). On the basis of these characteristics, eleven classes of ganglion cells were delineated: four classes of giant cells (G1-G4) and seven classes of smaller cells (S1-S7). G1 cells had dendrites arborizing in the most distal sublamina of the ipl. G1 cells in the dorsal retina had nasotemporally elongated dendritic arbors. G2 cells had dendrites in the proximal portion of the ipl. G3 cells were almost completely confined to a band running between the nasal and temporal retinal poles, through the center of the retina. In this location, the cells had dorsoventrally elongated dendritic arbors, which were bistratified in the ipl. G4 cells were displaced into the inner nuclear layer. S1 and S4 cells had axons arising from their somata, and dendrites arborizing in the distal and the proximal ipl, respectively. S2 cells were typified by their unstratified dendritic arbors. Similarly, S3 cells were characterised by their bistratified arbors. S5 cells arborized in the most proximal ipl sublamina. S6 cells were small ganglion cells with their somata lying in the inner nuclear layer. S7 cells tended to have complex dendritic arbors, and their axons arose from dendrites.  相似文献   

16.
17.
Pituitary adenylate cyclase-activating polypeptide(PACAP) is an endogenous peptide with neuroprotective effects on retinal neurons, but the precise mechanism underlying these effects remains unknown. Considering the abundance of mitochondria in retinal ganglion cells(RGCs), we postulate that the protective effect of PACAP is associated with the regulation of mitochondrial function. RGC-5 cells were subjected to serum deprivation for 48 hours to induce apoptosis in the presence or absence of 100 nM PACAP. As revealed with the Cell Counting Kit-8 assay, PACAP at different concentrations significantly increased the viability of RGC-5 cells. PACAP also inhibited the excessive generation of reactive oxygen species in RGC-5 cells subjected to serum deprivation. We also showed by flow cytometry that PACAP inhibited serum deprivation-induced apoptosis in RGC-5 cells. The proportions of apoptotic cells and cells with mitochondria depolarization were significantly decreased with PACAP treatment. Western blot assays demonstrated that PACAP increased the levels of Bcl-2 and inhibited the compensatory increase of PAC1. Together, these data indicate protective effects of PACAP against serum deprivation-induced apoptosis in RGCs, and that the mechanism of this action is associated with maintaining mitochondrial function.  相似文献   

18.
19.
The effects of algesic compounds on the distal portion of the processes of cultured dorsal root ganglion cells (C-fiber) of mouse were studied by patch-clamp whole-cell recording at the cell soma (cell body). The processes of the cell were isolated from the cell body with a separator. Bradykinin (BK, 10 μM), prostaglandin E2 (PGE2, 20 μM), and capsaicin (CAP, 2 μM) were applied to the processes of a cell on the third day after seeding, each of which evoked action potentials in the cell body. No desensitization was seen by the repeated application of BK to the processes. No action potentials in the cell body were observed when BK (10 μM) was applied concomitantly with tetrodotoxin (6 μM). These results suggest that the stimuli of algesic compounds to the neuronal processes of the cultured dorsal root ganglion cells are useful for studying the neuronal mechanism involved in pain. © 1977 Elsevier Science B.V. All rights reserved.  相似文献   

20.
We define a morphologic type of ganglion cell in cat retina by using intracellular staining in vitro. The eta cell has a small soma, slender axon, and delicate, highly branched dendritic arbor. Dendritic fields are intermediate in size among cat ganglion cells, with diameters typically two to three times those of beta cells. Fields increase in size as a function of distance from the area centralis, ranging in diameter from 90 microm to 200 microm centrally to a maximum of 600 microm in the periphery. This increase is unusually radially symmetric. By contrast with other cat ganglion cell types, eta cells do not have markedly smaller dendritic fields within the visual streak than above or below it nor much smaller fields nasally than temporally. Dendrites ramify broadly throughout sublamina a (OFF sublayer) of the inner plexiform layer. They arborize most densely in S2, where they costratify with dendrites of OFF alpha cells. There is apparently no matching ON variety of eta cell. Experiments combining retrograde labeling with intracellular staining indicate that eta cells project to the superior colliculus and to two components of the dorsal lateral geniculate nucleus (the C laminae and medial interlaminar nucleus). Eta cells apparently project contralaterally from the nasal retina and ipsilaterally from the temporal retina. The morphology and projection patterns of the eta cell suggest that its physiologic counterpart is a type of sluggish or W-cell with an OFF center, an ON surround, and possibly a transient light response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号