首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prostate specific antigen (PSA) or human kallikrein 3 (hK3) has long been an effective biomarker for prostate cancer. Now, other members of the tissue kallikrein (KLK) gene family are fast becoming of clinical interest due to their potential as prognostic biomarkers. particularly for hormone dependent cancers. The tissue kallikreins are serine proteases that are encoded by highly conserved multi-gene family clusters in rodents and humans. The rat and mouse loci contain 10 and 25 functional genes, respectively, while the human locus at 19q 13.4 contains 15 genes. The structural organization and size of these genes are similar across species; all genes have 5 coding exons that encode a prepro-enzyme. Although the physiological activators of these zymogens have not been described, in vitro biochemical studies show that some kallikreins can auto-activate and others can activate each other, suggesting that the kallikreins may participate in an enzymatic cascade similar to that of the coagulation cascade. These genes are expressed, to varying degrees, in a wide range of tissues suggesting a functional involvement in a diverse range of physiological and pathophysiological processes. These include roles in normal skin desquamation and psoriatic lesions, tooth development, neural plasticity, and Alzheimer's disease (AD). Of particular interest is the expression of many kallikreins in prostate, ovarian, and breast cancers where they are emerging as useful prognostic indicators of disease progression.  相似文献   

2.
3.
Kallikrein-related peptidases (KLKs) form a cancer-related ensemble of serine proteases. This multigene family hosts the most widely used cancer biomarker that is PSA-KLK3, with millions of tests performed annually worldwide. The present report provides an overview of the biomarker potential of the extended KLK family (KLK1-KLK15) in various disease settings and envisages approaches that could lead to additional KLK-driven applications in future molecular diagnostics. Particular focus is given on the inclusion of KLKs into multifaceted cancer biomarker panels that provide enhanced diagnostic, prognostic and/or predictive accuracy in several human malignancies. Such panels have been described so far for prostate, ovarian, lung and colorectal cancers. The role of KLKs as biomarkers in non-malignant disease settings, such as Alzheimer’s disease and multiple sclerosis, is also commented upon. Predictions are given on the challenges and future directions regarding clinically oriented KLK research.  相似文献   

4.
Proteolytic cleavage of the hemagglutinin (HA) of influenza virus by host trypsin-like proteases is required for viral infectivity. Some serine proteases are capable of cleaving influenza virus HA, whereas some serine protease inhibitors (serpins) inhibit the HA cleavage in various cell types. Kallikrein-related peptidase 1 (KLK1, also known as tissue kallikrein) is a widely distributed serine protease. Kallistatin, a serpin synthesized mainly in the liver and rapidly secreted into the circulation, forms complexes with KLK1 and inhibits its activity. Here, we investigated the roles of KLK1 and kallistatin in influenza virus infection. We show that the levels of KLK1 increased, whereas those of kallistatin decreased, in the lungs of mice during influenza virus infection. KLK1 cleaved H1, H2, and H3 HA molecules and consequently enhanced viral production. In contrast, kallistatin inhibited KLK1-mediated HA cleavage and reduced viral production. Cells transduced with the kallistatin gene secreted kallistatin extracellularly, which rendered them more resistant to influenza virus infection. Furthermore, lentivirus-mediated kallistatin gene delivery protected mice against lethal influenza virus challenge by reducing the viral load, inflammation, and injury in the lung. Taking the data together, we determined that KLK1 and kallistatin contribute to the pathogenesis of influenza virus by affecting the cleavage of the HA peptide and inflammatory responses. This study provides a proof of principle for the potential therapeutic application of kallistatin or other KLK1 inhibitors for influenza. Since proteolytic activation also enhances the infectivity of some other viruses, kallistatin and other kallikrein inhibitors may be explored as antiviral agents against these viruses.  相似文献   

5.
6.
7.
The organization of the human tissue kallikrein gene family has now been fully elucidated. This family contains 15 genes encoding secreted serine proteases, which share significant homologies at both the DNA and amino acid level. Two members of the human kallikrein gene family, prostate-specific antigen and human kallikrein 2, have already found important clinical application as prostate cancer biomarkers. In this review, we examine the diagnostic and prognostic value of the 15 human kallikrein genes and proteins. It is clear that at least a few members show promise of becoming novel cancer and other disease biomarkers.  相似文献   

8.
Distribution of 15 human kallikreins in tissues and biological fluids   总被引:5,自引:0,他引:5  
  相似文献   

9.
BACKGROUND: Human kallikrein 15 (KLK15) may have some utility as a prostate, ovarian, and breast cancer biomarker, based on previous studies, which examined mRNA levels of KLK15. The aim of this study was to develop analytical technology for human kallikrein 15, including recombinant protein, specific antibodies, and a sensitive and specific ELISA immunoassay. The assay was then used to examine levels of KLK15 in tissues and biological fluids. METHODS: We produced human, recombinant pro-KLK15 in HEK 293 cells. Recombinant KLK15 was purified with various chromatographic steps and used to immunize rabbits and mice for production of KLK15 polyclonal antibodies. We used these antibodies to develop a highly sensitive and specific KLK15 immunoassay and to study KLK15 expression in various tissues and biological fluids. RESULTS: Large amounts of pure, recombinant KLK15 have been produced and characterized. KLK15 mouse and rabbit polyclonal antibodies have been employed for development of a KLK15 immunoassay. This assay has a lower detection limit of 0.05 microg/L, and no cross-reactivity with any of the other fourteen kallikreins. Using this assay, KLK15 was detected in prostate, colon, and thyroid tissues, as well as in breast milk and seminal plasma. CONCLUSIONS: The KLK15 reagents developed here will allow for analysis of KLK15 protein expression levels in tissues and biological fluids, both normal and cancerous. This will expand upon previously characterized tissue KLK15 mRNA expression studies which suggested that KLK15 might be useful as a biomarker for breast, ovarian, and prostate cancer. KLK15 is another serine protease that is produced in prostate and other tissues and is secreted in seminal plasma and other fluids. Its physiological function needs to be further elucidated.  相似文献   

10.
Kallikrein‐related peptidases (KLKs) are a family of 15 secreted serine proteases that are involved in various physiological processes. Their activities are subtly regulated by various endogenous inhibitors, ranging from metallic ions to macromolecular entities such as proteins. Furthermore, dysregulation of KLK activity has been linked to several pathologies, including cancer and skin and inflammatory diseases, explaining the numerous efforts to develop KLK‐specific pharmacological inhibitors as potential therapeutic agents. In this review, we focus on the huge repertoire of KLKs inhibitors reported to date with a special emphasis on the diversity of their molecular mechanisms of inhibition.  相似文献   

11.
Full-length cDNA and genomic sequences for two genes (designated mdesprot-I and mdesprot-II) encoding digestive serine proteases in Hessian fly, Mayetiola destructor, have been cloned and characterized. The deduced amino acid sequences revealed similarity with trypsin-like digestive serine proteases from other Dipterans. Both mdesprot-I and mdesprot-II encoded proteins with secretion signal peptides at the N-terminals, indicating the proteins are secreted proteases that should function as midgut digestive proteases. A cytological analysis with fluorescent in situ hybridization revealed the cytological localization of mdesprot-I and mdesprot-II on the long arm of Autosome 2. Results are discussed in the context of the efficacy of potential protease inhibitors to develop Hessian fly resistant wheat through genetic engineering approaches.  相似文献   

12.
ObjectivesKallikrein-related peptidases (KLKs) are a subgroup of 15 secreted chymotrypsin- and trypsin-like serine proteases that have been reported to possess novel functions in innate immunity and inflammation. Since the potential role of KLKs in immunity has not been studied in detail at the protein level, we examined the expression pattern of 12 members of the KLK family in immune-related tissues.Design & MethodsProtein expression in tissue extracts was evaluated using immunoassays (ELISA). Immunohistochemistry (IHC) was performed on representative sections of tonsil and lymph nodes to determine the cellular localization of the KLK family members.ResultsELISA profiling of KLK3-KLK15 (except KLK12) revealed higher protein levels in the tonsil, compared to the lymph nodes and spleen. Relatively high protein levels in the tonsil were observed for KLK7, KLK9, KLK10 and KLK13. Expression of these KLKs was significantly lower in lymph nodes and spleen. IHC analysis in tonsil unveiled that KLK9 and KLK10 were differentially expressed in lymphoid cells. KLK9 was strongly expressed in the germinal center of lymphoid follicles where activated B-cells reside, whereas KLK10 was expressed in the follicular dendritic cells (FDCs) that are vital for maintaining the cycle of B cell maturation.ConclusionOverall, our study revealed the possible implications of KLK expression and regulation in the immune cells of lymphoid tissues.  相似文献   

13.
Immune-mediated nephritis contributes to disease in systemic lupus erythematosus, Goodpasture syndrome (caused by antibodies specific for glomerular basement membrane [anti-GBM antibodies]), and spontaneous lupus nephritis. Inbred mouse strains differ in susceptibility to anti-GBM antibody–induced and spontaneous lupus nephritis. This study sought to clarify the genetic and molecular factors that may be responsible for enhanced immune-mediated renal disease in these models. When the kidneys of 3 mouse strains sensitive to anti-GBM antibody–induced nephritis were compared with those of 2 control strains using microarray analysis, one-fifth of the underexpressed genes belonged to the kallikrein gene family, which encodes serine esterases. Mouse strains that upregulated renal and urinary kallikreins exhibited less evidence of disease. Antagonizing the kallikrein pathway augmented disease, while agonists dampened the severity of anti-GBM antibody–induced nephritis. In addition, nephritis-sensitive mouse strains had kallikrein haplotypes that were distinct from those of control strains, including several regulatory polymorphisms, some of which were associated with functional consequences. Indeed, increased susceptibility to anti-GBM antibody–induced nephritis and spontaneous lupus nephritis was achieved by breeding mice with a genetic interval harboring the kallikrein genes onto a disease-resistant background. Finally, both human SLE and spontaneous lupus nephritis were found to be associated with kallikrein genes, particularly KLK1 and the KLK3 promoter, when DNA SNPs from independent cohorts of SLE patients and controls were compared. Collectively, these studies suggest that kallikreins are protective disease-associated genes in anti-GBM antibody–induced nephritis and lupus.  相似文献   

14.
Kallikreins are a subgroup of the serine protease family of enzymes. Until recently, it was thought that the human kallikrein gene family includes only three members. Over the past 3 years, the human kallikrein gene locus on chromosome 19q13.4 has been characterized. This family includes 15 members for which new nomenclature has been established. A number of kallikreins are expressed in the central nervous system (CNS). Experimental evidence has shown that at least two kallikreins, KLK6 and KLK8, have potential functions in the CNS. KLK8 (neuropsin) is highly expressed in brain tissues and may play a role in brain development, plasticity and response to stress. Of particular interest is the possible involvement of kallikreins in the pathogenesis of Alzheimer's disease (AD). KLK6 (zyme/protease M/neurosin) seems to be down regulated in serum and tissues of Alzheimer's disease patients and may be involved in amyloid metabolism.  相似文献   

15.
16.
17.
18.
BackgroundsGastric cancer is one of the most common cancers with unsatisfied prognosis. It is challenging to predict gastric cancer prognosis due to its highly heterogeneous nature. Kallikrein 5 (KLK5) belongs to the family of kallikreins, which plays a crucial role in serine proteolysis and exerts diverse physiological functions. The role of KLK5 in human gastric adenocarcinoma (GAC) has not been elucidated. In the present study, we aimed to examine the expression level of KLK5 and dissect whether the KLK5 expression was associated with GAC prognosis.Patients and methodsClinicopathological analyses were performed in a retrospective GAC patient cohort (n = 138). The expression of KLK5 was tested by quantitative RT‐PCR and immunohistochemistry staining. The prognostic role of KLK5 in GAC was assessed by univariate and multivariate analyses. The effects of KLK5 on cell proliferation, migration, and invasion were examined through cellular experiments.ResultsThe data showed that KLK5 expression was elevated in GAC tissues compared with normal stomach tissues. Protein expression of KLK5 was positively correlated with tumor invasion depth and lymph node metastasis. Patients with higher KLK5 expression had poorer overall survival. KLK5 was identified to be an independent risk factor according to multivariate analysis. Using human GAC cell lines, we found that KLK5 can promote tumor cell migration and invasion.ConclusionsOur study demonstrated that higher expression of KLK5 was significantly correlated with a poorer prognosis of GAC patients, implying the potential of KLK5 as a novel prognostic biomarker in GAC.  相似文献   

19.
The mouse BCM1 (OX45, Blast-1) antigen has been cDNA cloned and sequenced to provide data supporting the view that BCM1, LFA3, and CD2 constitute a subgroup within the Ig superfamily. Mouse BCM1 is widely expressed on leukocytes and is likely to be anchored to the cell surface by a glycosyl-phosphatidylinositol anchor, as is the case for rat and human BCM1 antigen. Genetic linkage studies by recombination and pulse field analysis showed the BCM1 locus (Bcm-1) to be on distal mouse chromosome 1 and to be linked within 1,600 kb to the locus for an ATPase alpha chain gene (Atpa-3). A similar relationship was established between the human BCM1 locus (BCM1) and ATP1A2, and other markers on chromosome 1q. Conservation of genomic organization within a segment of human chromosome 1q and mouse chromosome 1 was demonstrated. A similar situation is seen in the region of the CD2 and LFA3 genes between mouse chromosome 3 and human chromosome 1p. Furthermore, the CD2/LFA3 genes are linked within 580 kb to Atpa-1/ATP1A1 genes to provide a parallel situation to the linkage between Bcm-1/BCM1 and Atpa-3/ATP1A2 on chromosomes 1 (mouse) and 1q (human). Taken together, the data suggest duplication of a chromosome region including the precursors of the genes for BCM1, CD2, and LFA3, and the ATPase genes to give rise to the linkage groups now observed. The duplicated regions may have stayed together on chromosome 1 in the human (with the insertion of a centromere), while in the mouse, the genetic regions are proposed to have become dispersed in the formation of chromosomes 1 and 3. CD2 and LFA3 are more dissimilar in sequence than BCM1 and LFA3, and if the precursors of the CD2 and LFA3 loci formed before the proposed chromosome segment duplication, then a gene encoding a recognizer molecule for BCM1 may exist in linkage with Bcm-1/BCM1 on chromosome 1 (mouse) and 1q (human).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号