首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The basolateral amygdala is a nodal structure within a distributed and interconnected network that regulates anxiety states and anxiety-related behavior. Administration of multiple anxiogenic drugs increases cellular responses (i.e., increases c-Fos expression) in a subregion of the basolateral amygdala, but the neurochemical phenotypes of these cells are not known. The basolateral amygdala contains glutamatergic projection neurons and several populations of γ-aminobutyric acid-synthesizing (GABAergic) interneurons, including a population of parvalbumin (PV)-expressing GABAergic interneurons that co-express the excitatory 5-HT2A receptor. The role for these PV-expressing GABAergic interneurons in anxiety-states is unclear. In this experiment we examined the effects of multiple anxiogenic drugs including the 5-HT2C/2A receptor agonist m-chlorophenyl piperazine (mCPP), the adenosine receptor antagonist caffeine, the α2-adrenoreceptor antagonist yohimbine and the partial inverse agonist at the benzodiazepine allosteric site on the GABAA receptor, N-methyl-beta-carboline-3-carboxamide (FG-7142), on c-Fos expression in PV-immunoreactive (PV-ir) interneurons in subdivisions of the basolateral amygdala. All drugs with the exception of mCPP increased c-Fos expression in PV-ir neurons in the basolateral amygdaloid nucleus, anterior part (BLA). The numbers of c-Fos-immunoreactive (c-Fos-ir)/PV-ir GABAergic interneurons in the BLA were positively correlated with the numbers of c-Fos-ir serotonergic neurons in the mid-rostrocaudal dorsal raphe nucleus (DR) and with a measure of anxiety-related behavior. All four drugs increased c-Fos expression in non-PV-ir cells in most of the subdivisions of the basolateral amygdala that were sampled, compared with vehicle-injected controls. Together, these data suggest that the PV/5-HT2A receptor expressing GABAergic interneurons in the basolateral amygdala are part of a DR-basolateral amygdala neuronal circuit modulating anxiety-states and anxiety-related behavior.  相似文献   

2.
The architecture of the amygdaloid complex of a marsupial, the opossum Didelphis aurita, was analyzed using classical stains like Nissl staining and myelin (Gallyas) staining, and enzyme histochemistry for acetylcholinesterase and NADPH-diaphorase. Most of the subdivisions of the amygdaloid complex described in eutherian mammals were identified in the opossum brain. NADPH-diaphorase revealed reactivity in the neuropil of nearly all amygdaloid subdivisions with different intensities, allowing the identification of the medial and lateral subdivisions of the cortical posterior nucleus and the lateral subdivision of the lateral nucleus. The lateral, central, basolateral and basomedial nuclei exhibited acetylcholinesterase positivity, which provided a useful chemoarchitectural criterion for the identification of the anterior basolateral nucleus. Myelin stain allowed the identification of the medial subdivision of the lateral nucleus, and resulted in intense staining of the medial subdivisions of the central nucleus. The medial, posterior, and cortical nuclei, as well as the amygdalopiriform area did not exhibit positivity for myelin staining. On the basis of cyto- and chemoarchitectural criteria, the present study highlights that the opossum amygdaloid complex shares similarities with that of other species, thus supporting the idea that the organization of the amygdala is part of a basic plan conserved through mammalian evolution.  相似文献   

3.
The amygdala of the box turtle lies beneath the posterior hypopallial ridge. Three nuclear groups may be distinguished in it: (1) the anterior amygdaloid area, (2) the basolateral group and (3) the corticomedial group. The anterior amygdaloid area shows no subdivisions; its location ventral and ventromedial to the caudal part of the small-celled portion of the piriform area is evident. The basolateral group is subdivided into lateral and basal amygdaloid nuclei. The interconnections of this group through the anterior commissure with the comparable area in the opposite amygdala and with the corticomedial group indicate that it is functionally a vicarious cortex. The corticomedial group is divisible into medial and cortical amygdaloid nuclei. The medial nucleus is poorly defined. The cortical nucleus is bounded by the medial amygdaloid nucleus on the medial side and the ventral border of the piriform cortex laterally, and is comparable to the cortical amygdaloid nucleus of higher vertebrates. The lateral olfactory tract arises from mitral cells of the olfactory bulb and accessory olfactory bulb and neurons of the anterior olfactory nucleus. The lateral part of the anterior olfactory nucleus, the lateral and the intermediate parts of the tuberculum olfactorium and the small-celled part of the piriform cortex contribute to and receive fibers from the lateral olfactory tract. The lateral olfactory tract sends fibers to the anterior amygdaloid area and the corticomedial group. The lateral corticohabenular tract has an anterior and a posterior division. The anterior division arises from cells of the nucleus of the lateral olfactory tract and the lateroventral portion of the piriform cortex. It is joined by those fascicles arising in the corticomedial group and designated as the amygdalohabenular tract. This tract crosses in the habenular commissure and retraces its course to enter the corticomedial amygdaloid nuclear group on the side opposite its origin. The basolateral group is interconnected through the anterior commissure. The stria terminalis contains three components which interconnect the corticomedial amygdaloid nuclear group with the septum, the preoptic area and the hypothalamus. The supracommissural and the intracommissural components relate the cortical and the medial nuclei to the septum, the preoptic area and the hypothalamus of the same side. The infracommissural component interconnects the cortical and the medial amygdaloid nuclei with the septum, the preoptic area and the hypothalamus of the same and the opposite side. The dorsal and the ventral olfactory projection tracts arise from the corticomedial amygdaloid nuclear group. They terminate in the preoptic area and anterior hypothalamus.  相似文献   

4.
The corticoamygdaloid and intraamygdaloid projections of the rat were studied by the use of retrograde transport of horseradish peroxidase (HRP). Observations based on anterograde transport of the enzyme were exploited to determine the course of the intrinsic connections. The HRP was injected stereotactically by means of iontophoresis. Most of the amygdaloid nuclei were selectively injected, and all but a few were reached by more than one approach. The vast majority of corticoamygdaloid fibers was found to originate in cortical areas defined as allocortical (Stephan, 1975). From the medial frontal cortex the central amygdaloid nucleus (AC) receives a hitherto undescribed projection originating in the tenia tecta; and both the AC and the lateral amygdaloid nucleus (AL) receive fibers from the prelimbic and infralimbic areas. The anterior cingulate area entertains a weak connection with the basolateral amygdaloid nucleus (BL). As to the insular cortex, the posterior agranular insular area projects to all amygdaloid subdivisions; the BL, AC, and the anterior cortical nucleus (COa) receive, in addition, fibers from the ventral agranular area. The prepyriform cortex connects with the entire amygdala except the medial nucleus (Am) The amygdala receives afferents from a transitional area between the amygdala and the entorhinal area. The entorhinal area proper is related to the amygdala via projections from the ventral part of the lateral entorhinal area to the AL and from the dorsal part of the lateral entorhinal area to the BL. The former nucleus also receives fibers from the perirhinal region. Additional amygdalopetal connections from the hippocampal region include a previously undescribed projection from the temporal two-thirds of CA1 to the AL and BL and to the posterior cortical nucleus (COp) with the adjacent periamygdaloid cortex (PAC). The subiculum projects to the AL, and more modestly to other amygdaloid nuclei There is an extensive network of intraamygdaloid connections, the Am and AC being the only nuclei not giving rise to intrinsic fibers.  相似文献   

5.
The development of the human amygdaloid complex is described beginning at the time that it first appears, when the cerebral hemispheres begin to evaginate (approximately 8--9 mm), and including a fetus of 27.4 mm CR length Both Nissl and protargol silver series, transversely and sagittally sectioned, were used. The earliest cell migration representing the striatal complex is from the germinal epithelium in the region of the interventricular foramen, lateral to the primordial hippocampal formation. This is the characteristic topographic location of the amygdala, which, therefore, is the first portion of the human striatal complex to appear embryologically. All of the amygdaloid nuclei identified develop by the migration of neuroblasts from the germinal epithelium. The three main subdivisions of the amygdaloid complex (anterior amygdaloid area, corticomedial complex and basolateral nuclear group) are identifiable almost immediately after the primordial amygdala appears (9.5 mm in the material studied). In this embryo the cortical and medial nuclei are identifiable, but the central nucleus was not seen until 22.2 mm and the nucleus of the lateral olfactory tract was not identified even in the oldest fetuses. The basolateral complex differentiates much later than the corticomedial complex and all of the nuclear components became identifiable at the same time (20.7 mm embryo). However the basal nucleus is best represented, the accessory basal next in size, and the lateral only just appearing. In the oldest fetus the subdivisions of the basal and accessory basal nuclei seen in the adult brain are recognizable. Even before the individual nuclei appear, the basolateral complex is much larger than the corticomedial complex. The lateral to medial rotation of the amygdaloid complex has not yet begun in the oldest fetuses, but the posterior end of the lateral ventricle is beginning to turn anteriorly. During early development, all cells of the amygdala are derived from the lateral striatal ridge, the only one present until 14.0 mm. At 20.7 mm and later neuroblasts are contributed from the medial striatal ridge also. Although the greater part of the basolateral amygdaloid complex is derived from the lateral ridge, some cells are contributed from the medial ridge, particularly to the accessory basal nucleus. By contrast, the corticomedial complex is derived in part from the medial striatal ridge, after it appears, even though the early development is from the lateral ridge. Comparisons between the amygdala at different developmental stages and the amygdala in fishes, in amphibians, in reptiles and in lower mammals are made. The amygdala in fishes, in amphibians, in reptiles and in lower mammals are made. The topographic relationships between the amygdala and the hippocampal formation, the piriform cortex and the caudate, the putamen and the globus pallidus are considered.  相似文献   

6.
Neurogenesis in the rat amygdala was examined with 3H-thymidine radiography. The animals were the offspring of pregnant females given two injections of 3H-thymidine on consecutive days in an overlapping series: Embryonic day (E) 12 + E13, + E14. E21 + E22. On 60 days of age, the percentage of labelled cells and the proportion of cells added during each day of formation were determined at several anatomical levels within the following components of the amygdala: anterior amygdaloid area, bed nuclei of the lateral and accessory olfactory tracts, central, medial, anterior cortical, posterolateral cortical, posteromedial cortical, basomedial, basolateral, and lateral nuclei, the amygdalo-hippocampal area, and the intercalated masses. All large and many small neurons originate in most nuclei between E13 and E17, those in the intercalated masses between E15 and E19, those in the amygdalo-hippocampal area between E16 and E19. The anterior amygdaloid area, intercalated masses, central, medial, posterolateral cortical, posteromedial cortical, basomedial, basolateral, and lateral nuclei have strong rostral-to-caudal intranuclear gradients. There are five additional intranuclear gradients: 1) medial to lateral in the central nucleus, anterior amygdaloid area, and anterior intercalated masses; 2) lateral to medial in the bed nucleus of the lateral olfactory tract and basolateral nucleus; 3) superficial to deep in the amygdalo-hippocampal area, posterolateral, and posteromedial cortical nuclei; 4) ventral to dorsal in the medial nucleus; and 5) dorsal to ventral between the small and large-celled parts of the lateral nucleus. Only the bed nucleus of the accessory olfactory tract and the anterior cortical nucleus do not have intranuclear gradients. Between 10 and 15% of the total cell population in most nuclei are very small neurons and/or glia which originate simultaneously between E18 and E20. This population is absent in the ventral part of the medial, anterior cortical, and anterior basomedial nuclei; these contiguous areas may form a distinct subunit in the amygdala. In contrast to the pronounced intranuclear gradient, internuclear gradients are weak. Neurogenesis in the central nucleus and corticomedial and basolateral complexes appears to take place both concurrently and independently. There are groups of early-originating neurons in the central, medial, and basolateral nuclei located near the periphery of the amygdala. Each of these groups is surrounded by younger neurons farther within the interior. The youngest calls are in the centrally placed intercalated masses. These settling patterns suggest that cells in the amygdala arise simultaneously from more than one neuroepithelial source during morphogenesis. The chronology of neurogenesis in the amygdala can be related to some of its anatomical connections. Rostral-to-caudal gradients in the corticomedial complex may be timed to coincide with early vs. late arrival of olfactory fibers. The subdivisions bases on intranuclear gradients in the central, medial, and basolateral nuclei match the subdivisions based on patterns of anatomical connections.  相似文献   

7.
Serotonergic systems arising from the mid-rostrocaudal and caudal dorsal raphe nucleus (DR) have been implicated in the facilitation of anxiety-related behavioral responses to anxiogenic drugs or aversive stimuli. In this study we attempted to determine a threshold to engage serotonergic neurons in the DR following exposure to aversive conditions in an anxiety-related behavioral test. We manipulated the intensity of anxiogenic stimuli in studies of male Wistar rats by leaving them undisturbed (CO), briefly handling them (HA), or exposing them to an open-field arena for 15-min under low-light (LL: 8-13 lx) or high-light (HL: 400-500 lx) conditions. Rats exposed to HL conditions responded with reduced locomotor activity, reduced time spent exploring the center of the arena, a lower frequency of rearing and grooming, and an increased frequency of facing the corner of the arena compared to LL rats. Rats exposed to HL conditions had small but significant increases in c-Fos expression within serotonergic neurons in subdivisions of the rostral DR. Exposure to HL conditions did not alter c-Fos responses in serotonergic neurons in any other DR subdivision. In contrast, rats exposed to the open-field arena had increased c-Fos expression in non-serotonergic cells throughout the DR compared to CO rats, and this effect was particularly apparent in the dorsolateral part of the DR. We conclude that exposure to HL conditions, compared to LL conditions, increased anxiety-related behavioral responses in an open-field arena but this stimulus was at or below the threshold required to increase c-Fos expression in serotonergic neurons.  相似文献   

8.
9.
10.
The efferent connections of the nucleus of the lateral olfactory tract (LOT) were examined in the rat with the Phaseolus vulgaris leucoagglutinin (PHA-L) technique. Our observations reveal that layers II and III of LOT have largely segregated outputs. Layer II projects chiefly ipsilaterally to the olfactory bulb and anterior olfactory nucleus, bilaterally to the anterior piriform cortex, dwarf cell cap regions of the olfactory tubercle and lateral shell of the accumbens, and contralaterally to the lateral part of the interstitial nucleus of the posterior limb of the anterior commissure. Layer III sends strong bilateral projections to the rostral basolateral amygdaloid complex, which are topographically organized, and provides bilateral inputs to the core of the accumbens, caudate-putamen, and agranular insular cortex (dorsal and posterior divisions). Layer II projects also to itself and to layers I and II of the contralateral LOT, whereas layer III projects to itself, to ipsilateral layer II, and to contralateral layer III of LOT. In double retrograde labeling experiments using Fluorogold and cholera toxin subunit b tracers, LOT neurons from layers II and III were found to provide collateral projections to homonymous structures on both sides of the brain. Unlike other parts of the olfactory amygdala, LOT neither projects directly to the extended amygdala nor to the hypothalamus. Thus, LOT seemingly influences nonpheromonal olfactory-guided behaviors, especially feeding, by acting on the olfactory bulb and on ventral striatal and basolateral amygdaloid districts that are tightly linked to lateral prefrontal cortical operations.  相似文献   

11.
The projections from the central amygdaloid nucleus (Ce) to different subdivisions of the bed nucleus of the stria terminalis (BNST) were investigated using retrograde transport of fluorescent dyes. Iontophoretic injections of either Fast Blue (FB) or bisbenzimide (BB) were applied to the anterior medial, posterior medial, anterior lateral and posterior lateral parts of the bed nucleus of the stria terminalis. The anterior medial BNST receives projections from caudal part of medial Ce (CeM). The posterior medial BNST receives projections specifically from the intermediate subdivision of Ce, though in some cases projections from the ventral subdivision (CeV) of Ce were seen. The anterior lateral BNST receives projections primarily from the caudal lateral Ce (CeL) as well as middle and caudal part of CeM. The posterior lateral BNST receives projection from rostral CeL as well as the CeV and lateral capsular Ce. In general, the results indicate that the major subdivisions of the BNST receive projections from Ce subdivisions having similar connections with diencephalic or brainstem cell groups. Additional evidence is presented suggesting that Ce-BNST projections are part of an extensive system of intrinsic connections linking similar groups of neurons in both the Ce and BNST as well as within Ce.  相似文献   

12.
Although recent studies in squamate reptiles have importantly clarified how chemical information is processed in the reptilian brain, how the amygdala relays chemosensory inputs to the hypothalamus to influence chemically guided behaviors is still poorly documented. To identify these chemosensory pathways, the amygdalo-hypothalamic projections, intra-amygdaloid circuitry and afferents from the lateral cortex (LC) to the amygdala were investigated by injecting conjugated dextran-amines into the hypothalamus, amygdala, and LC of garter snakes. The amygdala was divided into olfactory recipient (ventral anterior and external amygdalae), vomeronasal recipient (nucleus sphericus, NS, and medial amygdala, MA), and nonchemosensory (e.g., posterior dorsal ventricular ridge, PDVR, and dorsolateral amygdaloid nucleus, DLA) subdivisions. Rostroventral (LCrv) and dorsocaudal subdivisions of the LC were distinguished. In addition to receiving afferents from the main olfactory bulb, the olfactory amygdala receives afferents from NS and projects to the NS, PDVR, and dorsal hypothalamus. The NS has only a minor projection to the lateral hypothalamus, whereas the MA, which receives afferents from the LCrv and NS, has projections to the ventromedial hypothalamic (VMH) and lateral posterior hypothalamic nuclei. Among the nonchemosensory amygdaloid structures, the PDVR receives afferents from the LCrv and the olfactory amygdala and projects to the VMH, whereas DLA receives afferents from the LCrv and NS, and projects to the periventricular hypothalamus. These results substantially clarify the olfactory and vomeronasal tertiary connections and demonstrate that parts of the nonchemosensory amygdala play a major role in relaying chemosensory information to the hypothalamus.  相似文献   

13.
Cortical, thalamic, and amygdaloid projections of the rat anterior and posterior insular cortices were examined using the anterograde transport of biocytin. Granular and dysgranular posterior insular areas between bregma and 2 mm anterior to bregma projected to the gustatory thalamic nucleus. Granular cortex projected to the subjacent dysgranular cortex which in turn projected to the agranular (all layers) and granular cortices (layers I and VI). Both granular and dysgranular posterior areas projected heavily to the dysgranular anterior insular cortex. Agranular posterior insular cortex projected to medial mediodorsal nucleus, agranular anterior insular and infralimbic cortices as well as granular and dysgranular posterior insula. No projections to the amygdala were observed from posterior granular cortex, although dysgranular cortex projected to the lateral central nucleus, dorsolateral lateral nucleus, and posterior basolateral nucleus. Agranular projections were similar, although they included medial and lateral central nucleus and the ventral lateral nucleus. Dysgranular anterior insular cortex projected to lateral agranular frontal cortex and granular and dysgranular posterior insular regions. Agranular anterior insular cortex projected to the dysgranular anterior and prelimbic cortices. Anterior insuloamygdaloid projections targeted the rostral lateral and anterior basolateral nuclei with sparse projections to the rostral central nucleus. The data suggest that the anterior insula is an interface between the posterior insular cortex and motor cortex and is connected with motor-related amygdala regions. Amygdaloid projections from the posterior insular cortex appear to be organized in a feedforward parallel fashion targeting all levels of the intraamygdaloid connections linking the lateral, basolateral, and central nuclei . J. Comp. Neurol. 399:440–468, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
Projections asre described from the basolateral, lateral and anterior cortical nuclei of the amygdaloid complex, and from the prepiriform cortex, to several discrete areas of the cerebral cortex in the rat and cat and to th mediodorsasl thalamic nucleus in the rat. These projections are very well-defined in their origin, and in their area and laminar pattern of termination. The basolateral amygdaloid nucleus can be divided into anterior and posterior divisions, based on cytoarchitectonic and connectional distinctions. In both the rat and cat the posterior division projects to the prelimbic area (area32) and the infralimbic area (area 25) on the medial surface of the hemisphere. The anterior division projects more lightly to these areas, but also sends fibers to the dorsal and posterior agrangular insular areas and the perirhinal area on the lateral surface. Furtheremore, in the cat the perirhinal area is divided into two areas(area 35 and 36) and the anterior division projects to both of these and also to a ventral part of the grangular insular area; this last area is adjacent to, but separate from the auditory insular area and the second cortical taste area. In most of these areas, the fibers from the basolateral nucleus terminate predominantly in two bands: one in the deep part of layer I and layer II, and a heavier band in layer V (in the rat) or layers V and VI (in the cat). The lateral amygdaloid nucleus projects heavily to the perirhinal area, and also to the posterior agranular insular area. These fibers terminate predominantly in the midle layers of the cortex, although the cellular lamination in these two areas is relatively indistinct. The anterior cortical amygdaloid nucleus and the prepiriform cortex both project to th infralimbic area and the ventral agranular insular area, and the anterior cortical nucleus also projects to the posterior agranular area and the perirhinal area. In all of these areas, the fibers from these olfactory-relasted structures terminate in the middle of layer I. In the rat, the two divisions of the basolateral nucleus also project to the medial segment of the mediodorsasl thalamic nucleus, with the anterior division projecting mainly to the posterior part of this segment and the posterior division to the anterior part. The endopiriform nucleus, deep to the prepiriform cortex, projects to the central segment of the mediodorsasl nucleus, since little or no projection could be demonstrated from the prepiriform cortex itself. Projections to the mediodorsal nucleus have not been found in the cat.  相似文献   

15.
The autoradiographic anterograde axonal transport technique was used to study efferent projections of the opossum basolateral amygdala. All nuclei of the basolateral amygdala send topographically organized fibers to the bed nucleus of the stria terminalis (BST) via the stria terminalis (ST). Injections into rostrolateral portions of the basal nuclei label fibers that surround the commissural bundle of the ST, cross the midline by passing along the outer aspect of the anterior commissure, and terminate primarily in the contralateral BST, anterior subdivision of the basolateral nucleus (BLa), ventral putamen, and olfactory cortex. Each of the basal nuclei project ipsilaterally to the anterior amygdaloid area, substantia innominata and topographically to the ventral part of the striatum and adjacent olfactory tubercle. The posterior subdivision of the basolateral nucleus (BLp), but not the basomedial nucleus (BM), projects to the ventromedial hypothalamic nucleus. BLa and BLp have projections to the nucleus of the lateral olfactory tract and also send fibers to the central nucleus, as does the lateral nucleus (L). The lateral nucleus also has a strong projection to BM and both nuclei project to the amygdalo-hippocampal area. BLa and BLp send axons to the ventral subiculum and ventral lateral entorhinal area whereas L projects only to the latter area. The lateral nucleus and BLp project to the perirhinal cortex and the posterior agranular insular area. The BLa sends efferents to the anterior agranular insular area. Rostrally this projection is continuous with a projection to the entire frontal cortex located rostral and medial to the orbital sulcus. All of the nuclei of the basolateral amygdala project to areas on the medial wall of the frontal lobe that appear to correspond to the prelimbic and infralimbic areas of other mammals. Despite the great phylogenetic distance separating the opossum from placental mammals, the projections of the opossum basolateral amygdala are very similar to those seen in other mammals. The unique frontal projections of the opossum BLa to the dorsolateral prefrontal cortex appear to be related to the distinctive organization of the mediodorsal thalamic nucleus and prefrontal cortex in this species.  相似文献   

16.
The distribution of seven neuropeptides was studied in the cat amygdala using an indirect immunoperoxidase technique. No labeling was found for luteinizing hormone-releasing hormone or β-endorphin (1–27). Sparse α-melanocyte-stimulating hormone-immunoreactive fibers were found in the basomedial nucleus of the amygdala, whereas a low density of fibers containing α-neo-endorphin was observed in the anterior amygdaloid area. Neurotensin was observed in fibers of the anterior amygdaloid area (low density) and both the lateral (low density) and the medial part (moderate density) of the central nucleus. A low density of fibers containing neurokinin A was found in the anterior amygdaloid area, the basolateral nucleus, and the medial part of the central nucleus. A moderate density was observed in the basomedial nucleus and in the medial and cortical nuclei. Fibers containing somatostatin-28 (fragment 1–12) were observed in all the amygdaloid nuclei, whereas immunoreactive cell bodies were found in all the nuclei except in the medial part of the central nucleus and the medial nucleus. Perikarya containing neurokinin A were observed in the latter nucleus. The results point to a discrete distribution of peptidergic fibers in the cat amygdala, as well as the occurrence of neurons containing neurokinin A and somatostatin-28 (fragment 1–12). The distribution of the peptides studied in the cat is compared with the location of the same peptides in the amygdala of other species. The possible diencephalic origin of the peptidergic fibers is also discussed.  相似文献   

17.
Time of neuron origin in the amygdaloid complex of the mouse   总被引:1,自引:0,他引:1  
The time of origin of the amygdaloid complex was studied in mice injected once with tritiated thymidine during gestation or early neonatal development. Neurons for this nucleus and related nuclei arose during embryonic days 11-15. No mediolateral or dorsoventral gradients, but a distinct rostrocaudal gradient of proliferation was evident in comparisons of both rostral vs caudal nuclei and of anterior vs posterior regions of individual nuclei, such as the cortical nucleus. Since the pattern of development of this controversial nucleus was similar to that of nuclei in both centromedial and basolateral groups, time of origin data could not aid its assignment to one of these subdivisions.  相似文献   

18.
The distribution of ‘marker’ enzymes for cholinergic neurons has been studied in 10 subdivisions of the amygdaloid complex of the rat brain. Choline acetyltransferase activity was measured using a radiochemical method in samples dissected from fresh serial sections. Acetylcholinesterase was studied using a histochemical procedure. Both enzymes had similar patterns of distribution within the amygdaloid complex and were most concentrated in the posterior lateral and basolateral nuclei and in the nucleus of the lateral olfactory tract. These enzymes were much less concentrated in the cortical, medial, central, and basomedial nuclei. Large differences in acetylcholinesterase staining were found within the lateral posterior and the basolateral nuclei and within the pyriform cortex. Biochemical studies showed a parallel distribution of choline acetyltransferase within these nuclei. The results indicate that cholinergic neural elements in the amygdala are concentrated primarily in the basolateral complex and suggest that this region may be innervated by cholinergic fibers traveling in the ventral amygdalo-fugal pathway.  相似文献   

19.
The efferent fiber connections of the nuclei of the amygdaloid complex with subcortical structures in the basal telencephalon, hypothalamus, midbrain, and pons have been studied in the rat and cat, using the autoradiographic method for tracing axonal connections. The cortical and thalamic projections of these nuclei have been described in previous papers (Krettek and Price, ′77b,c). Although the subcortical connections of the amygdaloid nuclei are widespread within the basal forebrain and brain stem, the projections of each nucleus have been found to be well defined, and distinct from those of the other amygdaloid nuclei. The basolateral amygdaloid nucleus projects heavily to the lateral division of the bed nucleus of the stria terminalis (BNST), to the caudal part of the substantia innominata, and to the ventral part of the corpus striatum (nucleus accumbens and ventral putamen) and the olfactory tubercle; it projects more lightly to the lateral hypothalamus. The central nucleus also projects to the lateral division of the BNST and the lateral hypothalamus, but in addition it sends fibers to the lateral part of the substantia nigra and the marginal nucleus of the brachium conjunctivum. The basomedial nucleus has projections to the ventral striatum and olfactory tubercle which are similar to those of the basolateral nucleus, but it also projects to the core of the ventromedial hypothalamic nucleus and the premammillary nucleus, and to a central zone of the BNST which overlaps the medial and lateral divisions. The medial nucleus also projects to the core of the ventromedial nucleus and the premammillary nucleus, but sends fibers to the medial division of the BNST and does not project to the ventral striatum. The posterior cortical nucleus projects to the premammillary nucleus and to the medial division of the BNST, but a projection from this nucleus to the ventromedial nucleus has not been demonstrated. Projections to the “shell” of the ventromedial nucleus have been found only from the ventral part of the subiculum and from a structure at the junction of the amygdala and the hippocampal formation, which has been termed the amygdalo-hippocampal area (AHA). The AHA also sends fibers to the medial part of the BNST and the premammillary nucleus. Virtually no subcortical projections outside the amygdala itself have been demonstrated from the lateral nucleus, or from the olfactory cortical areas around the amygdala (the anterior cortical nucleus, the periamygdaloid cortex, and the posterior prepiriform cortex). However, portions of the endopiriform nucleus deep to the prepiriform cortex project to the ventral putamen, and to the lateral hypothalamus.  相似文献   

20.
The central extended amygdala, a forebrain macrostructure, may represent a common substrate for acute drug reward and the dysphoric effects of drug withdrawal. To test its involvement during opiate withdrawal, we studied the distribution of c-Fos immunoreactive neurons, in relation to their neuropeptide content, in brain sections from morphine-dependent or naive rats, killed 90 min after naloxone or saline intraperitoneal injection. Naloxone treatment in naive rats induced a slight increase in c-Fos immunoreactivity in the central amygdaloid nucleus, the lateral bed nucleus of the stria terminalis and the interstitial nucleus of the posterior limb of the anterior commissure. In morphine-dependent rats, naloxone injection significantly increased the number of c-Fos-positive neurons in these structures as well as in the majority of the other central extended amygdala components. Double immunocytochemistry was used to determine the neurochemical nature of c-Fos-positive neurons in the central extended amygdala. Corticotropin-releasing factor- and methionine-enkephakin-immunoreactive neurons displayed c-Fos immunoreactivity in naive rats after naloxone injection, whereas only enkephalinergic neurons were found to be c-Fos positive in morphine-dependent rats after naloxone injection. The possible involvement of the corticotropin-releasing factor system during withdrawal is discussed. These results suggest that the whole central extended amygdala is activated during opiate withdrawal, with a lateral to medial decreasing gradient, and emphasize the role of peptidergic systems in this morphofunctional continuum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号