首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The design of new bioactive scaffolds mimicking the physiologic environment present during tissue formation is an important frontier in biomaterials research. Herein, we evaluated scaffolds prepared from blends of two biopolymers: silk fibroin and hyaluronan. Our rationale was that such blends would allow the combination of silk fibroin's superior mechanical properties with the biological characteristics of hyaluronan. We prepared scaffolds with porous microstructures by freeze-drying aqueous solutions of silk fibroin and hyaluronan and subsequent incubation in methanol to induce water insolubility of silk fibroin. Hyaluronan acted as an efficient porogenic excipient for the silk fibroin scaffolding process, allowing the formation of microporous structures within the scaffolds under mild processing conditions. Mesenchymal stem cells were seeded on silk fibroin/hyaluronan scaffolds and cultured for three weeks. Histology of the constructs after cell culture showed enhanced cellular ingrowth into silk fibroin/hyaluronan scaffolds as compared to plain silk fibroin scaffolds. In the presence of tissue-inductive stimuli, in vitro stem cell culture on silk fibroin/hyaluronan scaffolds resulted in more efficient tissue formation when measured by glycosaminoglycan and type-I and type-III collagen gene expression, as compared to plain silk fibroin scaffolds. In conclusion, our data encourages further exploration of silk fibroin/hyaluronan scaffolds as biomimetic platform for mesenchymal stem cells in tissue engineering.  相似文献   

2.
Substrate stiffness is an important physical factor in the response of many cell types. Although protein-based hydrogels are widely used as cell-culture substrates because of their resemblance to the natural extracellular matrix (ECM) and complex signaling, their rigidity should be further increased to facilitate the adhesion and growth of cells. In this study, fibroin/collagen hydrogels having suitable stiffness were prepared directly by adding 1-ethyl-3-(3-dimethylaminoprophy) carbodiimide hydrochloride (EDC) in fibroin/collagen solution to induce crosslinking. The storage moduli of these crosslinked hydrogels are above 3 kPa, and even exceed 10 kPa, having stronger mechanical strength than that of previously reported protein-based hydrogels. Furthermore, the crosslinked hydrogels can maintain their configuration above 80(o)C, which proves their increased thermal stability. Although crosslinked, the hydrogels still maintain the mobility of fibroin molecules. The growth of vascular smooth muscle cells (VSMCs) in fibroin/collagen gels indicates that the crosslinking reaction has no negative influence on the biocompatibility of fibroin/collagen hydrogels. The fibroin/collagen hydrogels are more propitious to the growth of cells compared with fibroin/collagen scaffolds. Because of their inherent biocompatibility, excellent mechanical and thermal properties, and green preparation process, the fibroin/collagen hydrogels would become promising scaffolds for tissue engineering.  相似文献   

3.
Silk fibroin has acquired increasing interest for biomedical applications, and namely for the fabrication of scaffolds for tissue engineering, because of its highly positive biological interaction and the possibility to adapt the material to several application requirements by adopting different fabrication methods, in order to make films, sponges, fibers, nets or gels with predictable degradation times. For tissue engineering, in most cases porous scaffolds are required, in some cases possibly in situ forming and therefore fabricated in mild body-compatible conditions. In this work, we present a novel one-step method for the preparation of silk fibroin foams starting from water solutions and using low-pressure nitrous oxide gas as foaming agent. This foaming technique allows preparing fibroin porous scaffolds with easily tunable porosity, in mild processing conditions with the use of a relatively inert foaming agent saturating a fibroin water solution, that could be occasionally injected through a thin needle in the implantation site where expansion and foaming would occur. Optimal foaming processing conditions have been investigated, and the prepared foams have been characterized with Fourier Transform Infrared Spectroscopy (FTIR) compressive mechanical and rheological properties measurements, and by scanning electron microscopy and microCT.  相似文献   

4.
Recombinant human-like collagen (RHLC) was added to fibroin solution to prepare a novel hybrid scaffold material for skin tissue engineering. The morphology of the scaffold had highly homogeneous and interconnected pores with pore sizes 136 +/- 32 mum measured by scanning electron microscopy (SEM). FTIR analysis indicated intermolecular crosslinkages between fibroin and RHLC formed. The viscosity of the blend solution increased because of the interaction between fibroin and RHLC, and then it restrained the unwanted fibroin aggregation in freezing process that generally appeared in fibroin scaffold preparation with freeze drying method. After methanol treatment the fibroin/RHLC scaffold became water-stable. The porosity of scaffolds was >90%, the compressive strength and modulus were up to 662 +/- 32 KPa and 7.8 +/- 0.64 MPa, respectively. Fibroblasts cultured within fibroin/RHLC scaffolds were investigated by SEM, laser scanning confocal microscopy (LSCM), and MTT assay, which showed that the adding of RHLC significantly enhanced the cells adhesion, proliferation, and viability compare with fibroin scaffolds. These results suggest that the hybrid scaffolds have favorable characteristics for skin tissue engineering.  相似文献   

5.
Cell culture microenvironment and hepatocyte-specific three-dimensional tissue-engineering scaffold play important roles for bioartificial liver devices. In the present study, highly porous sponge scaffolds composed of chitosan (CS) and galactosylated hyaluronic acid (GHA, galactose moieties were covalently coupled with hyaluronic acid through ethylenediamine), were prepared by freezing-drying technique. Because the growth factors specifically bind to heparin with a high affinity and biological stability of the growth factors are modulated by heparin. Heparin was added into CS/GHA scaffold under mild conditions. The effects of heparin on the morphology, structure, porosity, mechanical properties of the CS/GHA/heparin scaffold were studied. CS/GHA scaffold containing heparin maintains the porous structure and good mechanical properties. Furthermore, addition of heparin with the growth factors into the scaffold resulted in a significantly improved the microenvironment of cell growth and prolonged liver functions of the hepatocytes such as albumin secretion, urea synthesis and ammonia elimination. These results indicate that this CS/GHA/heparin scaffold is a potential candidate for liver tissue engineering.  相似文献   

6.
The use of cell-scaffold constructs is a promising tissue engineering approach to repair cartilage defects and to study cartilaginous tissue formation. In this study, silk fibroin/chitosan blended scaffolds were fabricated and studied for cartilage tissue engineering. Silk fibroin served as a substrate for cell adhesion and proliferation while chitosan has a structure similar to that of glycosaminoglycans, and shows promise for cartilage repair. We compared the formation of cartilaginous tissue in silk fibroin/chitosan blended scaffolds seeded with bovine chondrocytes and cultured in vitro for 2 weeks. The constructs were analyzed for cell viability, histology, extracellular matrix components glycosaminoglycan and collagen types I and II, and biomechanical properties. Silk fibroin/chitosan scaffolds supported cell attachment and growth, and chondrogenic phenotype as indicated by Alcian Blue histochemistry and relative expression of type II versus type I collagen. Glycosaminoglycan and collagen accumulated in all the scaffolds and was highest in the silk fibroin/chitosan (1:1) blended scaffolds. Static and dynamic stiffness at high frequencies was higher in cell-seeded constructs than non-seeded controls. The results suggest that silk/chitosan scaffolds may be a useful alternative to synthetic cell scaffolds for cartilage tissue engineering.  相似文献   

7.
Silk fibroin scaffolds were studied as a new biomaterial option for tissue-engineered cartilage-like tissue. Human bone marrow-derived mesenchymal stem cells (MSCs) were seeded on silk, collagen, and crosslinked collagen scaffolds and cultured for 21 days in serum-free chondrogenic medium. Cells proliferated more rapidly on the silk fibroin scaffolds than on the collagen matrices. The total content of glycosaminoglycan deposition was three times higher on silk as compared to collagen scaffolds. Glycosaminoglycan deposition coincided with overexpression of collagen type II and aggrecan genes. Cartilage-like tissue was homogeneously distributed throughout the entire silk scaffolds, while on the collagen and crosslinked collagen systems tissue formation was restricted to the outer rim, leaving a doughnut appearance. Round or angular-shaped cells resided in deep lacunae in the silk systems and stained positively for collagen type II. The aggregate modulus of the tissue-engineered cartilage constructs was more than 2-fold higher than that of the unseeded silk scaffold controls. These results suggest that silk fibroin scaffolds are suitable biomaterial substrates for autologous cartilage tissue engineering in serum-free medium and enable mechanical improvements along with compositional features suitable for durable implants to generate or regenerate cartilage.  相似文献   

8.
Novel tissue engineering scaffold materials of nano-hydroxyapatite (nHA)/silk fibroin (SF) biocomposite were prepared by freeze-drying. The needle-like nHA crystals of about 10 nm in diameter by 50-80 nm in length, which were uniformly distributed in the porous nHA/SF scaffolds, were prepared by a co-precipitation method with a size. The as-prepared nHA/SF scaffolds showed good homogeneity, interconnected pores and high porosity. XRD and FT-IR analysis suggested that the silk fibroin was in beta-sheet structure, which usually provides outstanding mechanical properties for silk materials. In this work, composite scaffolds containing as high as 70% (w/w) nHA were prepared, which had excellent compressive modulus and strength, higher than the scaffolds at low nHA content level and other porous biodegradable polymeric scaffolds often considered in bone-related tissue engineering reported previously. The cell compatibility of composite scaffolds was evaluated through cell viability by MTT assay. All these results indicated that these nHA/SF scaffold materials may be a promising biomaterial for bone tissue engineering.  相似文献   

9.
背景:丝素蛋白支架已被建议运用在组织工程骨和软骨重建、肌腱重建、血管重建,神经重建以及膀胱重建等各方面。 目的:总结丝素蛋白作为支架在生物材料和组织工程领域的应用与发展。 方法:由第一作者应用计算机检索PubMed数据库及中国期刊数据库2000年1月至2011年11月有关丝素蛋白支架制备工艺,丝素蛋白支架修饰方法及丝素蛋白在组织工程中的应用等方面的文献。 结果与结论:丝素蛋白具有机械强度高、生物降解性慢、生物相容性良好、制备工艺多样等特点,支持多种细胞黏附、分化和生长,可应用于人工韧带、血管、骨、神经组织等方面。近期以丝素蛋白支架作为载体,通过多种方式添加各种生物制剂,比如各种生长因子和细胞因子,进一步扩大丝素蛋白在组织工程中的应用范围。  相似文献   

10.
Novel tissue engineering scaffold materials of nano-hydroxyapatite (nHA)/silk fibroin (SF) biocomposite were prepared by freeze-drying. The needle-like nHA crystals of about 10 nm in diameter by 50–80 nm in length, which were uniformly distributed in the porous nHA/SF scaffolds, were prepared by a co-precipitation method with a size. The as-prepared nHA/SF scaffolds showed good homogeneity, interconnected pores and high porosity. XRD and FT-IR analysis suggested that the silk fibroin was in β-sheet structure, which usually provides outstanding mechanical properties for silk materials. In this work, composite scaffolds containing as high as 70% (w/w) nHA were prepared, which had excellent compressive modulus and strength, higher than the scaffolds at low nHA content level and other porous biodegradable polymeric scaffolds often considered in bone-related tissue engineering reported previously. The cell compatibility of composite scaffolds was evaluated through cell viability by MTT assay. All these results indicated that these nHA/SF scaffold materials may be a promising biomaterial for bone tissue engineering.  相似文献   

11.
目的 体外构建丝素蛋白(silk fibroin,SF)、I型胶原(type I collagen,Col-I)和羟基磷灰石(hydroxyapatite, HA)共混体系制备二维复合膜和三维仿生支架,研究其理化性质和生物相容性,探讨其在组织工程支架材料中应用的可行性。方法 通过在细胞培养小室底部共混SF/Col-I/HA以及低温3D打印结合真空冷冻干燥法制备二维复合膜及三维支架。通过机械性能测试、电子显微镜和Micro-CT检测材料的理化性质,检测细胞的增殖评估其生物相容性。结果 通过共混和低温3D打印获得稳定的二维复合膜及三维多孔结构支架;力学性能具有较好的一致性,孔径、吸水率、孔隙率和弹性模量均符合构建组织工程骨的要求;支架为网格状的白色立方体,内部孔隙连通性较好; HA均匀分布在复合膜中,细胞黏附在复合膜上,呈扁平状;细胞分布在支架孔壁周围,呈梭形状,生长及增殖良好。结论 利用SF/Col-I/HA共混体系成功制备复合膜及三维支架,具有较好的孔连通性与孔结构,有利于细胞和组织的生长以及营养输送,其理化性能以及生物相容性符合骨组织工程生物材料的要求。  相似文献   

12.
Novel porous aortic elastin and collagen scaffolds for tissue engineering   总被引:15,自引:0,他引:15  
Decellularized vascular matrices are used as scaffolds in cardiovascular tissue engineering because they retain their natural biological composition and three-dimensional (3-D) architecture suitable for cell adhesion and proliferation. However, cell infiltration and subsequent repopulation of these scaffolds was shown to be unsatisfactory due to their dense collagen and elastic fiber networks. In an attempt to create more porous structures for cell repopulation, we selectively removed matrix components from decellularized porcine aorta to obtain two types of scaffolds, namely elastin and collagen scaffolds. Histology and scanning electron microscopy examination of the two scaffolds revealed a well-oriented porous decellularized structure that maintained natural architecture of the aorta. Quantitative DNA analysis confirmed that both scaffolds were completely decellularized. Stress-strain analysis demonstrated adequate mechanical properties for both elastin and collagen scaffolds. In vitro enzyme digestion of the scaffolds suggested that they were highly biodegradable. Furthermore, the biodegradability of collagen scaffolds could be controlled by crosslinking with carbodiimides. Cell culture studies showed that fibroblasts adhered to and proliferated on the scaffold surfaces with excellent cell viability. Fibroblasts infiltrated about 120 microm into elastin scaffolds and about 40 microm into collagen scaffolds after 4 weeks of rotary cell culture. These results indicated that our novel aortic elastin and collagen matrices have the potential to serve as scaffolds for cardiovascular tissue engineering.  相似文献   

13.
Knitting is an ancient and yet, a fresh technique. It has a history of no less than 1,000 years. The development of tissue engineering and regenerative medicine provides a new role for knitting. Several meshes knitted from synthetic or biological materials have been designed and applied, either alone, to strengthen materials for the patching of soft tissues, or in combination with other kinds of biomaterials, such as collagen and fibroin, to repair or replace damaged tissues/organs. In the latter case, studies have demonstrated that knitted mesh scaffolds (KMSs) possess excellent mechanical properties and can promote more effective tissue repair, ligament/tendon/cartilage regeneration, pipe-like-organ reconstruction, etc. In the process of tissue regeneration induced by scaffolds, an important synergic relationship emerges between the three-dimensional microstructure and the mechanical properties of scaffolds. This paper presents a comprehensive overview of the status and future prospects of knitted meshes and its KMSs for tissue engineering and regenerative medicine.  相似文献   

14.
《Acta biomaterialia》2014,10(2):921-930
Although three-dimensional (3-D) porous regenerated silk scaffolds with outstanding biocompatibility, biodegradability and low inflammatory reactions have promising application in different tissue regeneration, the mechanical properties of regenerated scaffolds, especially suture retention strength, must be further improved to satisfy the requirements of clinical applications. This study presents woven silk fabric-reinforced silk nanofibrous scaffolds aimed at dermal tissue engineering. To improve the mechanical properties, silk scaffolds prepared by lyophilization were reinforced with degummed woven silk fabrics. The ultimate tensile strength, elongation at break and suture retention strength of the scaffolds were significantly improved, providing suitable mechanical properties strong enough for clinical applications. The stiffness and degradation behaviors were then further regulated by different after-treatment processes, making the scaffolds more suitable for dermal tissue regeneration. The in vitro cell culture results indicated that these scaffolds maintained their excellent biocompatibility after being reinforced with woven silk fabrics. Without sacrifice of porous structure and biocompatibility, the fabric-reinforced scaffolds with better mechanical properties could facilitate future clinical applications of silk as matrices in skin repair.  相似文献   

15.
A new type of collagen/chitosan/heparin matrix, fabricated by gelation of collagen/ chitosan with heparin sodium containing ammonia, was produced to construct livers by tissue engineering and regenerative engineering. The obtained collagen/chitosan/heparin matrix was found to be highly porous, swelled rapidly in PBS solution and was stable in vitro for at least 60 days in collagenase/lysozyme containing buffered aqueous solution (PBS, pH 7.4) at 37 degrees C. The collagen/chitosan/heparin matrix resulted in a superior blood compatibility compared to the ammonia-treated collagen and collagen/chitosan matrices. The morphology and behavior of the cells on the collagen/chitosan/heparin membrane were found to be similar to those on the collagen membrane but different from those on the collagen/chitosan membrane. Hepatocytes cultured on the collagen/chitosan/heparin matrices exhibited highest urea and triglyceride secretion functions 25 days post seeding. These results suggest that this collagen/chitosan/heparin matrix is a potential candidate for liver tissue engineering.  相似文献   

16.
A new type of collagen/chitosan/heparin matrix, fabricated by gelation of collagen/chitosan with heparin sodium containing ammonia, was produced to construct livers by tissue engineering and regenerative engineering. The obtained collagen/chitosan/heparin matrix was found to be highly porous, swelled rapidly in PBS solution and was stable in vitro for at least 60 days in collagenase/lysozyme containing buffered aqueous solution (PBS, pH 7.4) at 37°C. The collagen/chitosan/heparin matrix resulted in a superior blood compatibility compared to the ammonia-treated collagen and collagen/chitosan matrices. The morphology and behavior of the cells on the collagen/chitosan/heparin membrane were found to be similar to those on the collagen membrane but different from those on the collagen/chitosan membrane. Hepatocytes cultured on the collagen/chitosan/heparin matrices exhibited highest urea and triglyceride secretion functions 25 days post seeding. These results suggest that this collagen/chitosan/heparin matrix is a potential candidate for liver tissue engineering.  相似文献   

17.
Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin   总被引:16,自引:0,他引:16  
Kim UJ  Park J  Kim HJ  Wada M  Kaplan DL 《Biomaterials》2005,26(15):2775-2785
A new all-aqueous process is described to form three-dimensional porous silk fibroin matrices with control of structural and morphological features. The result of this process are scaffolds with controllable porosity and pore sizes that fully degrade in the presence of proteases, unlike prior methods to generate silk-based biomaterials that required the use of organic solvent treatments to impart control of structure and stability in aqueous environments, with low rates of proteolytic hydrolysis. A mechanism is proposed for this novel process that imparts physical stability via hydrophobic interactions. Adjusting the concentration of silk fibroin in water, and the particle size of granular NaCl used in the process, leads to the control of morphological and functional properties of the scaffolds. The aqueous-derived scaffolds had highly homogeneous and interconnected pores with pore sizes ranging from 470 to 940 microm, depending on the mode of preparation. The scaffolds had porosities >90% and compressive strength and modulus up to 320 +/- 10 and 3330 +/- 500 KPa, respectively, when formed from 10% aqueous solutions of fibroin. The scaffolds fully degraded upon exposure to protease during 21 days, unlike the scaffolds prepared from organic solvent processing. These new silk-based three-dimensional matrices provide useful properties as biomaterial matrices due to the all-aqueous mode of preparation, control of pore size, connectivity of pores, degradability and useful mechanical features. Importantly, this process offers an entirely new window of materials properties when compared with traditional silk fibroin-based materials.  相似文献   

18.
Cells environment is increasingly recognized as an important function regulator through cell–matrix interactions. Extracellular matrix (ECM) anisotropy being a key component of heart valves properties, we have devised a method to create highly porous anisotropic nanofibrillar scaffolds and studied their suitability as cell-support and interactions with human adipose derived stem cells (hADSCs) and human valve interstitial cells (hVICs). Anisotropic nanofibrillar scaffolds were produced by a modified jet-spraying method that allows the formation of aligned nanofibres (600 nm) through air-stream diffraction of a polymer solution (poly (ε-caprolactone, PCL) and collection onto a variably rotating drum. The resulting matrices of high porosity (99%) mimicked valve mechanical anisotropy. Dynamically seeded hADSC and hVIC cultured on scaffolds up to 20 days revealed that hADSC and hVIC penetration within the matrices was improved by anisotropic organization. Within 10 days, cells populated the entire scaffolds thickness and produced ECM (collagen I, III and elastin). As a result, mechanical properties of the constructs were improved over culture, while remaining anisotropic. In contrast to isotropic matrices, anisotropy induced elongated hADSCs and hVICs morphology that followed nanofibres orientation. Interestingly, these morphological changes did not induce hADSC differentiation towards the mesoderm lineages while hVIC recovered a physiological phenotype over culture in the biomimetic matrices. Overall, this study indicates that highly porous anisotropic jet-sprayed matrices are interesting candidates for valve tissue engineering, through anisotropic mechanical properties, efficient cell population, conservation of stem cells phenotype and recovery of hVIC physiological phenotype.  相似文献   

19.
Bhardwaj N  Kundu SC 《Biomaterials》2012,33(10):2848-2857
Adult bone marrow derived mesenchymal stem cells are undifferentiated, multipotential cells and have the potential to differentiate into multiple lineages like bone, cartilage or fat. In this study, polyelectrolyte complex silk fibroin/chitosan blended porous scaffolds were fabricated and examined for its ability to support in vitro chondrogenesis of mesenchymal stem cells. Silk fibroin matrices provide suitable substrate for cell attachment and proliferation while chitosan are promising biomaterial for cartilage repair due to it’s structurally resemblance with glycosaminoglycans. We compared the formation of cartilaginous tissue in the silk fibroin/chitosan blended scaffolds with rat mesenchymal stem cells and cultured in vitro for 3 weeks. Additionally, pure silk fibroin scaffolds of non-mulberry silkworm, Antheraea mylitta and mulberry silkworm, Bombyx mori were also utilized for comparative studies. The constructs were analyzed for cell attachment, proliferation, differentiation, histological and immunohistochemical evaluations. Silk fibroin/chitosan blended scaffolds supported the cell attachment and proliferation as indicated by SEM observation, Confocal microscopy and metabolic activities. Alcian Blue and Safranin O histochemistry and expression of collagen II indicated the maintenance of chondrogenic phenotype in the constructs after 3 weeks of culture. Glycosaminoglycans and collagen accumulated in all the scaffolds and was highest in silk fibroin/chitosan blended scaffolds and pure silk fibroin scaffolds of A. mylitta. Chondrogenic differentiation of MSCs in the silk fibroin/chitosan and pure silk fibroin scaffolds was evident by real-time PCR analysis for cartilage-specific ECM gene markers. The results represent silk fibroin/chitosan blended 3D scaffolds as suitable scaffold for mesenchymal stem cells-based cartilage repair.  相似文献   

20.
《Acta biomaterialia》2014,10(5):2014-2023
Silk fibroin (SF) scaffolds have been designed and fabricated for multiple organ engineering owing to SF’s remarkable mechanical property, excellent biocompatibility and biodegradability, as well as its low immunogenicity. In this study, an easy-to-adopt and mild approach based on a modified freeze-drying method was developed to fabricate a highly interconnected porous SF scaffold. The physical properties of the SF scaffold, including pore morphology, pore size, porosity and compressive modulus, could be adjusted by the amount of ethanol added, the freezing temperature and the concentration of SF. Fourier transform infrared spectroscopy illustrated that treatment of the lyophilized scaffolds with 90% methanol led to a structure transition of SF from silk I (random coil) to silk II (beta-sheet), which stabilized the SF scaffolds in water. We also incorporated heparin during fabrication to obtain a heparin-loaded scaffold which possessed excellent anticoagulant property. The heparin that was incorporated into the SF scaffolds could be released in a sustain manner for approximately 7 days, inhibiting the proliferation of human smooth muscle cells within the scaffold in vitro while promoting neovascularization in vivo. We therefore propose that the SF porous scaffold fabricated here may be an attractive candidate for use as a potential vascular graft for implantation based on its high porosity, excellent blood compatibility and mild fabrication process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号